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Abstract—Truss spars are used for oil exploitation in deep and
ultra-deep water if storage crude oil is not needed. The linear
hydrodynamic analysis of truss spar in random sea wave load is
necessary for determining the behaviour of truss spar. This
understanding is not only important for design of the mooring
lines, but also for optimising the truss spar design. In this paper
linear hydrodynamic analysis of truss spar is carried out in
frequency domain. The hydrodynamic forces are caculated using
the modified Morison equation and diffraction theory. Added mass
and drag coefficients of truss section computed by transmission
matrix and normal acceleration and velocity component acting on
each element and for hull section computed by strip theory. The
stiffness properties of the truss spar can be separated into two
components; hydrostatic stiffness and mooring line stiffness. Then,
platform response amplitudes obtained by solved the equation of
motion. This equation is non-linear due to viscous damping term
therefore linearised by iteration method [1]. Finaly computed
RAOs and significant response amplitude and results are compared

with experimental data.

Keywords—Truss Spar, Hydrodynamic analysis, Wave
spectrum, Frequency Domain

I. INTRODUCTION

BY the discovery of the most main land oil fields
nowadays new oil and gas sources are being discovered
less than the past, on the other hand the population increase
and economics developments in recent decade and more
request for oil result in the increase of oil price so we can
see oil production in the sea depths become more and more
economic .These days advanced countries are attacked to the
deeper zones for discovering new sources. Platforms, FPSO,
TLP and SPAR are suitable examples for deeper zones.
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When water depth exceeds from a specific level, spar for its
simple shape and structure is one of the most economic
choices. Classic spar and truss spar are more prevalent spars.
Classic spar is a deep draught, vertical, large diameter
cylindrical vessel. The top part of the hull provides the
buoyancy and the midsection provides plenty room for oil
storage. The lower compartment holds the ballast, which
controls the trim for spar. If storage of crude ail is not
needed truss spar is used. The cylindrical midsection of the
classical spar is replaced with a truss framework and plated
horizontal levels. These horizontal steel plates entrap the
water in vertical motions and bring the effective vertical
mass of the structure up to the same level as a classical spar.
Glansville mentioned a number of advantages of the truss
spar over the classic spar, such as less steel for construction,
simpler and cheaper; less drag area therefore reduced
mooring loads, and less drag when towed upright. In marine
dynamics, there are two basic approaches to solve the
dynamic responses. This can either be done in the frequency
domain or via time domain analysis. Frequency domain
analysis is performed for the linearised problem so; using an
iterative technique may include some non-linear effects. In
contrast, time domain analysis utilises the direct numerical
integration of the differential equationsincluding all the non-
linearities. The results obtained by the frequency domain
technique are simpler to interpret and apply for further
analysis [1]-[2]. Therefore, the frequency domain technique
is preferable as long as the non-linear effects are small. For
both cases, the egquations of motion are the same, but their
formulation and approximation reflect the strengths and
limitations of the method used. Also, the non-linear time
domain analysis does not necessarily produce better results
compared to a simpler frequency domain analysi s because of
other uncertainties in the interaction problem [2]. The
Measurements and cal culations showed that truss spars have
better dynamic characteristics than same classic spars.
Between wind, current and wave, waves are most important
factor in exerting excitation loads on spar platforms. Purpose
of this paper is estimating wave loads on a specific truss spar
and determining its dynamic response to random sea waves.
This analysis is necessary to show that if aplan is desirable.
The numerical results presented in this paper are compared
with the experimental and numerical results reported by
Stansberg et a [3], and Downie et a [4]. Details of the
model and experimental set-up are given by Downie et a
[4]. Nygaard et a [5], and, Stansberg et a [3]. The model
was built to 1:100 scale and consist of a conventional spar
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shaped upper hull and a lower truss section. It was desighédi3, Ne:ifri #808F added mass, damping, restoring and excitation

and constructed at the University Of Newcastle, UK. The
main dimensions are shown in Fig. 1. In this paper two
different types of solid square heave plates were used. The
sides of the large plates are 33.5m and the small plates are
29.5m.
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Fig.1 Geometry and Dimensions of the Truss Spar [6]
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Il. EQUATION OF MOTION

The rigid body motions can be modeled by Newton's
Second Law of Motion, Which in general is given in the
following form:

MX =>"F ()
For atruss spar, (1) takes the form:

