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Analysis of Precipitation Time Series of Urban
Centers of Northeastern Brazil using Wavelet
Transform
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Abstract—The urban centers within northeastern Brazil are
mainly influenced by the intense rainfalls, which can occur after long
periods of drought, when flood events can be observed during such
events. Thus, this paper aims to study the rainfall frequenciesin such
region through the wavelet transform. An application of wavelet
analysis is done with long time series of the total monthly rainfall
amount at the capita cities of northeastern Brazil. The main
frequency components in the time series are studied by the global
wavelet spectrum and the modulation in separated periodicity bands
were done in order to extract additiona information, e.g., the 8 and
16 months band was examined by an average of al scales, giving a
measure of the average annua variance versus time, where the
periods with low or high variance could be identified. The important
increases were identified in the average variance for some periods,
e.g. 1947 to 1952 at Teresina city, which can be considered as high
wet periods. Although, the precipitation in those sites showed similar
global wavelet spectra, the wavelet spectra reveded particular
features. This study can be considered an important tool for time
series analysis, which can help the studies concerning flood control,
mainly when they are applied together with rainfall-runoff
simulations.
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|. INTRODUCTION

HE wavelet transform is a recent advance in signa

processing that has attracted much attention since its
theoretical development in 1984 by [1]. Its use has increased
rapidly as an aternative to the Fourier Transform (FT) in
preserving local, non-periodic, multiscaled phenomena. It has
advantage over classical spectral analysis, because it alows
analyzing different scales of tempora variability and it does
not need a stationary series. Thus, it is appropriate to analyze
irregular distributed events and time series that contain
nonstationary power at many different frequencies. Then, it is
becoming a common tool for analyzing localized variations of
power within atime series.

Several applied fields are making use of wavelets such as
astronomy, acoustics, data compression, nuclear engineering,
sub-band coding, signa and image processing,
neurophysiology, music, magnetic resonance imaging, speech
discrimination, optics, fractals, radar, human vision, pure
mathematics, and geophysics such as tropical convection, the
El Nifio-Southern Oscillation, atmospheric cold fronts,
temperature variability, the dispersion of ocean waves, wave
growth and breaking, structures in turbulent flows, and stream
flow characterization [2], [3], [4], [5], [6], [7]-
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The following sections describe the wavelet transform, the
rainfall data of capital cities of northeastern Brazil, and then
the application of wavelet to such data using the program
developed by [3].

Il.WAVELET TRANSFORM

Mathematical transformations are applied to signals to
obtain further information from that signal that is not readily
available in the raw signal. There are severa transformations
that can be applied, among which the Fourier transforms are
probably by far the most popular. In order to maintain time
and frequency localization in a signa analysis, one possibility
would be to do a Windowed Fourier Transform (WFT), using
a certain window size and diding it along in time, computing
the Fast Fourier Transform (FFT) at each time using only the
data within the window. This would solve the frequency
localization problem, but would still be dependent on the
window size used. The main problem with the WFT is the
inconsistent treatment of different frequencies. at low
frequencies there are so few oscillations within the window
that the frequency localization is lost, while at high frequencies
there are so many oscillations that the time localization is lost.
Finally, the WFT relies on the assumption that the signal can
be decomposed into sinusoidal components.

Thus, to measure the stationarity of a time series is
necessary to calculate the running variance using a fixed-width
window. Despite the disadvantage of using a fixed-width
window, the analysis could be repeated with a variety of
window widths. By smoothly varying the window width, a
picture of the changes in variance versus both time and
window width could be built. The obvious problem with this
technique is the simple “boxcar” shape of the window
function, which introduces edge effects such as ringing. Using
such a black-box-car, there will be no information on what is
going on within the box, but only recover the average energy.
Wavelet analysis attempts to solve these problems by
decomposing or transforming a one-dimensional time series
into a diffuse two-dimensional time-frequency image
simultaneously. Then, it is possible to get information on both
the amplitude of any “periodic” signals within the series, and
how this amplitude varies with time.

An example of awave “packet”, of finite duration and with
a specific frequency, is the Morlet wavelet. 1. Such a wave
could be used as a window function for the anaysis of
variance. This “wavelet” has the advantage of incorporating a
wave of acertain period, aswell as being finite in extent.

