
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

160

Abstract— Minimization methods for training feed-forward

networks with Backpropagation are compared. Feedforward network
training is a special case of functional minimization, where no
explicit model of the data is assumed. Therefore due to the high
dimensionality of the data, linearization of the training problem
through use of orthogonal basis functions is not desirable. The focus
is functional minimization on any basis. A number of methods based
on local gradient and Hessian matrices are discussed. Modifications
of many methods of first and second order training methods are
considered. Using share rates data, experimentally it is proved that
Conjugate gradient and Quasi Newton’s methods outperformed the
Gradient Descent methods. In case of the Levenberg-Marquardt
algorithm is of special interest in financial forecasting.

Keywords— Backpropagation algorithm, conjugacy condition,
line search, matrix perturbation

I. INTRODUCTION

eed forward neural networks are composed of neurons in
which the input layer of neurons is connected to the output
layer through one or more layers of intermediate neurons,

The training process of neural networks involves adjusting the
weights till a desired input/output relationship is obtained
[12], [19], [34]. The majority of adaptation learning
algorithms are based on the Widrow-Hoffback-algorithm [4].
The mathematical characterization of a multilayer feedforward
network is that of a composite application of functions [36].
Each of these functions represents a particular layer and may
be specific to individual units in the layer, e.g. all the units in
the layer are required to have same activation function. The
overall mapping is thus characterized by a composite function
relating feedforward network inputs to output. That is

()xfO composite=

Using p-mapping layers in a p+1 layer feedforward net yield

()()()........... 11 xfffO LLL pp −= .Thus the interconnection

Manuscrot received on December, 03. 2004.

Dr. S. M. Aqil Burney is Professor in the Department of Computer Science,
University of Karachi, Pakistan, Phone: 0092-21-9243131 ext. 2447, fax:
0092-21-9243203, Burney@computer.Org, aqil_burney@yahoo.com.

Tahseen Ahmed Jilani is lecturer in the Department of Computer Science,
university of Karachi and is Ph.D. research associate in the Department of
Statistics. University of Karachi, Pakistan. tahseenjilani@yahoo.com

Cemal Ardil is with the Azerbaijan National Academy of Aviation, Baku,
Azerbaijan. cemalardil@gmail.com

weights from unit k in 1L to unit i in 2L are 21 LLw → . If hidden

units have a sigmoidal activation function, denoted sigf

∑ ∑
= =

→→

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1
10212

1 1

H

k

I

j
j

LL
kj

sig
k

LL
ik

L
i iwfwO

Above equation illustrates neural network with supervision
and composition of non-linear function.

II. LEARNING IN NEURAL NETWORKS

Learning is a process by which the free Parameters of a neural
network are adapted through a continuing process of
stimulation by the environment in which the network is
embedded [2]. The type of learning is determined by the
manner in which the parameters changes take place. A
prescribed set of well- defined rules for the solution of a
learning problem is called learning algorithm [6].The
Learning algorithms differ from each other in the way in
which the adjustment kjw∆ to the synaptic weight kjw is
formulated.

The basic approach in learning is to start with an untrained
network. The network outcomes are compared with target
values that provide some error. Suppose that ()nkt denote

some desired outcome (response) for the thk neuron at time n
and let the actual response of the neuron is ()nkO . Suppose the

response ()nky was produced when ()nx applied to the

network. If the actual response ()nky is not same as ()nkt ,
we may define an error signal as

() () ()nnn kkk yte −=

The purpose of error–correction learning is to minimize a cost
function based on the error signal ()nke . Once a cost
function is selected, error-correction learning is strictly an
optimization problem. A cost function usually used in neural
networks is mean-square-error criteria called L.M.S learning.

()⎥
⎦

⎤
⎢
⎣

⎡
= ∑

k
k nE 2

2
1 eJ (1)

Here summation runs over all neurons in the output layer of
the network. This method has the task of continually search
for the bottom of cost function in iterative manner
Minimization of the cost function J with respect to free

A Comparison of First and Second Order Training
Algorithms for Artificial Neural Networks

Syed Muhammad Aqil Burney, Tahseen Ahmed Jilani, Cemal Ardil

F

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

161

parameters of the network leads to so-called Method of
Gradient Descent.

() () ()nnknk Jww ∇−=+ η,1, (2)

η is called learning rate and it defines the proportion of error
for weight updating (correction). The learning parameter has a
profound impact on the performance of convergence of
learning [21].