(M +m)X +B[X|X + KX = F(t) @)
Where M, m, B and K are the matrices of physical mass,

added mass, quadratic damping and @ stiffness

respectively, X , X and X are the structural displacement,
velocity, and acceleration vector respectively and F(t) is the
excitation force vector. The presence of non-linear damping
and restoring forces make (2) non-linear therefore the non-
linear damping and restoring stiffness must be linearized.
The non-linear damping term is linearized by assuming an
effective linear damping which would dissipate the same
energy at resonance as the non-linear damping [1]-[7]. Also,
for mooring lines one can assume that the restoring mooring
force change linearly when given a smal change in
displacement from steady state position. For computed

force, the truss spar divided into three sub-structures; hull,
truss and heave plates. Also, by assuming that there will be
no hydrodynamic interaction between the substructures, each
substructure can be analysed separately. The wave frequency
response analysis is performed by combining two sub
problems. First, the loading from the incident waves are
calculated when the structure is restraint from moving. Then,
the reactive added mass, damping and restoring terms are
obtained by oscillating the structure in otherwise calm water.
First form called radiation problem and second form called
diffraction problem.

I11. TRANSMISSION MATRIX AND DIRECT COSINES

In this paper for computed matrices of added mass,
damping and excitation forces of truss section used the
transmission matrix. By transmission matrix, transfer
different parameters from wave reference system
(x,,Y,.2,)» and structure reference system (X, Y, 2) to the

member reference system (u, v, w). All needful parameters
calculated in the member reference system and then
transferred into the structure’s reference system (Fig. 2).

Yw

B(X3,Y5, Z2)

Zw v

AX1. Y, Z4)

Fig. 2 Reference systems

For obtained the transmission matrix let us consider aFig.
3. Leti, j and k be the unit vector along m-, n- and g-axis,
respectively. Similarly, let i’, j* and k’ be the unit vector
aong the u-, v- and w- axis, respectively.

n P (m,ngq),(uvw),(XY,2)

Fig. 3 (u, v, w), (m, n, ) and (X, Y, Z) coordinates systems
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Therefore, the relationship between the (u, v, w) and (m\gL3,

) coordinate systems as follows:

U=myy, +Ny, +qQy;
V=MYy, +NY, +qYs, (©)
W=MYqs + NP +QWgs

Where:

Wy =i = m ‘ ‘ cosé = cos(m,u)
Yo =4 m ‘ ‘ cosé = cos(n,u)
y/alzlz.?:‘lz (g,u)
v, =1.J'=[].|7].cos = cos(m,v)
Wy = 1.7'=|1|.|7].cos6 = cos(n,v) 4
v, =k.]'=|k|.|]].cos® = cos(q,v)

s=Tk=i].[K] (m,w)

:I = 7]k’ .cosH:cos(n, w)

:IZIZ:‘R‘ k.cosé = cos(q,w)

Equation (3) in matrix form can be written as follows:

u YViu Va VYa||M
Vi=|Ve Vo VYe|)N ©)
W) Wi Ve Vsl

Also from Fig. 3 we have:

m=X-X
n=Y-Y, (6)
9=2-4

Therefore the transmission matrix with substituting from
(6) into (5) yields,

u Vi Va Vall|X X,
V=V YV Wy Yo=Y, ™
w Vis Vs Vs z Z,

Where (X,Y,,Z,)" is coordinate of one end of the
cylinder and w,;'s(i,j=1,23) are the direction cosines.

By (7) we can transfer different parameters from structure
reference system into the member reference system. Now for

transfer the parameters from member reference system into
the structure reference system we can write:

2009 -1
l/jll l//21 l//31 u Xl

Yi=|Ve Vo Vs Vet Y (8)
z Vis Vs Vs w Z

Since, direct cosines matrix is orthogonal, we can say that
inverse matrix equal to transpose matrix. Equation (8)
therefore may be written as follows:

T
X v ¥ Val |U| X
Y=V, Vo Vs Vet Y 9
Z Vis Wz Yas| (W Z

By (9) we can transfer different parameters from member
reference system into the structure reference system.

IV. CALCULATION OF ADDED MASS COEFFICIENTS

The added mass concept arises from the tendency of a
submerged body moving acceleration reaative to the
surronding fluid to induce accelerations to the fluid. These
fluid accelerations require forces which are exerted by the
body through a pressure distribution of the fluid on the body.
Since the submerged body, in effect, imparts acceleration to
some of the surronding fluid, this phenomenon can be
equated to the body having an added mass of fluid attached
to its own physical mass [8]. For computed added mass
coefficients, the truss spar divided into three sub-structures;
hull, truss and heave plates. The added mass coefficients
calculated for each sub-structure then we can simply add the
results together to find the added mass coefficients of whole
structure. The added mass coefficients are determined from
the solution to the radiation problem. In this case, the Truss
Spar oscillating in otherwise calm water.

