
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

160

 

 

  
Abstract— Minimization methods for training feed-forward 

networks with Backpropagation are compared. Feedforward network 
training is a special case of functional minimization, where no 
explicit model of the data is assumed. Therefore due to the high 
dimensionality of the data, linearization of the training problem 
through use of orthogonal basis functions is not desirable. The focus 
is functional minimization on any basis. A number of methods based 
on local gradient and Hessian matrices are discussed. Modifications 
of many methods of first and second order training methods are 
considered. Using share rates data, experimentally it is proved that 
Conjugate gradient and Quasi Newton’s methods outperformed the 
Gradient Descent methods.  In case of the Levenberg-Marquardt 
algorithm is of special interest in financial forecasting. 
 

Keywords— Backpropagation algorithm, conjugacy condition, 
line search, matrix perturbation  

I. INTRODUCTION 

eed forward neural networks are composed of neurons in 
which the input layer of neurons is connected to the output 
layer through one or more layers of intermediate neurons, 

The training process of neural networks involves adjusting the 
weights till a desired input/output relationship is obtained 
[12], [19], [34]. The majority of adaptation learning 
algorithms are based on the Widrow-Hoffback-algorithm [4]. 
The mathematical characterization of a multilayer feedforward 
network is that of a composite application of functions [36]. 
Each of these functions represents a particular layer and may 
be specific to individual units in the layer, e.g. all the units in 
the layer are required to have same activation function. The 
overall mapping is thus characterized by a composite function 
relating feedforward network inputs to output. That is 

( )xfO composite=  

Using p-mapping layers in a p+1 layer feedforward net yield 

( )( )( )........... 11 xfffO LLL pp −= .Thus the interconnection 

 
Manuscrot received on December, 03. 2004. 

Dr. S. M. Aqil Burney is Professor in the Department of Computer Science, 
University of Karachi, Pakistan, Phone: 0092-21-9243131 ext. 2447, fax: 
0092-21-9243203, Burney@computer.Org, aqil_burney@yahoo.com.  

Tahseen Ahmed Jilani is lecturer in the Department of Computer Science, 
university of Karachi and is Ph.D. research associate in the Department of 
Statistics. University of Karachi, Pakistan. tahseenjilani@yahoo.com 

Cemal Ardil is with the Azerbaijan National Academy of Aviation, Baku, 
Azerbaijan. cemalardil@gmail.com 

 

weights from unit k in 1L  to unit i in 2L are 21 LLw → . If hidden 

units have a sigmoidal activation function, denoted sigf  
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Above equation illustrates neural network with supervision 
and composition of non-linear function. 

II. LEARNING IN NEURAL NETWORKS 

Learning is a process by which the free Parameters of a neural 
network are adapted through a continuing process of 
stimulation by the environment in which the network is 
embedded [2]. The type of learning is determined by the 
manner in which the parameters changes take place. A 
prescribed set of well- defined rules for the solution of a 
learning problem is called learning algorithm [6].The 
Learning algorithms differ from each other in the way in 
which the adjustment kjw∆ to the synaptic weight kjw is 
formulated. 

The basic approach in learning is to start with an untrained 
network. The network outcomes are compared with target 
values that provide some error. Suppose that ( )nkt  denote 

some desired outcome (response) for the thk neuron at time n 
and let the actual response of the neuron is ( )nkO . Suppose the 

response ( )nky  was produced when ( )nx  applied to the 

network. If the actual response ( )nky  is not same as ( )nkt , 
we may define an error signal as 

( ) ( ) ( )nnn kkk yte −=  

The purpose of error–correction learning is to minimize a cost 
function based on the error signal ( )nke . Once a cost 
function is selected, error-correction learning is strictly an 
optimization problem. A cost function usually used in neural 
networks is mean-square-error criteria called L.M.S learning. 

( )⎥
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k nE 2

2
1 eJ  (1)    

Here summation runs over all neurons in the output layer of 
the network. This method has the task of continually search 
for the bottom of cost function in iterative manner 
Minimization of the cost function J  with respect to free 
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parameters of the network leads to so-called Method of 
Gradient Descent. 

