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3D Anisotropic Diffusion for Liver Segmentation
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Abstract—Liver segmentation is the first significant process for
liver diagnosis of the Computed Tomography. It segments the liver
structure from other abdominal organs. Sophisticated filtering tech-
niques are indispensable for a proper segmentation. In this paper, we
employ a 3D anisotropic diffusion as a preprocessing step. While
removing image noise, this technique preserve the significant parts
of the image, typically edges, lines or other details that are important
for the interpretation of the image. The segmentation task is done
by using thresholding with automatic threshold values selection and
finally the false liver region is eliminated using 3D connected compo-
nent. The result shows that by employing the 3D anisotropic filtering,
better liver segmentation results could be achieved eventhough simple
segmentation technique is used.

Keywords—3D Anisotropic Diffusion, non-linear filtering, CT
Liver.

I. INTRODUCTION

IN the recent years, liver segmentation from Computed
Tomography (CT) scans has gain a lot of importance in

the field of medical image processing since the composition
of liver is vital component in diagnosis of liver disease, surgery
planning and therapy control [2], [4], [6]. Automatic liver
segmentation is required in today’s challenging clinical en-
vironment to replace the manual task which is extremely time
consuming especially for measurement of three dimensional
structures.

Due to the large variability in appearance, size and shape
of liver, an automated liver segmentation is still a challenging
task. In addition, there is ambiguity of liver boundary and
the complex context of nearby organs such as kidney, heart
and muscles. Further difficulties arises because quantum noise
corrupts the projections in CT at the detector. This noise
propagates through the reconstruction to the final volume
slices.

To improve the reliability of automatic segmentation al-
gorithms, denoising techniques are required to be used as
a preprocessing step. The most basic approach is to apply
linear filter. Since CT images have important and structured
high frequency components like edges and small details,
linear filters such as those used in bandpass, highpass and
lowpass are not suitable because they degrade these important
structures. Nonlinear filter should be used instead. Each data
point is considered separately and either assigned to noise or to
a valid structure. If the point is noise, it is simply removed and
replaced by an estimate based on surrounding data points. Parts
of the data that are not considered noise are not modified at
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all. Linear filters lack such a decision capability and therefore
modify all data.

In this paper, we describe a 3D anisotropic diffusion that can
be employed to carry out the segmentation task. This technique
is a non-linear filter used as a preprocessing step. The remain-
ing steps are concerned with subsequent image segmentation
of the resulting smoothed images. We calculated the histogram
of the 3D filtered image to automatically select the threshold
values and finally using 3D connected component to find the
largest organ that is regarded as a liver organ.

II. ANISOTROPIC DIFFUSION

Anisotropic diffusion is currently one of the most powerful
noise reduction techniques in the field of computer vision.
This technique takes into account the local structures found
in the image to filter noise, preserve edges and enhance some
features.

Pioneered in 1990 by Perona and Malik [5], anisotropic
diffusion is also called Perona-Malik equation. The method
is based on the numerical solution of nonlinear partial dif-
ferential equation on two dimensions image. The method is
then extended into three dimensions by Gerig et. al in [3].
In this method, smoothing is modeled as a diffusion that is
allowed along homogeneous regions and inhibited by region
boundaries. The partial differential equation used to describe
the diffusion process is the following:

∂

∂t
I(v, t) = div(c(v, t)∇I(v, t)) (1)

where div is a divergence operator and ∇ is a gradient
operator. I in our case is the 3D volume of CT image and
v = (z, y, x) is the coordinate vector.

Writing f = (fx, fy, fz), the divergence of vector-valued
function f is given by the formula:
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Finally, the divergence of ∇f can be written as:
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At each voxel, the diffusion strength is controlled by the
so-called diffusion coefficient c(v, t) with t is the process
ordering parameter used to enumerate iteration steps.The dif-
fusion coefficient c(v, t) depends on the image gradient mag-
nitude ∇I . It should decrease where the gradient magnitude
increases so that image regions of high contrast undergo less
diffusion, whereas uniform regions are diffused with the same
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intensity in all directions. Hence the edges can be preserved
while removing noise from the image. Two different diffusion
functions have been suggested in [5]:

c1(v, t) = exp
(
− ( |∇I(v, t)|

κ

)2
)

(5)

c2(v, t) =
1

1 +
( |∇I(v,t)|

κ

)2 (6)

In this work, c1(v, t) is used. This is reported in [3], where
c1 possesses a much stronger edge enhancing capacity than
c2. The parameter κ controls the sensitivity to edges and is
chosen as a function of the noise in the image.

A. Filtering of 3D CT Images

The formulation of a 3D diffusion process follows directly
from the 2D diffusion process in [3] but the node is now taken
from 3D neighborhood of volume elements. This increased
number of nodes results in much better noise reduction and in
an enhancement of 3D discontinuities, which allows a more
accurate preservation of the continuity of structures in 3D
space. The following equation is the discrete implementation
of 3D procedure which considers only the six immediate
neighbors (Fig. 1). However, in our work 26 voxels within
a 3x3x3 voxel window are considered.

In order to solve the differential equation, a discrete approx-
imation for the first order derivative is required:

∂fx

∂x
=

f(x + Δx) − f(x)
Δx

(7)

∂fx

∂x
=

f(x) − f(x + Δx)
Δx

(8)

where Eq. 7 is the forward difference equation and Eq. 8 is
the backward difference equation, respectively. The combina-
tion of forward difference and backward difference produces
central difference. Hence, the formula becomes:

∂fx

∂x
=

f(x + 1
2Δx) − f(x − 1

2Δx)
Δx

(9)

Using the approximation equation from Eq. 9 and the
divergence of ∇f from Eq. 4, Eq. 1 can be restated as in
Eq. 10. It can be solved in an iterative way as follows:

I(v, t + Δt) = I(v, t) + Δt
∂

∂t
I(v, t) (11)

The integration constant Δt determines the iterative approx-
imation of stability. It must be adjusted to the different neigh-
borhood structures. As long as Δt is sufficiently small, the
iteration scheme expressed in Eq. 11 is stable. Simple analysis
to find bounds for the integration constant Δt can be found
in [3] where for 3D the maximum Δt for six neighborhoods
and 26 neighborhoods are 1/7 and 3/44, respectively.