A plot of the cost function versus the synaptic weights
characterizes the neural network consists of a
multidimensional surface called error surface. The neural
network consists of cross-correction learning algorithm to
start from a n arbitrary point on the error surface (initial
weights) and then move towards a global minima, in step-by-
step fashion.

Fig: 1 Quadratic error surface with local and global minima.

We can gain understanding and intuition about the algorithm
by studying error surfaces themselves—the function ()wJ .
Such an error surface depends upon the task in hand, but even
there are some general properties of error surfaces that seem
to hold over a broad range of real-world pattern recognition
problems. In case of non-linear neural network, the error
surface may have troughs, valleys, canyons, and host of
shapes, where as in low dimensional data, contains many
minima and so many local minima plague the error
landscapes, then it is unlikely that the network will find the
global minimum. Another issue is the presence of plateaus-
regions where the error varies only slightly as a function of
weights see [9], [15] and. Thus in presence of many plateaus,
training will get slow. To overcome this situation momentum
is introduced that forces the iterative process to cross saddle
points and small landscapes [16]. Neural network training
begins with small weights; the error surface in the
neighborhood of 0≈w will determine the general direction of
descent. High dimensional space may afford more ways
(dimensions) for the system to ‘get around’ a barrier or local
maximum during training. For large networks, the error varies
quite gradually as a single weight is changed.

III. BACKPROPAGATION
For networks having differentiable activation functions, there
exist a powerful and computationally efficient method, called
error backpropagation for finding the derivatives of an error

function with respect to the weights and biases in the network.
Gradient Descent algorithm is the most commonly used error
backpropagation method [13], [14].

Standard backpropagation is a gradient descent algorithm, in
which the network weights are moved along the negative of
the gradient of the performance function. There are a number
of variations on the basic algorithm that are based on other
standard optimization techniques, such as conjugate gradient
[22], [23].

Backpropagation was created by generalizing the Widrow-
Hoff learning rule to multiple-layered networks with non-
linear differentiable transfer functions.

For If the scalar product of the connections (weights) and the
stimulus, we define

x.wnet T=

is large and have a differentiable activation function. Given a
training set of input-target pairs of the form

() () (){ }nn txtxtxH ,..,,,,, 2211=

The basic idea is to compute ()
w

e
d

d p 2
 we use the error

correction method to adjust w see [8]. Let for the thk

element of w , i.e., we have

() ()
k

p

p

p

k

p

d
td

d
d

d
d

d
d

w
ne

net
O

O
e

w
e ..

22

=

() () p
kp

p
pp

d
d

x
net
netf

tO .⎥
⎦

⎤
⎢
⎣

⎡
−=

which is the gradient of the pattern error with respect to

weight kw and forms the basis of the gradient descent training

algorithm. Specifically, we assign the weight correction, kw∆ ,
such that

Fig 2 Gradient Descent algorithm showing minimization of cost
function

Global Minimum

Local Minimum

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

162

() ()
⎥
⎦

⎤
⎢
⎣

⎡
−−=+ p

kp

p
ppj

k
j
k d

d
x

net
netf

tOww ..1 η (3)

and for linear activation function

()
⎥
⎦

⎤
⎢
⎣

⎡

−
−

−=+ p
kp

pp
j
k

j
k x

e
tO

ww .
2

.1 η
p
k

pj
k

j
k xeww η+=+1

IV. LINE SEARCH
Mostly, the learning algorithms involve a sequence of steps
through weight space. We can consider each of these steps in
two parts. First decide the direction in which to move and
secondly, how far to move in that direction. This direction of
search provides minimum of the error function in that
direction in weight space [18], [25], [27]. This procedure is
referred to as line search and it forms the basis for several
algorithms which are considerably more powerful than
gradient descent. Suppose at step n in some algorithm the
current weight vector is nw and we wish to obtain a

particular search direction np through weight space. The
minimum along the search direction then gives the next values
for the weight vector as:

nnnn pww λ+=+1 (4)

where the parameter λ is chosen to minimize

() ()nnEE pw λλ += (5)
This gives us an automatic procedure for setting the step
length, once we have chosen the search direction. The line
search represents a one dimensional minimization problem.
This minimization can be performed in a number of ways. A
simple approach would be to proceed long the search direction
in small steps, evaluating the error function at each step
(position), and stop when the error starts to increase. It is
possible, however, to find much more efficient approaches.
This includes the issue that whether local gradient information
is preferable in line search. The search direction is towards the
minimum is obtained (possibly) through proper weight
adjustments, this involves search through negative direction of
gradient information.