For truss section added mass coefficients computed by
transmission matrix and normal acceleration acting on each
circular cylinder. The derivation of the generalized added
mass matrix for an arbitrarily oriented circular cylinder
depends on the assumption that only added mass forces
normal to the cylinder axis are significant [8]. The added
mass force of circular cylinder with length | when given
normal acceleration 4, is[8]

Fo=A la, (10)
Where:
A =C,pur? (11)

A, is the added mass force per unit length of a circular
cylinder with radius r when given unit acceleration. C_, is
the added mass force coefficient and p is the density of
water.

For circular cylinder, C, =1. From (7) we obtain
U= l/lllx + ':”21Y * ‘//312
V=yp, X +y,Y Wl (12)
W=y X+ 5Y + Y
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Since we assumed that the platform oscillates in the X S&d3, No:5, 2009

Y directions only, therefore,Zequal to zero. Substituting
from (10), (11), (12) into (9) yield

Vi Vo V| [AdpaX+AlysY
ALy X+ Ay
Al X+ AlyY

AT
Fsur ge

Fh/;aTv =V Ve Vi
Fglfgy Vis Yoz Va3

(13)

By expanson (13), we obtained the added mass
coefficients for the coupled translational motions:

aiTl = A\El('//lzz +'//123)

a1T2 = Al (l//121// »nt l//13'//23)
a2T1 = Al (szle + V/zal//ls)
agz = AFI(szz 'H//zzs)

(14)

For computing added mass coefficients, a,, , a,,, we must

first obtain the added mass forces on strip of length du of the
cylinder due to surge and heave motions, these strip forces
will contribute to a pitch moment due to the lever arm R (see
Fig.- 4) then, obtain the total pitch moment due to surge and
heave accelerations by integrating along the cylinder.
Therefore:

T I AT
FAT = j%)’(’ du. X — j%)’(’ du.Y
0

= (a3 X, —akY,, X (15)
Where:
Xm=X1+X2 ,Ym=Y1+Y2 (16)
2 2
Therefore, we find the added mass coefficient, a, "
ag = a5 Xy, —ayYy (17)

BiXy Yz Z3)

Ay Y2y

Fig. 4 Definition of velocity, acceleration, moment lever,
forces and moments

Similarly,

agTz = asz X m~ a:LTzYm (18)

To obtain the added mass force due to pitch acceleration
one needs to find the linear acceleration at a point (X, Y, 2)
due to the angular accelerationd. The tangential
acceleration is given as:

A, =6R (19)
Or as X-and Y components:

AY =—AN.Sin9=—é.R%=—é.Y

A =A,.cosf= é.R% =6.X (20)

Then the added mass force on a strip with length du due
to pitch acceleration is given as:

T T
44T =AY du+ 2 A

a, a,,
drFy = %AQ du+ % A .du (21)

Now substituting from (20) into (21) and integrating along
the cylinder axis the added mass coefficients becomes

T T T
8y =ap X, —ay Y,

T T T
Ay =8y X, —ayY, (22)

The added mass coefficients for pitch moment due to

pitch acceleration are obtained by first transforming the
angular acceleration into linear acceleration in X- and Y-
direction. These linear accelerations are causing added mass
forces on the cylinder, which again results in a pitch moment
due to the lever arm R. The expression for the total moment
isgiven as

I AT

| T | T
A Gy2 du— j%.é.xv.du - %.é.vx.du
0 0

(23)
Therefore, by integrating along the cylinder axis the

added mass coefficient become:

3;3 = a:ITl'Yn - a:LTz-XYn - agl-XYn + agz-xn (24)

Where:
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Illszdu =%(xf + X, X, + X2)

1! 1

Y, =1 J‘deu:g(Yf-y-Yle.,.Yzz) (25)

|
(XY), = Tl j XYdu = %(2x1\(1 + XY, +Y, X, +2X,Y,)
0

For spar hull, added mass coefficients in surge and pitch
can be obtained by using strip theory as described by
Faltinsen and Newman [9]-[10]. The added mass coefficient
in heave can readily be obtained by using a flat disk
approach if one assumes the bottom to be far below the free
surface. Let us consider a spar hull as shown in the following
figure:

Bt

) [ ”? b .«
An .Uy P CTTTYIPH PRORPS —» y 7 !

L 6,6 fi\ [l i

Fig. 5 The spar hull in waves

From strip theory, the added mass force in surgeis given as

0
4" = [C.pm®dyX =C,pm?d.X (26)
—d
Therefore
a, =C,pmr’d @7

For heave mation, when using the disc approach, it becomes

(8]

. 18

%2=§§pr3 (28)

Since the water is only accelerated on one side of the disc.