( ) ( ) ( )nnknk Jww ∇−=+ η,1,  (2) 

η  is called learning rate and it defines the proportion of error 
for weight updating (correction). The learning parameter has a 
profound impact on the performance of convergence of 
learning [21]. 

A plot of the cost function versus the synaptic weights 
characterizes the neural network consists of a 
multidimensional surface called error surface. The neural 
network consists of cross-correction learning algorithm to 
start from a n arbitrary point on the error surface (initial 
weights) and then move towards a global minima, in step-by-
step fashion. 

 
Fig: 1 Quadratic error surface with local and global minima. 

 

We can gain understanding and intuition about the algorithm 
by studying error surfaces themselves—the function ( )wJ . 
Such an error surface depends upon the task in hand, but even 
there are some general properties of error surfaces that seem 
to hold over a broad range of real-world pattern recognition 
problems. In case of non-linear neural network, the error 
surface may have troughs, valleys, canyons, and host of 
shapes, where as in low dimensional data, contains many 
minima and so many local minima plague the error 
landscapes, then it is unlikely that the network will find the 
global minimum. Another issue is the presence of plateaus- 
regions where the error varies only slightly as a function of 
weights see [9], [15] and. Thus in presence of many plateaus, 
training will get slow. To overcome this situation momentum 
is introduced that forces the iterative process to cross saddle 
points and small landscapes [16].  Neural network training 
begins with small weights; the error surface in the 
neighborhood of 0≈w will determine the general direction of 
descent. High dimensional space may afford more ways 
(dimensions) for the system to ‘get around’ a barrier or local 
maximum during training. For large networks, the error varies 
quite gradually as a single weight is changed. 

III. BACKPROPAGATION 
For networks having differentiable activation functions, there 
exist a powerful and computationally efficient method, called 
error backpropagation for finding the derivatives of an error 

function with respect to the weights and biases in the network. 
Gradient Descent algorithm is the most commonly used error 
backpropagation method [13], [14].  

Standard backpropagation is a gradient descent algorithm, in 
which the network weights are moved along the negative of 
the gradient of the performance function. There are a number 
of variations on the basic algorithm that are based on other 
standard optimization techniques, such as conjugate gradient 
[22], [23]. 

Backpropagation was created by generalizing the Widrow-
Hoff learning rule to multiple-layered networks with non-
linear differentiable transfer functions.  

For If the scalar product of the connections (weights) and the 
stimulus, we define  

x.wnet T=  

is large and have a differentiable activation function. Given a 
training set of input-target pairs of the form 

( ) ( ) ( ){ }nn txtxtxH ,..,,,,, 2211=  

The basic idea is to compute ( )
w

e
d

d p 2
 we use the error 

correction method to adjust w  see [8]. Let for the thk  

element of w , i.e., we have 
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which is the gradient of the pattern error with respect to 

weight kw and forms the basis of the gradient descent training 

algorithm. Specifically, we assign the weight correction, kw∆ , 
such that 

 
Fig 2 Gradient Descent algorithm showing minimization of cost 
function 
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and for linear activation function  
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IV. LINE SEARCH 
Mostly, the learning algorithms involve a sequence of steps 
through weight space. We can consider each of these steps in 
two parts. First decide the direction in which to move and 
secondly, how far to move in that direction. This direction of 
search provides minimum of the error function in that 
direction in weight space [18], [25], [27]. This procedure is 
referred to as line search and it forms the basis for several 
algorithms which are considerably more powerful than 
gradient descent. Suppose at step n  in some algorithm the 
current weight vector is nw  and we wish to obtain a 

particular search direction np  through weight space. The 
minimum along the search direction then gives the next values 
for the weight vector as: 

nnnn pww λ+=+1  (4) 

where the parameter λ  is chosen to minimize 

( ) ( )nnEE pw λλ +=  (5) 
This gives us an automatic procedure for setting the step 
length, once we have chosen the search direction. The line 
search represents a one dimensional minimization problem. 
This minimization can be performed in a number of ways. A 
simple approach would be to proceed long the search direction 
in small steps, evaluating the error function at each step 
(position), and stop when the error starts to increase. It is 
possible, however, to find much more efficient approaches. 
This includes the issue that whether local gradient information 
is preferable in line search. The search direction is towards the 
minimum is obtained (possibly) through proper weight 
adjustments, this involves search through negative direction of 
gradient information. 