V. CONJUGATE GRADIENT

To apply line search to the problems of error function
minimization, we need to choose a suitable search direction at
each stage of the algorithm. Note that at minimum of the line
search

() 0=+
∂
∂

nnE pw λ
λ

 (6)

gives () 01 =+ n
T

ng p.w Where
1+∂

∂
=

n
n w

Eg (7)

Thus the gradient of the new minimum is orthogonal to the
search direction. Choosing successive search directions to the
local (negative) gradient directions can lead to the problem of
slow learning. The algorithm can then take many steps to

converge, even for a quadratic error function. The solution to
this problem lies in choosing the successive search
directions nd to minimize cost function such that, at each step
of the algorithm, the component of the gradient parallel to the
previous search direction which has just been made zero, is
unaltered [17,][24]. Suppose, we have already performed a
line minimization along the direction nd , starting from the

point nw , to give the new point 1+nw . Then at the

point 1+nw , we have

() 01 =+ nn p.wg (8).

Now the new search nd such that

() 011 =+ ++ n
T

nn p.pwg λ

gives onn =+ p.p 1 (9)

that is along the new direction, the component of the gradient
parallel to the previous search direction remains zero [31].

VI. CONJUGATE GRADIENT TECHNIQUES

The conjugate Descent algorithms have been derived on the
assumption of a quadratic error function with a positive
definite Hessian matrix. For a non-quadratic error function,
the Hessian matrix will depend on the current weight vector,
and so will need to be re-evaluated at each step of the
algorithm. Since the evaluation of Hessian is computationally
costly for non-linear neural networks, and since its evaluation
would have to be done repeatedly, we would like to avoid
having to use the Hessian. In fact, it turns out that the search
direction and learning rate can be found with out explicit
knowledge of H. This leads to the CGA.

The conjugate method avoids this problem by incorporating
an intricate relationship between direction and gradient vector.
The conjugate gradient method is guaranteed to locate the
minimum of any quadratic function of N variables in at most
N steps. But for non-quadratic function, like as the cost
function in M.L.P, the process is iterative rather than N-step,
and a criterion for convergence is required. The weight vector
of the network is updated in accordance with the rule in [4]

In conjugate gradient approach, successive steps in nw∆ are
chosen such that weight correction at previous step is
preserved. A direction for yth weight correction is computed
and line minimization in this direction is performed,
generating 1+nw .

Successive weight corrections are constrained to be conjugate
to those used previously. Interestingly, this is achieved
without inversion of Hessian matrix, when compared with
Newton’s method. There exists several techniques, most often
gradient is involved. Suppose initial weight correction is

() ()00 gp −= . Line minimization in the direction ()0p takes
weight vector ()0w . Beginning with 0=K , we require

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

163

subsequent gradient to be orthogonal to the previous weight
correction direction; that is from [8]

niin
T

n ,...,2,1;0. ==+gp

[] 012 =− ++ nnn ggp (10)

Where 12 ++ − nn gg is the change of gradient of E from 1+nw

to 2+nw .

Using Taylor’s series, we have

() () () ()02

2

00

00
!2

1 ww
w
Eww

w
EwEwE

ww

−
∂
∂

−+
∂
∂

+≈
== ww

where
w
EJ

∂
∂

= and
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂∂
∂

=
∂
∂

=
ji ww

E
w
EH

2

2

2

Differentiating with respect to w , we have

() ()0wwHFg −+=n

Therefore 0pHp =+1n
T
n (11)

which is called the conjugacy condition, see fig. 3. Weight
correction direction 2+np and 1+np are said to be conjugate to
one another in the context of H , or H -conjugate. It is
important to note that there exist several methods of finding
conjugate vector ()1+np see [29] and [31]. Each search
direction vector is then computed as a linear combination of
the current gradient vector and the previous direction vector.

nnnn pβgp .111 +++ +−= (12)
defines a path or sequence of search directions

nnn ,...,2,1; =p in the weight space where nβ is a time
varying parameter. There are various rules for determining nβ

in terms of the gradient vector ng and 1+ng . Each weight

correction np is computed sequentially with 0p and is
formed as the sum of the current negative gradient direction
and a scaled version ()nei β.,. of previous correction. Using
(11) and (12), we have