The spar hull is vertical and symmetric body, therefore:

F5"=0—-a,=0
Fi"=0—ay;=0 (29)
For computing added mass coefficients, a,, , a,,, we must

first obtain the added mass forces on strip of length du of the
spar hull due to surge and heave motions, these strip forces
will contribute to a pitch moment due to the lever arm
(y—YG) (see Fig. 5) then, obtain the total pitch moment due

Vol:3, ®:&urge08nd heave accelerations by integrating along the

hull.

0
quH == _[Capmz(y_YG)dY-X
d

=C,pmr 2d.(YG + %)X
(30)
Therefore:
ay = Capzzrzd.(YG + %) (31)

Since, spar hull isvertical and symmetric body, therefore:
Fiy' =0—ay=0 (32)
To obtain the added mass force due to pitch acceleration
one needs to find the linear acceleration due to the angular
accelerationd . The tangential acceleration is given as

A, =R6 (33)

Or as X- and Y components:

A} =-R6

A'=0 (34)
In which,

R=(y-Y;) (39)

Then the added mass force on a strip with length dy due to
pitch acceleration is given as

’
dF A =%.AXN dy

H
dFH =%.A¢.dy (36)

Now substituting from (34) and (35) into (36) and
integrating along the hull axis the added mass coefficients
becomes

afi =alt v, +94)

a;=0 37)
The added mass force in pitch can be written as

dF3,A3'H = —dFl,’;'H R

H
:%.é.(y—YG)Z.dy (38)

Therefore, by integrating along the hull axis the added
mass coefficient become:
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Vol:3,

3
afl = Ca,ozzr{d3 +Y.d +YGd2} (39)

The added mass coefficient for a square heave plates is
given as[8]

a,=C, p B (40)
Where
C,F=058 (41)

V. CALCULATION OF VISCOUS DAMPING COEFFICIENTS

There are two types of hydrodynamic damping forces that
may be experienced on the floating structure which oscillate
near or on the free surface [7].

1. Wave damping forces due to the dissipation of energy in
the form of surface waves generated by the rigid body
motion.

2. Viscouse damping forces due to turbulent flow and flow
separation in the lee of body.

The viscous damping force is nonlinear. For the truss spar
the wave damping is assumed to be insignificant and
therefore neglected. The viscous damping force is assumed
to be significant for the truss section and steel plates, but
aso important for the spar hull. This force is proportional to
the velocity squared given as[1],

RS =l [Xj[. X 42

Where, b,j , isthe viscous damping coefficient.

The viscous damping coefficients can be obtained in a
similar way as for the added mass coefficients, except that
the force is now proportional to the velocity squared instead
of the acceleration normal to the cylinder axis.

For truss section damping coefficients computed by
transmission matrix and normal velocity acting on each
circular cylinder. The derivation of the generalized damping
matrix for an arbitrarily oriented circular cylinder depends
on the assumption that only damping forces normal to the
cylinder axis are significant [1]. The drag force of circular
cylinder with length | when given normal velocity U, is

Fo =DelU Uy (43)
Where:
=p CDr (44)

D, , is the drag force per unit length of a circular cylinder
with radius r when given unit velocity. C,,, isthe drag force
coefficient and p isthe density of water.

For circular cylinder, C, =0.6. From (7) we obtain

W2ZR + Y

V= X+ Y,y (45)
W= X +95Y

Substituting from (43), (44) and (45) into (9) yield

.
Fow| [V Vo Wa

th;e Vipo W VWil X

Fony | [Wis Voo Va (46)

Del sy |yl X‘X‘ +Dp | Wy 0 YM
Dl il X‘X‘+ Dl w2 Y. ‘Y‘
Del s vy X‘X‘+ Del W02 Y. M

By expansion (3), we obtained the damping coefficients
for the coupled translational motions:

blTl = DF'(‘//lzz "l//12‘+l//123 - ‘l//ls‘)
bsz =D I(l/,12 Wo- "//22"“»”13 Yos- ‘l/’zs‘)
03, = Del (Voo W Wio| + Wise Wiz [9))

b, = Del(w ol + ¥/2 - |y2s) (47)
- Computing drag coefficients, by, , by :

FOT _j LX. \x\du X — jbﬂx [X|du.y

:<b;l m_ lm ‘X‘ (48)
Where:
X=Xt %y, 5T (49)

Therefore, we find the drag coefficient, b31T :

tgl = b-Zrlxm - bELYm (50)
Similarly,
b;z = b;zxm - bIZYm (51)

- Computing drag coefficients, b, b,
The tangential velocity is given as:
U, =6R (52)
Or as X-and Y components:

Uy =-U,.sn@ =—0'.R% =-0Y
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X .

uy =UN.cos¢9=9.RE=9.X (53)

