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Abstract—The urban centers within northeastern Brazil are 

mainly influenced by the intense rainfalls, which can occur after long 
periods of drought, when flood events can be observed during such 
events. Thus, this paper aims to study the rainfall frequencies in such 
region through the wavelet transform. An application of wavelet 
analysis is done with long time series of the total monthly rainfall 
amount at the capital cities of northeastern Brazil. The main 
frequency components in the time series are studied by the global 
wavelet spectrum and the modulation in separated periodicity bands 
were done in order to extract additional information, e.g., the 8 and 
16 months band was examined by an average of all scales, giving a 
measure of the average annual variance versus time, where the 
periods with low or high variance could be identified. The important 
increases were identified in the average variance for some periods, 
e.g. 1947 to 1952 at Teresina city, which can be considered as high 
wet periods. Although, the precipitation in those sites showed similar 
global wavelet spectra, the wavelet spectra revealed particular 
features. This study can be considered an important tool for time 
series analysis, which can help the studies concerning flood control, 
mainly when they are applied together with rainfall-runoff 
simulations. 
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I. INTRODUCTION 

HE wavelet transform is a recent advance in signal 
processing that has attracted much attention since its 

theoretical development in 1984 by [1]. Its use has increased 
rapidly as an alternative to the Fourier Transform (FT) in 
preserving local, non-periodic, multiscaled phenomena. It has 
advantage over classical spectral analysis, because it allows 
analyzing different scales of temporal variability and it does 
not need a stationary series. Thus, it is appropriate to analyze 
irregular distributed events and time series that contain 
nonstationary power at many different frequencies. Then, it is 
becoming a common tool for analyzing localized variations of 
power within a time series. 

   Several applied fields are making use of wavelets such as 
astronomy, acoustics, data compression, nuclear engineering, 
sub-band coding, signal and image processing, 
neurophysiology, music, magnetic resonance imaging, speech 
discrimination, optics, fractals, radar, human vision, pure 
mathematics, and geophysics such as tropical convection, the 
El Niño-Southern Oscillation, atmospheric cold fronts, 
temperature variability, the dispersion of ocean waves, wave 
growth and breaking, structures in turbulent flows, and stream 
flow characterization [2], [3], [4], [5], [6], [7]. 
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The following sections describe the wavelet transform, the 

rainfall data of capital cities of northeastern Brazil, and then 
the application of wavelet to such data using the program 
developed by [3].  

II. WAVELET TRANSFORM 

Mathematical transformations are applied to signals to 
obtain further information from that signal that is not readily 
available in the raw signal. There are several transformations 
that can be applied, among which the Fourier transforms are 
probably by far the most popular. In order to maintain time 
and frequency localization in a signal analysis, one possibility 
would be to do a Windowed Fourier Transform (WFT), using 
a certain window size and sliding it along in time, computing 
the Fast Fourier Transform (FFT) at each time using only the 
data within the window. This would solve the frequency 
localization problem, but would still be dependent on the 
window size used. The main problem with the WFT is the 
inconsistent treatment of different frequencies: at low 
frequencies there are so few oscillations within the window 
that the frequency localization is lost, while at high frequencies 
there are so many oscillations that the time localization is lost. 
Finally, the WFT relies on the assumption that the signal can 
be decomposed into sinusoidal components.  

Thus, to measure the stationarity of a time series is 
necessary to calculate the running variance using a fixed-width 
window. Despite the disadvantage of using a fixed-width 
window, the analysis could be repeated with a variety of 
window widths. By smoothly varying the window width, a 
picture of the changes in variance versus both time and 
window width could be built. The obvious problem with this 
technique is the simple “boxcar”  shape of the window 
function, which introduces edge effects such as ringing. Using 
such a black-box-car, there will be no information on what is 
going on within the box, but only recover the average energy. 
Wavelet analysis attempts to solve these problems by 
decomposing or transforming a one-dimensional time series 
into a diffuse two-dimensional time-frequency image 
simultaneously. Then, it is possible to get information on both 
the amplitude of any “periodic”  signals within the series, and 
how this amplitude varies with time. 

An example of a wave “packet” , of finite duration and with 
a specific frequency, is the Morlet wavelet. 1. Such a wave 
could be used as a window function for the analysis of 
variance. This “wavelet”  has the advantage of incorporating a 
wave of a certain period, as well as being finite in extent.  

Assuming that the total width of this wavelet is about 10 
years, it is possible to find the correlation between this curve 
and the first 10 years of the time series.  
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This single number gives a measure of the projection of this 
wave packet on the data during the 1911–1921 period, i.e. how 
much [amplitude] does the 10-year period resemble a Sine 
wave of this width [frequency]. By sliding this wavelet along 
the time series, a new time series of the projection amplitude 
versus time can be constructed.  