[]nnn
T

nn
T

n pβgHppHp 111 +++ +−=

n
T

n

n
T

n
n

pHp
gHp

β 1
1

+
+ = (13)

In most of the conjugate gradient algorithms, the step size is
adjusted at each iteration, and a search is made along the
conjugate gradient direction to determine the step size which
minimizes the performance function along that line [10].
There are a number of different search functions. Some of
these are,

Fletcher-Reeves
n

T
n

n
T

n
n gg

gg
β

.

. 11
1

++
+ = (14)

Polak-Ribiere ()
n

T
n

nn
T

n
n gg

ggg
β

.
. 11

1
−

= ++
+

 (15)

Powell-Beale Restarts ()
()nn

T
n

nn
T

n
n

ggp
ggg

β
−

−
=

+

++
+

1

11
1

. (16)

The conjugate gradient algorithms are usually much faster
than variable leaning rate backpropagtaion algorithm,
although the results will vary from one problem to another.
The conjugate Gradient algorithms required only a little more
storage than the simple algorithm, so that are often a good
choice for networks with a large number of weights. It is
important to note that above three expressions are equivalent
provided the error function is exactly quadratic. For non-
quadratic error functions, the Polak-Ribiere form is generally
found to give slightly better results that the other expressions,
probably due to the fact that, if the algorithm is making little
progress, so that successive gradient vectors are very similar,
the Polak -Ribiere form gives a small value for jβ so that the

Fig. 3 Conjugal gradient descent in weight space employs a sequence

of line searches. If 1w∆ is the first descent direction, the second
direction obeys conjugacy condition; as such, the second descent does
not “spoil” the contribution due to the previous line search. In the case
where the Hessian is diagonal (right), the direction of the line searches
are orthogonal [12].

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

164

search direction 1+np tends to be reset to the negative
gradient direction, which is equivalent to restarting the
conjugate gradient procedure. For a quadratic error function
the conjugate gradient algorithm finds the minimum after at
most w line minimization s, with out calculating the Hessian
matrix [39]. This clearly represents a significant improvement
on the simple gradient descent approach which could take a
very large number of steps to minimize even a quadratic error
function.

VII. TRUST REGION MODELS
A large class of methods for unconstrained optimization is
based on a slightly different model algorithm. In particular,
the step size jα is nearly always taken as unity. In order to
ensure that he descent condition holds, it may thus be
necessary to compute several trial vectors. Methods of this
type are often termed as trust-region methods.

For large values of nλ the step size becomes small.
Techniques such as this are well in standard optimization
theory, where they are called model trust region methods [35],
[37] and [38] because the model is effectively trusted only in a
small region around the current search point. The size of the
trust region is governed by the parameter nλ , so that the large

nλ gives the small trust region see [33].

VIII. QUASI NEWTON METHODS
Using the local quadratic approximation, we can obtain
directly an expression for the location of the minimum or
more generally the stationary point of the error function

() () () ()*T** wwHwwww −−+=
2
1EE

gives gHww* 1−−=

The vector gH 1−− is known as the Newton step or the
Newton’s direction [20],[29]. Unlike the local gradient vector,

the Newton location for a quadratic error surface, evaluated at
any w , points directly at the minimum of the error function
provided H is positive definite. Since the quadratic
approximation in above algorithm is not exact, it would be
necessary to apply gHww* 1−−= iteratively with the
Hessian being re-evaluated at each new search [40]. The
Hessian for non-quadratic networks is computationally
demanding since it required ()2wNO steps, where w is the
number of weights in the network and N is the number of
patterns in the data and ()3wO operation for inversion in
each iteration [5], [32]. The Newton’s step may move towards
a maximum or a saddle point rather than a minimum. This
occur if the Hessian is not positive definite. Thus the error is
not guaranteed to be reduced at each iteration see [6], [11].