Then the added mass force on a strip with length du due
to pitch velocity is given as:

oy = 0ot ot
iy <pup it 6

Now substituting from (53) into (54) and integrating along
the cylinder axis the drag coefficients becomes

FST=-06./6.Y, +bL6 [6]. X,

FoT =—00./6.Y, +b,0 /6. X, (55)
Then,

blTS = blTZX p bELYp

b;3 = bgzx p b;lYp (56)

Where

sign(X, )(X2+ X, X, + X2)/3 for X,X,>0

X :'ﬂx\x\du:
P sign(X, )(X2 + X2)/3(X, - X,) for X,X, <0

sign(Y, Y2 +Y,Y, +Y2)/3 forYY, >0

|
Y, = [~Y|Y|du=
P B[I ‘ ‘ {Sign(Yz)(Yla"'yg)/S(Yz_Yl) for Y,Y, <0
(57)
- Computing drag coefficient, b3T3:
dF" =—drFLTY +dFT.X (58)

Now substituting from (54) into (58) and integrating along
the cylinder yields,

Fo = ljil.é\é\.vz\v\.du - ]bl—z.é‘é‘.XY.\X\.du
0! o (59)
I I
- [P lafvx vlou+ [%2.4]6 x|
0 0

Therefore, by integrating, the added mass coefficient
becomes:
b;3 zbfl-lv _bIZ'IYX\X\ _bgl'lxv\v\ +b;-2-|x (60)

Where:

Vol:3, No:5

» 4009

= jYz\\ddu

IY_T
0

sigr(Y, 2+ Y2, +Y,YZ +Y7)/4 forYy, >0

—J 3 2 2 3 4
sigrY, ¥ + Y2, + Y7 +Y; )+ Y forYy, <0
4 AY,-Y,)
(61)
[ 1 l_[Xz\X\du
X I ;
SIgX, (X3 + X2X, + X, X2+ X3)/4 forXX, 20
= sigrﬁxz)(Xf + XXy + XX + XS)L X for XX, <0
T Y 2
4 2(X2 - Xl)
(62)
1 |
| =z J'YX\X\ du
YX| X| I ;
Yz(Xl2 +2X, X, +3X22)+Y1(3X12 +2X, X, + Xzz) for X. X, >0
12 17%2 =
Y (X2 42X, X, +3X2)+Y,(3X2 +2X, X, + X2)
= 12
XA X, =3GX, -, X,) for X X, <0
6()(2 - xl)z
(63)
|
| =T XYY
XvY| | o
X, (Y +20Y, +3¥7 )+ X, (3¢ + 20, +Y7) fory,Y, >0
1 e
| X2, 4302)4 X, (37 4 20, +¥7)
12
Y2 (XY, =3X,Y, = X,Y,) forYy, <0
1'2
6(Y2 _Y1)2
(64)

- Spar Hull

The viscous damping force on the spar hull is assumed to
be significant in surge and pitch only. The damping
coefficient for the spar hull can be obtained by strip theory,
as for added mass.From strip theory, the damping force in
surgeisgiven as

0
FS" = [CoprX|X|dy=Coprd.X|X| (65)
—d
Therefore
by =Cpprd (66)

The spar hull isvertical and symmetric body, therefore:
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Fl,g’H :0_)b12 =0

Fa'=0-by =0

(67)
- Computing drag coefficients, bf; , bi :
0
Fsl,DllH =- ICDpr(y_YG ) dy.X‘ X‘
-
= CD,ord.(YG + %)X‘X‘ (68)

Therefore:

b = CDprd.(YG + %)

(69)
Since, spar hull isvertical and symmetric body, therefore:

Fo@ =0—>by =0 (70)
- Computing drag coefficients, by , b :
The tangential velocity isgiven as:
U, =R (71)
Or as X-and Y components:

Uy =-R6
ud =0 (72)
Then the drag force on a strip with length dy due to pitch
velocity isgiven as.
H
dFSH = %.u yu|ay
bz

dFo = = uy'luy|dy (73)

Now substituting from (72) into (73) and integrating along
the hull axis the drag coefficients becomes:

“—“ﬁg—zdeY for Y. <—d
b13_bu3d+3+e+.G or Y; <

2
b =-b! .[3 +Y2 + d'YGj for Y, >—d

(74)
by =0

The drag force in pitch can be written as

dF;" =—dF3" R

Vol:3, No:T@@O
_ | M

L a-voray-volly-v) 0

Therefore, by integrating along the hull axis the added
mass coefficient become:

by =bf1‘[d43+YGd2+zYGZd +Y§J for Y, <—d
by =b/] [Y‘?+da+YGd2 +§Y(§d +YG3] for Y, >-d
2d 4 2
(76)
- Heave Plates