Assuming that the total width of this wavelet is about 10
years, it is possible to find the correlation between this curve
and thefirst 10 years of the time series.
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This single number gives a measure of the projeafathis
wave packet on the data during the 1911-1921 pergchow
much [amplitude] does the 10-year period resembi8ire
wave of this width [frequency]. By sliding this welet along
the time series, a new time series of the projeciimplitude
versus time can be constructed.

Finally, the “scale” of the wavelet can be varieg b
changing its width. This is the real advantage cfvelet
analysis over a moving Fourier spectrum. For a ainadf a
certain width, the sliding FFT is fitting differemumbers of
waves; i.e., there can be many high-frequency wawtsn a
window, while the same window can only contain & f@r
less than one) low-frequency waves. The waveletysisa
always uses a wavelet of the exact same shape thumlgize
scales up or down with the size of the window.

In addition to the amplitude of any periodic signai is
worth to get information on the phase. In practibe, Morlet
wavelet is defined as the product of a complex arptal
wave and a Gaussian envelope:

Wolrr) =/ e e 12 ()
where Wy(7) is the wavelet value at nondimensional tirmpe

e Using (4), or whatever is appropriate for the neot
wavelet in use, compute the daughter wavelet astae:

visa)=( 2] 0 fsa)

Where the ” indicates the FT.

(4)

¢ Normalize the daughter wavelet by dividing by the

square-root of the total wavelet variance (the |tata W2
should then be one, thus preserving the variancheoftime
series);

e Multiply by the FT of your time series;

¢ Using (5), inverse transform back to real space;

N-1
W, (s)= Z % W O(say, Je'xnd

k=0
wherea is the angular frequency, equal kN for k < N/2
or equal to —2k/N& for k> N/2. It is possible to compute the
wavelet transform in the time domain using (3). Hdwer, it is
much simpler to use the fact that the wavelet fransis the
convolution between the two functiorsand¥, and to carry
out the wavelet transform in Fourier space usimgRRT; and

©)

and « is the nondimensional frequency, equal to 6 irs thi(f) make a contour plot.

study in order to satisfy an admissibility conditia.e., the
function must have zero mean and be localized ih hime

and frequency space to be “admissible” as a wavélds is

the basic wavelet function, but it will be now neddome way
to change the overall size as well as slide theesmtavelet
along in time. Thus, the “scaled wavelets” arerd=lias:

(L]

wheres is the “dilation” parameter used to change thdesca
and n is the translation parameter used to slidémie. The

factor ofs*?
scaled wavelet constant.

We are given a time serie§ with values ofx,, at time

I1l.  RAINFALL DATA

The Northeast Region of Brazil is composed of ritees:
Maranh&o (MA), Piaui (PI), Ceara (CE), Rio Grande\brte
(RN), Paraiba (PB), Pernambuco (PE), Alagoas (Skygipe
(SE) and Bahia (BA), and it represents 18.26% af th
Brazilian territory (Fig. 1). It has a populatioh%8.6 million
people, which represents 28% of the total numbéhneénwhole
country. Most of the population lives in urban aread about
15 million people live in its semiarid regioseftag. It is
famous in Brazil for its hot weather, beautiful blees, rich

is a normalization to keep the total energy of thgyyre (unique folklore, music, cuisine and litera),

Carnival and St. John's festivities.
The capital cities are Aracaju — SE, Fortaleza - @#o

index n. Each value is separated in time by a constar tinpgggog — PB, Maceié — AL, Natal — RN, Recife —®yador

interval & The wavelet transfornW,(s) is just the inner
product (or convolution) of the wavelet functionthwithe
original time series:

W, (s)= :z:_:xnw [{@}

Where the asterisk (*) denotes complex conjugate.
The above integral can be evaluated for variousesbf
the scales (usually taken to be multiples of the lowest pblesi

®3)

frequency), as well as all valuesrobetween the start and end

dates. A two-dimensional picture of the variabilign then be
constructed by plotting the wavelet amplitude artthge.
Then, a time series can be decomposed into tinogsrecy
phase space using a typical (mother) wavelet. Téteah
computation of the wavelet transform can be donethzy
following algorithm [3]: (a) choose a mother wavel) find
the FT of the mother wavelet; (c) find the FT o ttime
series; (d) choose a minimum scejeand all other scales; (e)
for each scale, do:

— BA, Sao Luis — MA, and Teresina — PIl. The biggdtsés
are Salvador, Fortaleza and Recife, which are #gonal
metropolitan areas of the Northeast, all with a yaton
above a million inhabitants and metropolitan aralasve 3.5
million.