One of the drawbacks of Newton’s method is that it requires
the analytical derivative of Hessian matrix at each iteration.
This is a problem if the derivative is very expensive or
difficult to compute. In such cases it may be convenient to
iterate according to

nnn gGww 1
1

−
+ −= (17)

where G is an easily computed approximation to H. For
example, in one dimension, the secant method approximates
the derivative with the difference quotient

() () ()
nn

nnna
ww

wgwg
−
−

=
+

+

1

1

such an iteration is called a quasi-Newton method. If G is
positive definite, as it usually is, an alternative name is
variable metric method. One positive advantage to using an
approximation in place of H is that G can be chosen to be
positive definite, ensuring that the step will not be attracted to
a maximum of f when one wants a minimum. Another
advantage is that () ()nn wgG 1− is a descent direction

from nw allowing the use of line searches.

Among general purpose quasi-Newton algorithms, the best is
probably the Broydon–Fletcher–Goldfarb–Shanno (BFGS)
algorithm. The BFGS algorithm builds upon the earlier and
similar Davidon–Fletcher–Powell (DFP) algorithm. The
BFGS algorithm starts with a positive definite matrix
approximation to ()0wH usually the identity matrix I . At
each iteration it makes a minimalist modification to gradually
approximate 1−H .

IX. LEVENBERG-MARQUARDT ALGORITHM
Levenberg-Marquardt is a trust region based method with
hyper-spherical trust region. This method work extremely well
in practice, and is considered the most efficient algorithm for
training median sized artificial neural networks. Like Quasi-
Newton methods, the Levenberg-Marquardt algorithm was
designed to approach second order training speed with out
having to compute Hessian matrix [1]. When the performance

Fig. 4 A comparison between GDA and CGA
minimization.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

165

function has the form of a sum of squares, then from (17) we
have

()wHww Fnn ∇−= −
+

1
1 (18)

here the Hessian matrix can be approximated as, JJH T≈

and the gradient can be computed as eJ Tg =

where the Jacobian matrix J contains the first derivatives of
the network errors with respect to weights and biases, and e
is a vector of network errors. The Gauss-Newton update
formula can be

() n
T

nn
T

nnn WW eJJJ
1

1

−

+ −=

Where ()JJ T is positive definite, but if it is not, then, we
make some perturbation into it that will control the probability
of being non positive definite. Such that the recursion
equation is

() n
T

nn
T

nnn eJIJJWW 1
1

−
+ +−= λ (19)

Where in neural computing context the quantity λ is called
the learning parameter, it ensures that JJ T is positive
definite. It is always possible to choose λ sufficiently large
enough to ensure a descent step. The learning parameter is
decreased as the iterative process approaches to a minimum.
Thus, in Levenberg-Marquardt optimization, inversion of
square matrix IJJ λ+T is involved which requires large
memory space to store the Jacobian matrix and the
approximated

X. NETWORK TRAINING RESULTS
Daily Shares rates data is considered and presented in
concurrent form. For programming in C/C++, we used the
approach of [3], [7], [26] and [30]. The average number of
iterations to converge to the targets are indicated with each
algorithm

Fig. 5. Time series plot of share rates

We trained the network for each method and average of 50
successful results are taken and presented in the table.

Gradient descent method with momentum and learning rate is
considered. Finally, the results of forecasting for 10 days are
shown in the table. It is best to use the forecast for only one
day due to possibility of error growth. The performance goal
is 510− .

REFERENCES
[1] Aqil Burney S.M., Jilani A. Tahseen and Cemal Aril, 2004. Levenberg-

Marquardt algorithm for Karachi Stock Exchange share rates
forecasting. International Journal of Computational Intelligence, pp 168-
173.

[2] Aqil Burney S.M., Jilani A. Tahseen, 2002, Time Series forecasting
using artificial neural network methods for Karachi Stock Exchange. A
Project at Department of Computer Science, University of Karachi.

[3] Aqil Burney S.M. Measures of central tendency in News-MCB stock
exchange. Price index pp 12-31. Developed by Vital information
services (pvt) limited, Karachi. C/o Department of Computer Science,
University of Karachi.

[4] B. Widrow and M. A. Lehr, 1990. 30 years of adaptive neural networks:
Perceptron, Madaline, and Backpropagation. IEEE Proceedings-78, pp.
1415-1442.

[5] Barak A. Pearlmutter, 1993. Fast Exact Multiplication by the Hessian.
Siemens Corporate Research, Neural Computation.

[6] Battiti, 1992. First and second-order methods for learning: between
steepest descent and Newton’s method. Neural Computation 4, pp. 141-
166.