The drag coefficient for a square heave plates is given as

(8]
1

by, :Echp B? (77)
Where
c,l=2 (78)

VI. CALCULATION OF RESTORING COEFFICIENTS

The stiffness properties of the truss spar can be separate
into two components; hydrostatic stiffness and mooring line
stiffness. The mooring characteristic is non-linear, but one
can assume that the restoring mooring force change linearly
when given a small change in displacement from a steady
state position. Also, for small amplitudes, the hydrostatic
restoring forces are linearly proportional to displacement.
The linear stiffness matrix can be written as
K = Khydrostatic + Krmoring (79)

The hydrostatic component obtained from basic stability
theory, which gives the following coefficients:

K3, = pgA, = pamr?

K& = poV(GM) = po¥(ys — ¥ )+ 29

zrt

4

(80)

The restoring coefficients due to mooring stiffness can
also obtained if one assume the mooring stiffness to be

linear. LetK,, be the horizontal mooring stiffness, then
[11]1

K=K,
Klrg = Kx(yp - yG)
K3nl]: Kx(yp _yG) (81)

K3m3 = Kx(yp —Ye )2

360



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934

VII. CALCULATION OF EXCITATION FORCES

The first order wave exciting forces and moments on the
truss spar are loads on the stationary structure due to linear
incident waves (Diffraction problem). The methods used are
very much dependent on the size and geometry of the
structure. The truss spar consists of a large volume hull and
a truss section with slender structural members. Diffraction
of waves becomes important on the spar hull and Morison's
approach will give a good approximation for calculating the
forces on the truss section where diffraction is small. Since
the truss section is far below the free surface, and drag force
decay fast with depth, the drag forces are assumed to be
negligible. Further, by assuming that there is no interaction
between the structural components, the structure can be
separated into smaller sub structures. In other words, the
forces are calculated seperately for each structural
component, then added together to obtain the total wave
exciting force on the truss spar.

- Truss Section

The truss section is a framework of circular members with
different dimensions and inclined in different directions.
This complex geometry makes it difficult to predict the wave
excitation forces. By assuming that there will be no
hydrodynamic interaction between the memebers each
member can be analysed separately. Then the forces for each
member are summed together to obtain the total force. The
drag force is assumed to be insignificant and is therefore
neglected. The Morison equation reduces to the inertia term
only. A modified inertia term of Morison’s equation can be
written as

dF" =(1+C,)pnr?a, (82)
Where C, is the added mass coefficient and &, is the fluid

acceleration normal to the cylinder axis, evaluated at the
center of the cylinder. The radius of the cylinder is r. For
simplicity, let the structure reference system be aligned with
the wave reference system except for the origin. The orogin
is placed at the center of gravity instead of the mean free
surface. (See Fig. 2),i.e.

X, =X
Yo=Y +Yg (83)
z,=2

The total inertia force is obtained by integrating this strip
force along the cylinder axis. The force components in the
member reference system’s v- and w-direction can be shown
tobe[7],

| |
J=0+C, )pﬂrz{ [y, du+ [y, ydU}
0 0

| |
F,=+C,)pm 2{ fwU,du+ [y, ydu} (84)
0 0

Vol:3, Novper@08 and U, are the horizontal and vertical fluid

particle acceleration. By using (83), trigonometric identities
and integrating, the expressions above can be rewritten as

=A \ l)y13 + l//23

k(l//21 +i l//ll)

FE —A \/W12+l//22

T K tiv)

kx1+¢1) [e (Wartiy)l _ l] e—imt

Iw
kX1+¢)2 [e (war+ipn)l _l:le‘iﬂ (85)

Where

A:—%(1+C )pgar 2H k e0ie)

Yis | tang, = Y (86)
Vs Vo

tang, =

Further, the inertia term of the pitch moment is given as

ikX,
| Ae )[l//33VV/12+1//22 Wz _l//sz\/‘//13+l//23 I%]

l//21+“//11

M

|:(| jek('l/zﬁi'/’n)' + 1 . i|_+_
l//21 +i ylll) k(Wzl +1 Wn)

=

|w XiWo— 1W13) (Xll//22 _Yll//12)
(87)

There is a specia case for y,, =w,,= 0, i.e. the strip force

remains constant along the member. Then (85) and (87)
reducesto

Fu= AVWa+pne e

Fi = AW, +p,e ) e (88)
| i | z

M - [l//33‘\/ le + l/’zz _l//32\/ l//123 + szse a ]E +

FIW(Xll//23 YW1, ) +F, ( XiWop — YW1, )

When the local member forces and moment are calculated
by (85) and (87) or (88), it can be transformed into global
forces along the principal axis, given by

Fy =visFw + vk,
F =vauF, tvuF, (89)
M, =M,

Then the forces and moments from each truss member are
added together to obtain the total force on the truss section.