V. CONJUGATE GRADIENT 

To apply line search to the problems of error function 
minimization, we need to choose a suitable search direction at 
each stage of the algorithm. Note that at minimum of the line 
search 

( ) 0=+
∂
∂

nnE pw λ
λ

 (6) 

gives    ( ) 01 =+ n
T

ng p.w  Where 
1+∂

∂
=

n
n w

Eg  (7) 

Thus the gradient of the new minimum is orthogonal to the 
search direction. Choosing successive search directions to the 
local (negative) gradient directions can lead to the problem of 
slow learning. The algorithm can then take many steps to 

converge, even for a quadratic error function. The solution to 
this problem lies in choosing the successive search 
directions nd  to minimize cost function such that, at each step 
of the algorithm, the component of the gradient parallel to the 
previous search direction which has just been made zero, is 
unaltered [17, ][24]. Suppose, we have already performed a 
line minimization along the direction nd , starting from the 

point nw , to give the new point 1+nw . Then at the 

point 1+nw , we have 

( ) 01 =+ nn p.wg  (8). 

Now the new search nd  such that  

( ) 011 =+ ++ n
T

nn p.pwg λ  

gives  onn =+ p.p 1               (9) 

that is along the new direction, the component of the gradient 
parallel to the previous search direction remains zero [31].  

VI. CONJUGATE GRADIENT TECHNIQUES 

The conjugate Descent algorithms have been derived on the 
assumption of a quadratic error function with a positive 
definite Hessian matrix. For a non-quadratic error function, 
the Hessian matrix will depend on the current weight vector, 
and so will need to be re-evaluated at each step of the 
algorithm. Since the evaluation of Hessian is computationally 
costly for non-linear neural networks, and since its evaluation 
would have to be done repeatedly, we would like to avoid 
having to use the Hessian. In fact, it turns out that the search 
direction and learning rate can be found with out explicit 
knowledge of H.  This leads to the CGA. 

The conjugate method avoids this problem by incorporating 
an intricate relationship between direction and gradient vector. 
The conjugate gradient method is guaranteed to locate the 
minimum of any quadratic function of N variables in at most 
N steps. But for non-quadratic function, like as the cost 
function in M.L.P, the process is iterative rather than N-step, 
and a criterion for convergence is required. The weight vector 
of the network is updated in accordance with the rule in [4] 

In conjugate gradient approach, successive steps in nw∆  are 
chosen such that weight correction at previous step is 
preserved. A direction for yth weight correction is computed 
and line minimization in this direction is performed, 
generating 1+nw . 

Successive weight corrections are constrained to be conjugate 
to those used previously. Interestingly, this is achieved 
without inversion of Hessian matrix, when compared with 
Newton’s method. There exists several techniques, most often 
gradient is involved. Suppose initial weight correction is 

( ) ( )00 gp −= . Line minimization in the direction ( )0p  takes 
weight vector ( )0w . Beginning with 0=K , we require 
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subsequent gradient to be orthogonal to the previous weight 
correction direction; that is from [8] 

niin
T

n ,...,2,1;0. ==+gp  

[ ] 012 =− ++ nnn ggp  (10) 

Where 12 ++ − nn gg  is the change of gradient of E from 1+nw  

to 2+nw . 