Because for most of the year the Northeast is breach of
the Intertropical Convergence Zone, the eastedgerwinds
blow across the region, giving abundant rainfalithe coast
but producing clear, dry conditions inland wheree th
escarpment blocks moisture flow. This gives rise faar
distinct regions, theona da matan the coast, thagresteon
the escarpmensertdo beyond and the mid north. The total
monthly rainfall series since 1911 to February 2@ shown
in Fig. 2. The missing data are recorded as -1¢chvhre the
large space gaps in the figures.
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Fig. 1 Location of the capital cities of northeastBrazil

IV. DATA ANALYSIS
Wavelet analysis was chosen, besides the otheorreasd

Energy and Environmental Sciences
2517-942X
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A.Wavelet Power Spectrum

Since the present data are monthly distributed,
parameters for the wavelet analysis are set asl month and

the

S = 2 months because= 24, J = 0.25 to do 4 sub-octaves

per octave, ang = 7/d in order to do 7 powers-of-two wiid)
sub-octaves each.

Fig. 3 shows the power (absolute value squared)hef
wavelet transform for the monthly rainfall in thapital cities
presented in Fig. 2, which is a record of more th@@ years.
As stated before, the (absolute value)? gives métion on the
relative power at a certain scale and a certaig.tifinis figure
shows the actual oscillations of the individual elats, rather
than just their magnitude. Observing Fig. 3, itclear that
there is more concentration of power between tHe8nonth
band, which shows that these time series haveoagsainnual
signal. One should observe that the large emptyespin Fig.
3 are cause by the missing data gaps (e.g. Fig3f38g, 3h).
The variance of power in 8-16-month bands (alsdicoad
later by Fig. 5) also shows the dry and wet ydags;when the
power decreases substantially in this band, it meadry year

and when the power is maximum means a wet year. For

example, a dry period can be identified in the beigig of

advantages described here, because applications asic 1980's at Jo&o Pessoa city and a wet period fro# 19 1952

standard Fourier Transform analysis to a time sesf®uld be
only attempted when the time series fulfills twopintant

characteristics, namely: (1) stationarity; i.eattho changes in
the mean, variance, etc., occur throughout the ienges; and
(2) that the time series can be described as tmenstion of

different periodic components (described by sintpemonic

functions) for the whole period. However, most tiseries

from meteorology and hydrology do not fulfill
requirements. In fact, earth sciences time seniesuaually
nonstationary and present trends of the mean vehamges in
the variability for certain periods. Furthermore,any
hydrological time series, such as precipitationespnt
unregularly distributed events with nonstationaowpr over
many different frequencies. Thus, their intrinsiemporal
structure is not well represented by the superiposif a few
frequency components as derived in a usual Foanalysis.

(3) Aracaju (b) Fortaieza
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both
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Fig. 2 Total monthly rainfall series from the capitities of northeastern Brazil.

2010
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Fig. 3 The wavelet power spectra for each capit@scof northeastern Brazil. The contour leveks @nosen so that 75%, 50%, 25%, and 5%
of the wavelet power is above each level, respelgtiRegions below the arcs are the cones of inflagwhere zero padding has reduced the
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variance. Black contour is the 5% significance leusing a red-noisen background spectrum. Wavelet power decreasesdingdo the
following order: red, orange, yellow, blue and whit

The regions below the arcs in these figures aretme of
influence, where zero padding has reduced the negia
Because we are dealing with finite-length time esgrierrors
will occur at the beginning and end of the waveiewer
spectrum. One solution is to pad the end of the 8aries with
zeroes before applying the wavelet transform aed tiemove
them afterward. Here the time series is padded suifficient