- Spar Hull

The total surge force acting on the spar hull have been
approximated using the linear diffraction theory of McCamy
and Fuchs [12], although strictly speaking it applies to a
bottom standing cylinder, and the spar hull is a truncated
cylinder. The force can be written as [13],
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R = ZPI?HW A(kr)[l —kd]eial oot

Alkr)=

(90)

tano, =

Where d is the distance from bottom of the hull to the free
surface (see Fig. 5), and r is the radius of the hull

andJ;(kr), Y,(kr) are the first order Bessel functions of
first and second kind, respectively.

Weggle & Rosset [14], derived an expression for the total
vertical diffraction force on truncated cylinder range of kr
values, (O<kr < z).The expression was obtained by

comparing the Froude-Krylov force on the bottom of a
truncated cylinder with the vertical diffraction force obtained
in experiments. From this comparison a diffraction
coefficient (1—0.5sin(kr)) Was obtained. The Froude-Krylov

force can be obtained by integrating the dynamic pressure
over the bottom of the spar hull. Therefore:

= pgH ar?[1-05si n(kr)](JlIErkr)j gl gt (91)

The pitch moment can be obtained by integrating the
product of the surge force given in (90) and lever arm R (see
Fig. 5) along the cylinder axis. The pitch moment is given as

dM, =—rdF, (92)
Or
M :ﬂl"wA(kr) (YG +l)—e‘kd(YG +d +lj en e’
k k k
(93)
- Heave Plates

Since these solid plates are located far below the free
surface drag forces are assumed to be small and therefore
neglected. Also, there will not by any Froude-Krylov force
due to the infinitesmal thickness. The plates do not
contribute to the surge force and pitch moment is assumed to
be small and neglected. The only significant wave force
component on the plates is the vertica acceleration
force.The heave force on sguare, solid plate at the depth
y =Yy, isthengiven as

F,=M;"U, (94)

Where Uythe vertical fluid particle acceleration is is

evaluated in the center of the plates, and M /" is the added
mass coefficients for solid plate given as[15],

M;‘P=CPZEB3 (95)

Where Cf = 0.58 and B issolid plate side.

Vol:3, NTige ReAR: force for a plate now becomes

H, or -
S =—CP TP 2 g g2 gt (96)

The total wave exciting force on the truss spar is obtained
by adding the contributions from the spar hull, the plates and
truss section.

VIIl. SOLUTION OF MOTION EQUATION

The response of atruss spar in waves can be obtained by
solving (2) when the force components are known. The
viscous damping term gives a non-linear term in the equation
of motion and must therefore be linearised [1]-[7]. This can
be done by using the equivalent damping term. In other
words, let B® approximate Bm‘x‘ in (2) so that they both

dissipate the same energy at resonance. This gives
8w

B :gsm\xo\ (97)

| and \90\ are the amplitudes in surge, heave

and pitch, respectively.

Introducing the equivaent linearised damping term into
(2) gives a new set of equation, which must be solved by an
iterative technique [1]. Equation (2) can now written as

(M +m)X +BIX + KX = F,e ™ (99)

When, complex notation is used. The solution is assumed
to be harmonic, i.e.

X = X,e' (99)

Where, X, is a complex amplitude vector. The time
derivative of X isgiven:

X =—iwX e

X =-w® X, e (100)
Introducing (99) and (100) into (98) gives

- @?(M +m)-iaBS + KX, e =F e (101)
And the solution becomes

X, =~ @*(M +m)-iaB® + K| 'F, (102)

The response amplitudes are now given as complex
numbers,

X, [xfe+ix,™]
X, || X5 rixm
(103)

Xo | | XSE+iX" |
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Where the magnitude is

2

maX(Xi)z‘Xi‘: (XiRe)z"'(xilm) (104)

The response amplitude operator, RAO, is defined as the
response divided by wave amplitude [16].