[7] Blum, Adam, 1992. Neural Network in C++. John Wiley and Sons, New
York.

[8] Bortolettis, A., Di Fiore, C., Aselli, S. and Bellini, P. A new class of
quasi-Newtonian methods for optimal learning in MLP-networks, IEEE
Transactions on Neural Networks, vol: 14, Issue: 2.

[9] Duda, R. O. Hart, P. E. and Stork, D. G. 2001. Pattern Classification,
John Wiley & Sons.

[10] C. M. Bishop, 1995. Neural networks for pattern recognition. Clarendon
Press.

[11] Chauvin, Y., & Rumelhart, D. 1995. Backpropagation: theory,
architecture, and applications. Lawrence Erlbaum Association.

[12] Chung-Ming Kuan and Tung Liu. 1995. Forecasting exchange rates
using feedforward and recurrent neural networks. Journal of Applied
Econometrics, pp. 347-64.

[13] De Villiers and E. Barnard 1993, Backpropagation neural nets with one
and two hidden layers, IEEE Transaction on Neural Networks 4, pp.
136-141

[14] E. Rumelhart, G. E. Hinton, and R. J. Williams, 1986. Learning internal
representations by error propagation, Parallel distributed processing.
Vol. I, MIT Press, Cambridge, MA, pp. 318-362.

[15] Ergezinger and E. Thomsen. 1995. An accelerated learning algorithm for
multilayer perceptrons: optimization layer by layer. IEEE Transaction on
Neural Networks 6, pp. 31-42.

[16] F. Molar, 1997. Efficient Training of feedforward Neural Networks.
Ph.D thesis, Computer Science Department, Aarhus University

[17] F. Møllar, 1993. A Scaled Conjugate Gradient Algorithm for Fast
Supervised Learning. Neural Networks, 6(4): pp. 525-533.

Table: 1
A comparison of neural network training algorithms (in m iterations)

GD BGFS L.M CGFP CGPR SCG Target
Values 2500

0 45 21 400 240 1700

15.95 15.92 15.95 15.95 15.95 15.95 15.95
16.05 15.92 16.05 16.05 16.05 16.05 16.05
15.95 19.93 15.95 15.95 15.95 15.95 15.95
15.80 15.77 15.80 15.80 15.80 15.80 15.80
15.35 15.44 15.35 15.35 15.35 15.35 15.35
15.45 15.58 15.45 15.45 15.45 15.45 15.45
15.55 15.65 15.55 15.55 15.56 15.55 15.55
15.60 15.65 15.60 15.60 15.60 15.60 15.60
15.75 15.77 15.75 15.75 15.75 15.75 15.75
15.80 15.78 15.80 15.80 15.80 15.80 15.80

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

166

[18] Gill, P. E., Murray, W. and Wright, M. H. 1993. Practical Optimization”,
Academic Press.

[19] Iebeling Kaastra and Milton S.Boyd, 1995. Forecasting future trading
volume using neural networks. Journal of Future Markets, pp. 953-70.

[20] J. Shepherd, 1997. Second-order optimization methods. Second-order
methods for neural networks. Springer-Verlag, Berlin, New York, pp.
43-72.

[21] Jacobs, 1988. Increased rate of convergence through learning rate
adaptation. Neural Networks 1, pp.295-307.

[22] Hornik, M. Stinchcombe, and H. White, 1989. Multi-layer feedforward
networks are universal approximators. Neural Networks 2, pp. 359-366.

[23] Karayiannis and A. N. Venetsanopoulos, 1993. Artificial neural
networks: learning algorithms, performance evaluation, and applications.
Kluver Academic, Boston, MA.

[24] M. R. Hestenes and E. Stifle, 1952. Methods of conjugate gradients for
solving linear systems. Journal of Research of the National Bureau of
Standards-49, pp. 409–436.

[25] Michael Husken, Jens E. Gaykoand Bernard Sendoff, 2000.
Optimization for Problem Classes-Neural Networks that Learn to Learn.
IEEE Symposium of Evolutionary computation and Neural networks
(ECNN-2000), pages 98-109, IEEE Press 2000.

[26] Mir F. Atiya, Suzan M. El-Shoura, Samir I. Shaken, 1999. A comparison
between neural network forecasting techniques- case study: river flow
forecasting". IEEE Transactions on Neural Networks. Vol. 10, No. 2.