Finally, the “scale” of the wavelet can be varied by 
changing its width. This is the real advantage of wavelet 
analysis over a moving Fourier spectrum. For a window of a 
certain width, the sliding FFT is fitting different numbers of 
waves; i.e., there can be many high-frequency waves within a 
window, while the same window can only contain a few (or 
less than one) low-frequency waves. The wavelet analysis 
always uses a wavelet of the exact same shape, only the size 
scales up or down with the size of the window.  

In addition to the amplitude of any periodic signals, it is 
worth to get information on the phase. In practice, the Morlet 
wavelet is defined as the product of a complex exponential 
wave and a Gaussian envelope: 
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where Ψ0(η) is the wavelet value at nondimensional time η, 
and ω0 is the nondimensional frequency, equal to 6 in this 
study in order to satisfy an admissibility condition; i.e., the 
function must have zero mean and be localized in both time 
and frequency space to be “admissible” as a wavelet. This is 
the basic wavelet function, but it will be now needed some way 
to change the overall size as well as slide the entire wavelet 
along in time. Thus, the “scaled wavelets” are defined as: 
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where s is the “dilation” parameter used to change the scale, 
and n is the translation parameter used to slide in time. The 
factor of s-1/2 is a normalization to keep the total energy of the 
scaled wavelet constant.  

We are given a time series X, with values of xn, at time 
index n. Each value is separated in time by a constant time 
interval δt. The wavelet transform Wn(s) is just the inner 
product (or convolution) of the wavelet function with the 
original time series: 
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Where the asterisk (*) denotes complex conjugate.  
The above integral can be evaluated for various values of 

the scale s (usually taken to be multiples of the lowest possible 
frequency), as well as all values of n between the start and end 
dates. A two-dimensional picture of the variability can then be 
constructed by plotting the wavelet amplitude and phase. 
Then, a time series can be decomposed into time-frequency 
phase space using a typical (mother) wavelet. The actual 
computation of the wavelet transform can be done by the 
following algorithm [3]: (a) choose a mother wavelet; (b) find 
the FT of the mother wavelet; (c) find the FT of the time 
series; (d) choose a minimum scale s0, and all other scales; (e) 
for each scale, do:  

• Using (4), or whatever is appropriate for the mother 
wavelet in use, compute the daughter wavelet at that scale: 
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Where the ^ indicates the FT. 
• Normalize the daughter wavelet by dividing by the 

square-root of the total wavelet variance (the total of Ψ2 
should then be one, thus preserving the variance of the time 
series);  

• Multiply by the FT of your time series;  
• Using (5), inverse transform back to real space;  
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where ωk is the angular frequency, equal to 2πk/Nδt for k ≤ N/2 
or equal to –2πk/Nδt for k > N/2. It is possible to compute the 
wavelet transform in the time domain using (3). However, it is 
much simpler to use the fact that the wavelet transform is the 
convolution between the two functions x and Ψ, and to carry 
out the wavelet transform in Fourier space using the FFT; and 
(f) make a contour plot.  

III.  RAINFALL DATA 

The Northeast Region of Brazil is composed of nine states: 
Maranhão (MA), Piauí (PI), Ceará (CE), Rio Grande do Norte 
(RN), Paraíba (PB), Pernambuco (PE), Alagoas (AL), Sergipe 
(SE) and Bahia (BA), and it represents 18.26% of the 
Brazilian territory (Fig. 1). It has a population of 53.6 million 
people, which represents 28% of the total number in the whole 
country. Most of the population lives in urban areas and about 
15 million people live in its semiarid region (sertão). It is 
famous in Brazil for its hot weather, beautiful beaches, rich 
culture (unique folklore, music, cuisine and literature), 
Carnival and St. John’s festivities. 

The capital cities are Aracaju – SE, Fortaleza – CE, João 
Pessoa – PB, Maceió – AL, Natal – RN, Recife – PE, Salvador 
– BA, São Luís – MA, and Teresina – PI. The biggest cities 
are Salvador, Fortaleza and Recife, which are the regional 
metropolitan areas of the Northeast, all with a population 
above a million inhabitants and metropolitan areas above 3.5 
million.  