(105)

The RAOs can be combined with a wave spectrum to
obtaine the response spectrum. The response spectrum of the
ith mode of motion is given as[16],

RS, (@) = |[RAGI|* S(@) (106)

The response spectrum can thereafter be used to obtaine
the significant response amplitude given as [16]

X0 =2,| [RS (@)do (107)
0

- Natural Frequency

The responses are expected to be significant at the
structures natural frequencies (or resonance frequency)
where the mass and restoring forces cancel. At or near these
resonance frequencies, the truss spar will experience
response of large amplitudes. However, these resonance
responses are inversely proportional to the damping so that
large damping gives small response. The undamped and
uncoupled natural frequency is given as

/ Kii
i =
' M, +m,

IX. NUMERICAL STUDY

(108)

- Natural Frequency

In Table, the natural frequency in heave, surge and pitch
compared with measured values reported by Stansberg et al
(3]

TABLE
Natural frequencies

Surge Heave motion Pitch motion

motion | | p | sp | LP | SP
Estimated | 0.0123 | 0.197 | 0.247 | 0.102 | 0.102
Measured | 0.0123 | 0.209 | 0.251 | 0.102 | 0.097
Deviation
(%) 0 -5.74 | -1.59 0 5.15

L.P, large heave plates; S.P, small heave plates

Vol:3, No:5, 2009

- Wave frequency response

The surge, heave and pitch responses of the truss spar are
derived for a sea-state defined by the JONSWAP wave
spectrum, with a significant wave height of 15m and a peak
spectral period of 15s.

The RAOs for the truss spar with large and small heave
plates are shown in the following figures. The estimated
values are plotted together with the experimental results.

14

A —e— Estimated

121 A Measured
—~ 11
E
E
° 0.8 A
<
S 0.6
5 A
=3
D .41

0.2

0 T T T T T i
0 0.2 0.4 0.6 0.8 1 12 14

Wave Frequency (rad/sec)

Fig. 6 Estimated and measured surge RAO with large, solid
heave plates.
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Fig. 7 Estimated and measured pitch RAO with large, solid
heave plates.
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Fig. 8 Estimated and measured surge RAO with small, solid
heave plates.
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Fig. 9 Estimated and measured pitch RAO with small, solid
heave plates.
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Fig. 10 Estimated and measured heave RAO with large,
solid heave plates.
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Fig. 11 Estimated and measured heave RAO with small,
solid heave plates.

In Figs. 6, 7, 8,9,10 and 11, the RAOs estimated by (105).
For the truss spar with small and large, solid heave plates are
compared with the experimental results reported by Downie
et a [4]. The measured RAOs for surge and heave
displacement shows a small scattered formation. The
estimated surge RAO correlates well with the measured
RAO as a mean value. A local peak at the pitch natural
frequency can be observed on the surge RAO. Thisis due to
the coupling effect between surge and pitch. The estimated
pitch RAO seems to be dlightly over predicted compared to
the experimental results. A small change in mass moment of
inertia can give significant change in the pitch RAO, and
since thisis a large uncertainly in the input data, thisis also
expected to reflect the results. Nevertheless, the results are
still comparable, even though it over predicts the measured
results. The theoretical heave RAO shows good agreement
with the experimental results.

The significant wave frequency response amplitudes
obtained from the simulation and the experiment are
summarized in Tablell.

TABLE Il

The significant response amplitude

Surge Heave motion Pitch motion

motion | | p | sp | LP | sP
Estimated 4.508 0581 | 1.058 | 2.672 | 2.334
Measured - 0.360 | 1.040 | 2.336 | 2.574
Deviation
(%) - 61.38 | 1.73 | 14.38 | -9.32

L.P, large heave plates; S.P, small heave plates
For heave result where dlightly over predicted.

X. CONCLUSION

In this article, the linear hydrodynamic analysis of a truss
spar in random waves has been formulated and investigated
theorically for three modes of motion. This investigation was
done in order to understand the dynamic behaviour of atruss

364



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
spar in waves. Drag forces has been neglected, but viscdas3, No:5SEaPE&rs, ISOPE, Los Angeles, USA, pp. 273-280, ISBN 1 880653

damping is considered in the calculations. The result has
been used to develop a Matlab computer program, which
solves the linear hydrodynamic analysis in frequency
domain. Furthermore, the theorical work in this article has
been validated against experimental results. The wave
frequency response was well predicted by the theoretical
model used. The estimated values for heave and pitch was
over estimated but within acceptable limits.

APPENDIX
- Numerical data

Mass and added-mass coefficients. M= 52100 tonne;
297000000tonne—m?; &, =50502.43tonne;

a,= a,= 0, a,=150423.78 tonne (large heave

plate); a,,=76092.88 (small plate);

a,;= a5, =-388068.6tonne-m; A, = a,, =0;

a,; =51143498.77tonne — m”.

Restoring coefficients: K,;=15.5 kN/m; Kj = -155kN;

K 3= -155kN; K,=kN/m. K, =3317284.381 kN.
coefficients: b, = 1385.57tonne/m;

8379186.21tonne-m; b, =67151.33

1118595134.39tonne— m?;  b,,=8387.01tonne/m

| 3=

tonne heave

Damping
by,=
by, =

(large heave plate); b,,=5315.85 tonne/m (small heave
plate).

tonne;
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