[27] N. N. Schraudolph, Thore Grapple, 2003. Combining Conjugate
Direction Methods with Stochastic Approximation of Gradients.
Proceedings of the Ninth International Workshop on Artificial
Intelligence and Intelligence.

[28] N. N. Schraudolph, 2002. Fast curvature matrix-vector product for
second-order gradient descent. Neural Computation, 14(7), pp. 1723-
1728.

[29] N. N. Schraudolph, 1999. Local gain adaptation in stochastic-gradient
descent. In Proceedings of the Ninth International Conference on
Artificial Neural Networks, pp. 569–574, Edinburgh, Scotland, 1999.
IEE, London.

[30] Neural network toolbox, 2002. : For use with Matlab, MathWorks,
Natick, MA.

[31] Patrick van der Smagt, 1994. Minimization methods for training
feedforward neural networks. Neural Networks 7(1), pp. 1-11.

[32] Pearlmutter, 1994. Fast exact multiplication by the Hessian. Neural
Computation, 6(1), pp.147–160.

[33] Puha, P. K. H. Daohua Ming, 2003. Parallel nonlinear optimization
techniques for training neural networks. IEEE Transactions on Neural
Networks, vol: 14, Issue: 6, pages, pp. 1460-1468.

[34] Scarselli and A. C. Tso, 1998. Universal approximation using
feedforward neural networks: a survey of some existing methods, and
some new results. Neural Networks, pp. 1537.

[35] Ripley, B. D. 1994. Neural networks and related methods for
classification. Journal of the Royal Statistician Society, B 56(3),409-
456.

[36] S. Haykin, Neural networks, 1994. A comprehensive foundation, IEEE
Press, Piscataway, NJ.

[37] S.D. Hunt, J. R. Deller, 1995. Selective training of feedforward
artificialneural networks using matrix perturbation theory. Neural
networks, 8(6), pp 931-944.

[38] Welstead, Stephen T. 1994. Neural network and fuzzy logic applications
in C/C++. John Wiley and Sons, Inc. N.Y.

[39] Z. Strako¢s and P. Tich´ y., 2002. On error estimation in the conjugate
gradient method and why it works in finite precision computations.
ETNA 13, 56–80.

[40] Zhou and J. Si, 1998. Advanced neural-network training algorithm with
reduced complexity based on Jacobian deficiency. IEEE Trans Neural
Networks 9, pp. 448-453.

S. M. Aqil Burney received the B.Sc.(Physics,
Mathematics, Statistics) from D. J. College affiliated
with the University of Karachi in 1970; First class first
M.Sc. (Statistics,) from Karachi University in 1972
with M.Phil. in 1983 with specialization in
Computing, Simulation and stochastic modeling in
from risk management. Dr. Burney received Ph.D.

degree in Mathematics from Strathclyde University, Glasgow with
specialization in estimation, modeling and simulation of multivariate Time
series models using algorithmic approach with software development.
He is currently professor and approved supervisor in Computer Science and
Statistics by the High education Commission Government of Pakistan. He is
also the project director of Umair Basha Institute of Information technology
(UBIT). He is also member of various higher academic boards of different
universities of Pakistan. His research interest includes AI, Soft computing
neural networks, fuzzy logic, data mining, statistics, simulation and stochastic
modeling of mobile communication system and networks and network
security. He is author of three books, various technical reports and supervised
more than 100software/Information technology projects of Masters level
degree programs and project director of various projects funded by
Government of Pakistan.
He is member of IEEE (USA), ACM (USA) and fellow of Royal Statistical
Society United Kingdom and also a member of Islamic society of Statistical
Sciences. He is teaching since 1973 in various universities in the field of
Econometric, Bio-Statistics, Statistics, Mathematic and Computer Science He
has vast education management experience at the University level. Dr. Burney
has received appreciations and awards for his research and as educationist.

Tahseen A. Jilani received the B.Sc.(Computer Science, Mathematics,
Statistics) from Islamia Science College affiliated with the University of

Karachi in 1998; First class second M.Sc. (Statistics,)
from Karachi University in 2001. Since 2003, he is
Ph.D. research fellow in the Department of Computer
Science, University of Karachi.
His research interest includes AI, neural networks, soft
computing, fuzzy logic, Statistical data mining and
simulation. He is teaching since 2002 in the fields of
Statistics, Mathematics and Computer Science.