The null hypothesis is defined for the wavelet powe

spectrum as assuming that the time series has a pmeer
spectrum;
significantly above this background spectrum, titecan be
assumed to be a true feature with a certain pecmiidence.
For definitions, “significant at the 5% level” igjeivalent to
“the 95% confidence level,” and implies a test agaa certain

zeroes to bring the total lengthup to the next-higher power background level, while the “95% confidence intdérvafers

of two, thus limiting the edge effects and speedimg the
Fourier Transform. Padding with zeroes
discontinuities at the endpoints and decreasestmglitude
near the edges as going to larger scales, since memoes
enter the analysis. The cone of influence is ttggore of the
wavelet spectrum in which edge effects become itapoand
is defined as the e-folding time for the autocatieh of
wavelet power at each scale. The peaks within thegens
have presumably been reduced in magnitude dueetzeio
padding. Thus, it is unclear whether the decreasmny band
power in this arc region is a true decrease inavae or an
artifact of the padding. For much narrower mothawvelets
such as Mexican hat wavelet their cone of influeroeld be
much smaller and thus is less affected by edgectsffé&lote
also that for cyclic series, there is no need tw wih zeroes,
and there is no cone of influence.

The black contour in the same figures is the 5%ifggnce
level, using a
geophysical time series can be modeled as eithge-whise
or red-noise. A simple model for red-noise is tmévariate
lag-1 autoregressive process. The lag-1 is theeladion
between the time series and itself, but shiftedldgged) by
one time unit. In this present case, this wouldshift of one
month. The lag-1 measures the persistence of amapdrom

one month to the next. The true lagrtan be computed by an

approximation usingr = (o + @,¥?/2, wherea; is the lag-1

autocorrelation andy is the lag-2 autocorrelation, which is the

same as lag-1 but just shifted by two points irstfeone.

to the range of confidence about a given value. 95&

introducesonfidence implies that 5% of the wavelet powerusthdoe

above this level.

B.Global Wavelet Power Spectrum

The annual frequency (periodicity at 12 months)ttafse
time series are confirmed by an integration of poswer time,

which show only one significant peak above the 95%

confidence level for the global wavelet spectrauasng red-
noise, represented by the dashed lines (Fig. 4veider, Fig.
4 also presents almost significant peaks (at the 1&%6l)
centered in the 2—4-month band. In fact, most ex¢renonthly
precipitation values for those cities (values ab2g® mm in
Fig. 2) correspond to pulses of highly significaptver within
the 2—-4-month band (Fig. 3b). These global wavepstctra
provide an unbiased and consistent estimation ef tthe
power spectrum of the time series, and thus it$grple and
robust way to characterize the time series vaitgbiGlobal

red-noise background spectrum. Manyavelet spectra should be used to describe raidaibbility

in non-stationary hyetographs. For regions thahdidisplay
long-term changes in hyetograph structures, glotaielet
spectra are useful for summarizing a region's teapo
variability and comparing it with rainfall in otheegions. The
global wavelet spectral shape is controlled pritpaoy the
distribution of feature scales. For instance, desphe
difference among the observed hyetogaphs, the asityilof
the global wavelet spectra shows that these seelesg to the
same region (Northeast).

if a peak in the wavelet power spectrisn i
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Fig. 4 The global wavelet power spectra (blue line). The red dashed
lineisthe 5% significance level for the global wavelet spectra

C.Scale-average Time Series

The scale-average wavelet power (Fig. 5) is atime series of
the average variance in a certain band, in this case 8-16-month
band, used to examine modulation of one time series by
another, or modulation of one frequency by another within the
same time series. These figures are made by the average of
Fig. 3 over all scales between 8 and 16 months, which gives a
measure of the average year variance versus time. The
variance plot shows distinct periods when monthly rainfall
variance was low, e.g., a dry period can be identified in the
1950's at Fortaleza city and a wet period since 2000 at S&0
Luiscity. A dendrogram for those datais presented in Fig. 6.

V.CONCLUSION

In order to study the variability of the monthly rainfall time
series in the capital cities of northeastern Brazil, wavelet
analysis was applied. The wavelet power spectra show a big
power concentration between the 8-16-month band, revealing
an annual periodicity of such events, which is confirmed by the
peak of the integration of transform magnitude vectors over
time that show again a strong annual signal. The periods with
high variance in such a band could be identified by the average
of the all scales between 8 and 16 months, which gives a
measure of the average monthly variance versus time. The
wavelet power spectra showed that Maceié and Salvador cities
have similar rainfall patterns, Aracaju shows some similarity
as well, whereas Jodo Pessoa, Natal and Recife cities form
another group. Fortaleza, Teresina and S&o Luis have unique
characteristics, and then they cannot be included in or form
another group, although Fortaleza is the closest one to the Jodo
Pessoa’ s group.