 
Using Taylor’s series, we have 
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Differentiating with respect to w , we have  

( ) ( )0wwHFg −+=n  

Therefore  0pHp =+1n
T
n             (11) 

which is called the conjugacy condition, see fig. 3. Weight 
correction direction 2+np  and 1+np  are said to be conjugate to 
one another in the context of H , or H -conjugate. It is 
important to note that there exist several methods of finding 
conjugate vector ( )1+np see [29] and [31]. Each search 
direction vector is then computed as a linear combination of 
the current gradient vector and the previous direction vector. 

nnnn pβgp .111 +++ +−=  (12) 
defines a path or sequence of search directions 

nnn ,...,2,1; =p  in the weight space where nβ is a time 
varying parameter. There are various rules for determining nβ  

in terms of the gradient vector ng  and 1+ng . Each weight 

correction np  is computed sequentially with 0p  and is 
formed as the sum of the current negative gradient direction 
and a scaled version ( )nei β.,.  of previous correction. Using 
(11) and (12), we have  

[ ]nnn
T

nn
T

n pβgHppHp 111 +++ +−=  

n
T

n

n
T

n
n

pHp
gHp

β 1
1

+
+ =  (13) 

In most of the conjugate gradient algorithms, the step size is 
adjusted at each iteration, and a search is made along the 
conjugate gradient direction to determine the step size which 
minimizes the performance function along that line [10]. 
There are a number of different search functions. Some of 
these are,  

Fletcher-Reeves 
n
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. 11
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Powell-Beale Restarts ( )
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The conjugate gradient algorithms are usually much faster 
than variable leaning rate backpropagtaion algorithm, 
although the results will vary from one problem to another. 
The conjugate Gradient algorithms required only a little more 
storage than the simple algorithm, so that are often a good 
choice for networks with a large number of weights. It is 
important to note that above three expressions are equivalent 
provided the error function is exactly quadratic. For non-
quadratic error functions, the Polak-Ribiere form is generally 
found to give slightly better results that the other expressions, 
probably due to the fact that, if the algorithm is making little 
progress, so that successive gradient  vectors are very similar, 
the Polak -Ribiere form gives a small value for jβ  so that the 

Fig. 3 Conjugal gradient descent in weight space employs a sequence 

of line searches. If 1w∆  is the first descent direction, the second 
direction obeys conjugacy condition; as such, the second descent does 
not “spoil” the contribution due to the previous line search. In the case 
where the Hessian is diagonal (right), the direction of the line searches 
are orthogonal [12]. 
 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

164

 

 

search direction 1+np  tends to be reset to the negative 
gradient direction, which is equivalent to restarting the 
conjugate gradient procedure. For a quadratic error function 
the conjugate gradient algorithm finds the minimum after at 
most w line minimization s, with out calculating the Hessian 
matrix [39]. This clearly represents a significant improvement 
on the simple gradient descent approach which could take a 
very large number of steps to minimize even a quadratic error 
function.  

 

 

VII. TRUST REGION MODELS 
A large class of methods for unconstrained optimization is 
based on a slightly different model algorithm. In particular, 
the step size jα is nearly always taken as unity. In order to 
ensure that he descent condition holds, it may thus be 
necessary to compute several trial vectors. Methods of this 
type are often termed as trust-region methods. 

For large values of nλ  the step size becomes small. 
Techniques such as this are well in standard optimization 
theory, where they are called model trust region methods [35], 
[37] and [38] because the model is effectively trusted only in a 
small region around the current search point. The size of the 
trust region is governed by the parameter nλ , so that the large 

nλ  gives the small trust region see [33]. 

VIII. QUASI NEWTON METHODS 
Using the local quadratic approximation, we can obtain 
directly an expression for the location of the minimum or 
more generally the stationary point of the error function 

( ) ( ) ( ) ( )*T** wwHwwww −−+=
2
1EE  

gives  gHww* 1−−=  

The vector gH 1−−  is known as the Newton step or the 
Newton’s direction [20],[29]. Unlike the local gradient vector, 

the Newton location for a quadratic error surface, evaluated at 
any w , points directly at the minimum of the error function  
provided H is positive definite. Since the quadratic 
approximation in above algorithm is not exact, it would be 
necessary to apply gHww* 1−−=  iteratively with the 
Hessian being re-evaluated at each new search [40]. The 
Hessian for non-quadratic networks is computationally 
demanding since it required ( )2wNO steps, where w is the 
number of weights in the network and N is the number of 
patterns in the data and ( )3wO   operation for inversion in 
each iteration [5], [32]. The Newton’s step may move towards 
a maximum or a saddle point rather than a minimum. This 
occur if the Hessian is not positive definite. Thus the error is 
not guaranteed to be reduced at each iteration see [6], [11]. 