III. LIVER VOLUME SEGMENTATION

A. Thresholding

The distribution of the voxel intensities holds significant in-
formation about the 3D image content. Relying on anatomical
knowledge regarding the liver volume, information contained
in the image histogram can be used to find the initial liver
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tissues. From a priori knowledge, liver is the largest tissue in
the CT image.

To obtain the initial liver region, we propose to perform a
thresholding. In Fig. 2, the normalized histogram of 3D image
from anisotropic diffusion result is provided. Four peaks are
shown corresponding to (a)background, (b) muscle, (c) liver
and (d) bones. Notice that, the global maximum corresponds to
the background and the peak with the highest local maximum
corresponds to the liver tissue. The selection of appropriate
thresholds is done by extracting two local minimum between
this peak. Voxels whose intensity falls between these two
thresholds are assigned as liver region. Otherwise there are
assigned as background region (0 value).

B. 3D Connected Component
Due to the fact that some organs in CT image shares

similar intensities, there are several organs still remain after
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Fig. 1: 3D network structure using six connectivity. Circles
represents voxel nodes.

Fig. 2: Volume histogram from 3D filtered image correspond-
ing to (a)background, (b)muscle, (c) liver and (d) bones. Two
dash lines are local minimum between the highest peak.

the thresholding process. To remove these unwanted organs 3D
connected component technique is used. This task is performed
by examining the connectivity of voxels with their neighbors
and assigning a unique label to each connected set found.
The connected component algorithm presented in this work,
assumes 26-connectivity for the foreground object. Only the
maximum volume among all objects is selected, which further
eliminated false liver regions.

IV. RESULTS AND DISCUSSION

The datasets used for the evaluation consists of 2D CT-slices
obtained from Radiology Department, Hospital University of
Freiburg. They consist of 25-30 slices with 512x512 resolu-
tion. The algorithm has been developed using C++ language in
Linux environment. We conducted two experiments for visual
analysis to confirm the usefulness of 3D anisotropic diffusion
in helping the segmentation task.

First experiment is done by applying the 3D anisotropic
diffusion to volumetric CT images and our result is shown
in Fig. 3. Filtering was performed with five iterations with
diffusion function c1 and κ = 5.0. The result shows that after
three iterations noise was significantly reduced, while the low-
contrast edges between liver tissues and muscles tissues were

enhanced. After five iterations, the intensities within the liver
region are more uniform.

The next experiment conducted is to show the segmentation
results using a thresholding technique with and without filter-
ing step of 3D anisotropic diffusion. As shown in Fig. 4, it is
easier to automatically find the optimal threshold values from
the filtered images. Results from (d) and (h) clearly show that
thresholding-based segmentation is enough to obtain initial
liver region that has been isolated from adjacent organs. As a
result, we do not need complex techniques for segmentation
and also no need to incorporate a more priori knowledge for
example, the location of the heart which is also difficult to
identify. Different patients have different size and different
shape of liver that can result in false localization.

Additionally, numerical analysis has been conducted on
three datsets for which manual segmentation are available. It
is evaluated using the volumetric overlap error [7] which is
one of the most popular metric to evaluate segmentation. The
volumetric overlap error measures the percentage of mismatch-
ing voxels between the automatic and manual segmentation.
If VS is a set of voxels from manual segmentation and VA is
a set of voxels from automatic segmentation, the percentage
of volumetric overlap error between VS and VA is defined as

Voe = 100 ∗
(
1 − |VS

⋂
VA|

|VS

⋃
VA|

)
(12)

If the percentage of volumetric overlap error is 0% it
means a perfect segmentation is achieved. Otherwise, the
more percentage of volumetric overlap error the less accurate
of the segmentation result. We achieve between 15%–18%
volumetric overlap error for our segmentation results although
only 3D connected component process was performed for liver
volume refinement.

Execution of the 3D anisotropic diffusion algorithm with
five iterations took between 56.52s (25 slices) up to 71.5s (30
slices) on an Intel(R) Core(TM)2 Duo CPU with 3GHz and
7.7GB RAM.

V. CONCLUSION

The aim of this work is to show the advantages of using
3D anisotropic diffusion for helping in the liver segmentation
task. The filter makes the intensities within the liver region
more uniform. Thus, the filter can be used as a preprocessing
step to a thresholding-based segmentation technique since the
resulting images are simpler to segment than the originals.
It is believed, if a proper liver volume refinement is per-
formed, then the percentage of volumetric overlap error can
be reduced. However, the drawback of this filtering method is
that it requires more computational time due to the iterative
process. Consequently, an appropriate parallel implementation
of anisotropic diffusion is the best approach to reduce its
execution.
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(a) Original image

(b) after two iterations (c) after three iterations (d) after four iterations (e) after five iterations

Fig. 3: 3D anisotropic diffusion using diffusion function c1 and κ = 5.0 after a number of iterations

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4: Comparison of thresholding on the original image and filtered image. Top row: results from patient 1, (a) original, (b)
result after thresholding from (a), (c) filtered image and (d) result after thresholding from (c). Bottom row: results from patient
2, (e) original, (f) result after thresholding from (e), (g) filtered image and (h) result after thresholding from (g).
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