Finaly, further study could include stream flow analysisin
order to benefit runoff-erosion models [8] from a quantitative
breakdown of the temporal components of stream flow.

7

City block distance (mm) x 10

06

04

Maceié Salvador Aracaju Fortaleza Joao Pessoa Natal
Capital cities (Northeastern Brazil)

Fig. 6 Dendrogram for the scale-average wavelet power 8-16-
month band of northeastern Brazilian capital cities

Recife  Teresina Sao Luis
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Fig. 5 Scale-average wavelet power over the 8-16-month band for the total monthly rainfall in each capital city.The dashed line is the 95% confidence level assi

430



International Journal of Earth, Energy and Environmental Sciences
ISSN: 2517-942X
Vol:6, No:7, 2012

REFERENCES

[1] A. Grossman, and J. Morlet, “Decomposition of Hafdgctions into
square integrable wavelets of constant sha®&M J. Math. Ana).vol.
15, pp. 723-736, 1984.

[2] A. Graps, “An introduction to waveletslEEE Computational Science
and Engineeringvol. 2, No. 2, pp. 50-61, 1995.

[3] C. Torrence, and G. P. Compo, “A practical guidevivelet analysis,”
Bull. Amer. Meteor. Sogcvol. 79, No. 1, pp. 61-78, 1998.

[4] M. Farge, “Wavelet transforms and their applicaido turbulence,”
Ann. Rev. Fluid Mechvol. 24, pp. 395-457, 1992.

[5] L. C. Smith, D. L. Turcitte and B. L. Isacks, “Sira flow
characterization and feature detection using a relisc wavelet
transform,”Hydrological Processewol. 12, pp. 233-249, 1998.

[6] 1. Y.L G.Braga, and C. A. G. Santos. “Viabilibf rainwater use in
condominiums based on the precipitation frequelcydservoir sizing
analysis,”J. Urban and Environ. Engngol. 4, No. 1, pp. 23-28, 2010.

[71 C. A. G. Santos, B. S. Morais, and G. B. L. SilVarought forecast
using Artificial Neural Network for three hydrolagil zones in San
Francisco river basinfAHS Publication vol. 333, pp. 302-312, 2009.

[8] C. A. G. Santos, V. S. Srinivasan, K. Suzuki, and WMatanabe,
“Application of an optimization technique to a plgdly based erosion
model,”Hydrological Processew. 17, No. 5, pp. 989-1003, 2003.

Celso A. G. Santoswas born in Campina
Grande, Paraiba, Brazil. He is graduated in Civil
Engineering, 1990, and Data Processing, 1991,
from the Federal University of Paraiba, Brazil. He
got his master degree in Civil and Environmental
Engineering, 1994, and doctor in Engineering,
1997, both from Ehime University, Ehime, Japan.
His major field of study is hydrology.

He was a postdoctoral fellow of Japan Society
from Promotion of Science (JSPS) from 1997 to
1999. He was an associate professor at Ehime
University from 1999 to 2001. Since 2002, he is
an associate professor at Federal University o&iBar His research interest
includes runoff-erosion modeling, model optimizatiosing technique such
as genetic algorithm, swarm particles, simulatedeating and differential
evolution optimizer, wavelet transform, and artéimeural networks.

Dr. Santos is member of the Brazilian AssociatoddriWater Resources,
and the International Association of Hydrologicale®ices, and has published
several papers at IAHS Publication, Hydrologicald®sses, Natural Hazards,
Water Science and Technology, J. Urban and Envieonah Engineering, J.
Hydroscience and Hydraulic Engineering, J. Hyd@uliCoastal and
Environmental Engineering, and Brazilian J. Wates®urces, for example.

Paula K. M. M. Freire was born in Jodo Pessoa,
Paraiba, Brazil. She is graduated in Internet
Systems, 2009, from the Federal Institute of
Paraiba, and in Civil Engineering, 2011, from the
Federal University of Paraiba. She got her master
degree in Urban and Environmental Engineering,
2012, from Federal University of Paraiba.

She is a research fellow of Brazilian Council
for Scientific and Technological Development
(CNPq) since 2009 at the Federal University of
Paraiba. Her major field of study is model
optimization and hydrology.

Freire is member of the International Associatioh Hydrological
Sciences, and has published papers at IAHS Publicatvater Science and
Technology, Journal of Urban and Environmental Begiing, and Land
Reclamation.

431