One of the drawbacks of Newton’s method is that it requires 
the analytical derivative of Hessian matrix at each iteration. 
This is a problem if the derivative is very expensive or 
difficult to compute. In such cases it may be convenient to 
iterate according to  

nnn gGww 1
1

−
+ −=  (17) 

where G is an easily computed approximation to H. For 
example, in one dimension, the secant method approximates 
the derivative with the difference quotient 

( ) ( ) ( )
nn

nnna
ww

wgwg
−
−

=
+

+

1

1  

such an iteration is called a quasi-Newton method. If G is 
positive definite, as it usually is, an alternative name is 
variable metric method. One positive advantage to using an 
approximation in place of H is that G can be chosen to be 
positive definite, ensuring that the step will not be attracted to 
a maximum of f when one wants a minimum. Another 
advantage is that ( ) ( )nn wgG 1−  is a descent direction 

from nw  allowing the use of line searches. 

Among general purpose quasi-Newton algorithms, the best is 
probably the Broydon–Fletcher–Goldfarb–Shanno (BFGS) 
algorithm. The BFGS algorithm builds upon the earlier and 
similar Davidon–Fletcher–Powell (DFP) algorithm. The 
BFGS algorithm starts with a positive definite matrix 
approximation to ( )0wH  usually the identity matrix I . At 
each iteration it makes a minimalist modification to gradually 
approximate 1−H .  

IX. LEVENBERG-MARQUARDT ALGORITHM 
Levenberg-Marquardt is a trust region based method with 
hyper-spherical trust region. This method work extremely well 
in practice, and is considered the most efficient algorithm for 
training median sized artificial neural networks. Like Quasi-
Newton methods, the Levenberg-Marquardt algorithm was 
designed to approach second order training speed with out 
having to compute Hessian matrix [1]. When the performance 

Fig. 4 A comparison between GDA and CGA 
minimization. 
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function has the form of a sum of squares, then from (17) we 
have  

( )wHww Fnn ∇−= −
+

1
1  (18) 

here the Hessian matrix can be approximated as, JJH T≈  

and the gradient can be computed as eJ Tg =  

where the Jacobian matrix J contains the first derivatives of 
the network errors with respect to weights and biases, and e  
is a vector of network errors. The Gauss-Newton update 
formula can be  

( ) n
T

nn
T

nnn WW eJJJ
1

1

−

+ −=  

Where ( )JJ T  is positive definite, but if it is not, then, we 
make some perturbation into it that will control the probability 
of being non positive definite. Such that the recursion 
equation is 

( ) n
T

nn
T

nnn eJIJJWW 1
1

−
+ +−= λ  (19) 

Where in neural computing context the quantity λ  is called 
the learning parameter, it ensures that JJ T  is positive 
definite. It is always possible to choose λ  sufficiently large 
enough to ensure a descent step. The learning parameter is 
decreased as the iterative process approaches to a minimum. 
Thus, in Levenberg-Marquardt optimization, inversion of 
square matrix IJJ λ+T  is involved which requires large 
memory space to store the Jacobian matrix and the 
approximated  

X. NETWORK TRAINING RESULTS 
Daily Shares rates data is considered and presented in 
concurrent form. For programming in C/C++, we used the 
approach of [3], [7], [26] and [30]. The average number of 
iterations to converge to the targets are indicated with each 
algorithm  

 
Fig. 5. Time series plot of share rates 

We trained the network for each method and average of 50 
successful results are taken and presented in the table. 

Gradient descent method with momentum and learning rate is 
considered. Finally, the results of forecasting for 10 days are 
shown in the table. It is best to use the forecast for only one 
day due to possibility of error growth. The performance goal 
is 510− .  
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