Because for most of the year the Northeast is out of reach of 
the Intertropical Convergence Zone, the easterly trade winds 
blow across the region, giving abundant rainfall to the coast 
but producing clear, dry conditions inland where the 
escarpment blocks moisture flow. This gives rise to four 
distinct regions, the zona da mata on the coast, the agreste on 
the escarpment, sertão beyond and the mid north. The total 
monthly rainfall series since 1911 to February 2012 are shown 
in Fig. 2. The missing data are recorded as -1, which are the 
large space gaps in the figures. 

 
 
 



International Journal of Earth, Energy and Environmental Sciences

ISSN: 2517-942X

Vol:6, No:7, 2012

428

 

 

 
Fig. 1 Location of the capital cities of northeastern Brazil 

IV. DATA ANALYSIS 

Wavelet analysis was chosen, besides the other reasons and 
advantages described here, because applications such as 
standard Fourier Transform analysis to a time series should be 
only attempted when the time series fulfills two important 
characteristics, namely: (1) stationarity; i.e., that no changes in 
the mean, variance, etc., occur throughout the time series; and 
(2) that the time series can be described as the summation of 
different periodic components (described by simple harmonic 
functions) for the whole period. However, most time series 
from meteorology and hydrology do not fulfill both 
requirements. In fact, earth sciences time series are usually 
nonstationary and present trends of the mean value, changes in 
the variability for certain periods. Furthermore, many 
hydrological time series, such as precipitation, present 
unregularly distributed events with nonstationary power over 
many different frequencies. Thus, their intrinsic temporal 
structure is not well represented by the superposition of a few 
frequency components as derived in a usual Fourier analysis.  

 
 

 

A. Wavelet Power Spectrum  

Since the present data are monthly distributed, the 
parameters for the wavelet analysis are set as δt = 1 month and 
s0 = 2 months because s = 2δt, δj = 0.25 to do 4 sub-octaves 
per octave, and j1 = 7/δj in order to do 7 powers-of-two with δj 
sub-octaves each. 

Fig. 3 shows the power (absolute value squared) of the 
wavelet transform for the monthly rainfall in the capital cities 
presented in Fig. 2, which is a record of more than 100 years. 
As stated before, the (absolute value)² gives information on the 
relative power at a certain scale and a certain time. This figure 
shows the actual oscillations of the individual wavelets, rather 
than just their magnitude. Observing Fig. 3, it is clear that 
there is more concentration of power between the 8–16-month 
band, which shows that these time series have a strong annual 
signal. One should observe that the large empty spaces in Fig. 
3 are cause by the missing data gaps (e.g. Figs 3e, 3f, 3g, 3h). 
The variance of power in 8–16-month bands (also confirmed 
later by Fig. 5) also shows the dry and wet years; i.e., when the 
power decreases substantially in this band, it means a dry year 
and when the power is maximum means a wet year. For 
example, a dry period can be identified in the beginning of 
1980’s at João Pessoa city and a wet period from 1947 to 1952 
at Teresina city. 

 
Fig. 2 Total monthly rainfall series from the capital cities of northeastern Brazil. 
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The regions below the arcs in these figures are the cone of 
influence, where zero padding has reduced the variance. 
Because we are dealing with finite-length time series, errors 
will occur at the beginning and end of the wavelet power 
spectrum. One solution is to pad the end of the time series with 
zeroes before applying the wavelet transform and then remove 
them afterward. Here the time series is padded with sufficient 
zeroes to bring the total length N up to the next-higher power 
of two, thus limiting the edge effects and speeding up the 
Fourier Transform. Padding with zeroes introduces 
discontinuities at the endpoints and decreases the amplitude 
near the edges as going to larger scales, since more zeroes 
enter the analysis. The cone of influence is the region of the 
wavelet spectrum in which edge effects become important and 
is defined as the e-folding time for the autocorrelation of 
wavelet power at each scale. The peaks within these regions 
have presumably been reduced in magnitude due to the zero 
padding. Thus, it is unclear whether the decrease in any band 
power in this arc region is a true decrease in variance or an 
artifact of the padding. For much narrower mother wavelets 
such as Mexican hat wavelet their cone of influence would be 
much smaller and thus is less affected by edge effects. Note 
also that for cyclic series, there is no need to pad with zeroes, 
and there is no cone of influence. 

The black contour in the same figures is the 5% significance 
level, using a red-noise background spectrum. Many 
geophysical time series can be modeled as either white-noise 
or red-noise. A simple model for red-noise is the univariate 
lag-1 autoregressive process. The lag-1 is the correlation 
between the time series and itself, but shifted (or lagged) by 
one time unit. In this present case, this would be a shift of one 
month. The lag-1 measures the persistence of an anomaly from 
one month to the next. The true lag-1 α can be computed by an 
approximation using α = (α1 + α2

1/2)/2, where α1 is the lag-1 
autocorrelation and α2 is the lag-2 autocorrelation, which is the 
same as lag-1 but just shifted by two points instead of one. 

The null hypothesis is defined for the wavelet power 
spectrum as assuming that the time series has a mean power 
spectrum; if a peak in the wavelet power spectrum is 
significantly above this background spectrum, then it can be 
assumed to be a true feature with a certain percent confidence. 
For definitions, “significant at the 5% level” is equivalent to 
“the 95% confidence level,” and implies a test against a certain 
background level, while the “95% confidence interval” refers 
to the range of confidence about a given value. The 95% 
confidence implies that 5% of the wavelet power should be 
above this level. 

B. Global Wavelet Power Spectrum  

The annual frequency (periodicity at 12 months) of these 
time series are confirmed by an integration of power over time, 
which show only one significant peak above the 95% 
confidence level for the global wavelet spectra, assuming red-
noise, represented by the dashed lines (Fig. 4). However, Fig. 
4 also presents almost significant peaks (at the 5% level) 
centered in the 2–4-month band. In fact, most extreme monthly 
precipitation values for those cities (values above 250 mm in 
Fig. 2) correspond to pulses of highly significant power within 
the 2–4-month band (Fig. 3b). These global wavelet spectra 
provide an unbiased and consistent estimation of the true 
power spectrum of the time series, and thus it is a simple and 
robust way to characterize the time series variability. Global 
wavelet spectra should be used to describe rainfall variability 
in non-stationary hyetographs. For regions that do not display 
long-term changes in hyetograph structures, global wavelet 
spectra are useful for summarizing a region’s temporal 
variability and comparing it with rainfall in other regions. The 
global wavelet spectral shape is controlled primarily by the 
distribution of feature scales. For instance, despite the 
difference among the observed hyetogaphs, the similarity of 
the global wavelet spectra shows that these series belong to the 
same region (Northeast). 

 

 
Fig. 3 The wavelet power spectra for each capital cities of northeastern Brazil. The contour levels are chosen so that 75%, 50%, 25%, and 5% 
of the wavelet power is above each level, respectively. Regions below the arcs are the cones of influence, where zero padding has reduced the 
variance. Black contour is the 5% significance level, using a red-noise (α) background spectrum. Wavelet power decreases according to the 

following order: red, orange, yellow, blue and white 



International Journal of Earth, Energy and Environmental Sciences

ISSN: 2517-942X

Vol:6, No:7, 2012

430

 

 

 
Fig. 4 The global wavelet power spectra (blue line). The red dashed 

line is the 5% significance level for the global wavelet spectra 

C. Scale-average Time Series  

The scale-average wavelet power (Fig. 5) is a time series of 
the average variance in a certain band, in this case 8–16-month 
band, used to examine modulation of one time series by 
another, or modulation of one frequency by another within the 
same time series. These figures are made by the average of 
Fig. 3 over all scales between 8 and 16 months, which gives a 
measure of the average year variance versus time. The 
variance plot shows distinct periods when monthly rainfall 
variance was low, e.g., a dry period can be identified in the 
1950’s at Fortaleza city and a wet period since 2000 at São 
Luís city. A dendrogram for those data is presented in Fig. 6. 

 
 

 
V. CONCLUSION 

In order to study the variability of the monthly rainfall time 
series in the capital cities of northeastern Brazil, wavelet 
analysis was applied. The wavelet power spectra show a big 
power concentration between the 8–16-month band, revealing 
an annual periodicity of such events, which is confirmed by the 
peak of the integration of transform magnitude vectors over 
time that show again a strong annual signal. The periods with 
high variance in such a band could be identified by the average 
of the all scales between 8 and 16 months, which gives a 
measure of the average monthly variance versus time. The 
wavelet power spectra showed that Maceió and Salvador cities 
have similar rainfall patterns, Aracaju shows some similarity 
as well, whereas João Pessoa, Natal and Recife cities form 
another group. Fortaleza, Teresina and São Luís have unique 
characteristics, and then they cannot be included in or form 
another group, although Fortaleza is the closest one to the João 
Pessoa’s group. 

Finally, further study could include stream flow analysis in 
order to benefit runoff-erosion models [8] from a quantitative 
breakdown of the temporal components of stream flow.  
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Fig. 6 Dendrogram for the scale-average wavelet power 8–16-

month band of northeastern Brazilian capital cities 

Fig. 5 Scale-average wavelet power over the 8–16-month band for the total monthly rainfall in each capital city.The dashed line is the 95% confidence level assuming
the respective red noise
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