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Extracting Tongue Shape Dynamics from 
Magnetic Resonance Image Sequences 

María S. Avila-García, John N. Carter, and Robert I. Damper

Abstract—An important problem in speech research is the
automatic extraction of information about the shape and dimensions 
of the vocal tract during real-time speech production. We have
previously developed Southampton dynamic magnetic resonance 
imaging (SDMRI) as an approach to the solution of this problem.
However, the SDMRI images are very noisy so that shape extraction
is a major challenge. In this paper, we address the problem of tongue 
shape extraction, which poses difficulties because this is a highly
deforming non-parametric shape. We show that combining active 
shape models with the dynamic Hough transform allows the tongue 
shape to be reliably tracked in the image sequence.

Keywords—Vocal tract imaging, speech production, active shape 
models, dynamic Hough transform, object tracking. 

I. INTRODUCTION

An important challenge in speech research is to acquire 
information about the dynamics of vocal tract articulators
during real-time speech production. This is very difficult 
because in general the vocal tract is not easily accessible, the 
biological structures involved are complex, and the
articulators move relatively fast. 

Magnetic resonance imaging (MRI) is one modality
(originally devised for medical imaging) that offers several
advantages and has been widely used by speech 
researchers [1],[2]. It is based on the application of magnetic
fields and radio frequency (RF) pulses to image a desired slice
of the human body. Some advantages of this method are the
good contrast of soft tissue of which most vocal tract
articulators are formed, the possibility of scanning in any
plane and the absence of any known hazards to the subject 
from the magnetic fields used in MRI.

Magnetic resonance images the hydrogen distributed within
the body. As such, structures like bone, teeth and air can not
be seen. However, the major disadvantage of MRI for speech
research is the long scanning time (1-2 seconds), which makes
it difficult to obtain information about the movement of the
articulators during speech, especially for obstruent sounds
(like stop consonants) where the articulators move relatively
fast. The tongue is the articulator that moves and deforms the

most. As such, it is of much interest to speech researchers. 
Because of this extensive deformation, however, it can not be 
easily defined by a parametric shape, and this compounds the
problem of visualising this structure in image sequences. 
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But speech involves very rapid movement of vocal tract 
structures. When the topic of interest is the dynamic behavior
of the articulators, dynamic MRI can be used. These studies
attempt to acquire image data while the subject is speaking in
a natural way. Recent advances in MRI technology have led to
the development of real-time imaging with rates of between
5 [3] and 9 [4] images per second. However, these need
expensive machines as well as requiring very sophisticated
imaging techniques.

The Southampton dynamic magnetic resonance imaging
method (SDMRI) reported in [5] is an alternative technique
which achieves an apparent high temporal resolution suitable
for dynamic studies, by averaging and reordering images
acquired over many repetitions of the test tokens. In this
paper, we will first describe SDMRI, and then detail how the
reconstruction has recently been improved relative to the 
original version of the method. Thereafter we will introduce a 
new method for extracting and tracking highly deformable
objects such as the tongue.

II. SOUTHAMPTON DYNAMIC MAGNETIC RESONANCE

IMAGING (SDMRI)

SDMRI consists of acquiring, simultaneously, MR images
and the speech data of a subject, typically speaking a nonsense 
word chosen for its phonetic interest. It works by post-
processing the collected images and the corresponding audio
data—see [5] for full details. Raw images are generated by the
MRI scanner in k-space, i.e., the Fourier space. Audio data 
and raw k-space images are manually synchronised, defining a 
phase for each row of images. Then rows with the same phase 
generate a new image. Once the images are synchronised, an
inverse Fourier transform is applied to generate the final
image. SDMRI was implemented to reconstruct multiplanar
images of the vocal tract with an apparent sampling rate of 
63 Hz, increasing the actual sampling rate of the scanner used 
in the experiments by a factor of 136. 

Because the synchronisation of speech and audio data is
manual and so only approximate, and because the different 
repetitions of the nonsense word are never exactly identical,
some parts of the speech signal have no corresponding image
data whereas others are over-represented by multiple rows. So 
SDMRI must solve the problem of missing and multiple rows
in the synchronised frames.
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The original algorithm defined the phase by linear
stretching or dilation of the total duration of each utterance 
(token). This approach inherently assumes that each phone
duration is identical, i.e., it represents the same percentage of
the total duration of the complete token. The new
implementation used here calculates the phase by linear 
stretching or dilation of the duration of each individual phone 
It results in better definition of the tongue and lower lip
boundaries in most cases, as shown in Figure 1. 

When the synchronised images have some missing rows in
k-space, the final reconstructed images will be blurred and the
boundaries and edges in the image are not very well defined.
The original algorithm solved this problem by filling the
missing rows from a simple average of the neighboring
frames. Although more sophisticated algorithms exist [6],[7]
and have been investigated by us for this application, the
original solution of [5] has not been bettered.

Figure 1. Results of the original synchronisation algorithm (first row), and of
the new implementation (second row). There is a general improvement in 
visual quality (but not in all cases). 

III. SHAPE EXTRACTION

For the automatic extraction of the tongue shape from
SDMRI images, three key aspects must be considered. 
1. The images are very noisy. 
2. The tongue shape is highly deforming and cannot easily

be represented by a parametric model.
3. It is advantageous to avoid any need for initialisation of

the shape extraction procedure at some particular region
of the image, since this compromises fully-automatic
implementation.

An anisotropic filter as described in [8] was applied to help
solve the first problem This filter gives the advantage of
reducing the noise while also preserving the edge information,
as shown in Figure 2.

Figure 2. Result of the application of an anisotropic filter (right) to a noisy
SDMRI image (left).

There are many different techniques for automatic shape
extraction described in the literature. All have their particular
advantages and disadvantages.

Snakes and their various extensions [9] have been shown to
be very effective in favourable cases (e.g., when the shape to
be extracted is smooth), but they usually require some form of
initialisation, which is generally difficult to do automatically.

The Hough transform [10] is also highly effective and,
being evidence-based, requires no initialisation. The
disadvantage is that a good parametric model of the target is
required and computational complexity can be a problem for 
models with many parameters.

Active shape models (ASMs) [11] have proven to be very
effective in learning to parameterise deformable shapes. 
However, in their original implementation, they depend on an
optimisation procedure to fit the features. This also may suffer
from initialisation problems, especially in complex images.

In previous work, a model of the tongue was manually
traced using 39 different tongue shapes extracted from a set of
hand-labeled images [12]. This has been used to generate an
active shape model as follows. First, each shape had to be 
delineated to the same anatomical region. To achieve this, the
centroid of the shape was calculated first, then a vertical axis
was drawn and an angle  used to define the set of points to be
discarded—see Figure 3(a). A value for  of 45o has given
good results. This process was performed for each shape in 
the training set. Figure 3(b) shows an example of an original
tongue shape, and Figure 3(c) shows the reduced tongue
shape.

(a) (b) (c)

Figure 3. (a) Selection of the tongue shapes, (b) original tongue shape,
(c) reduced tongue shape.

Each shape in the training set must be described by the same
number of points, defined here as the length in points of the
longest training example (61 in this work). Interpolation and 
smoothing were applied to those shapes that were represented
with a smaller number of points. Then the tongue shapes were
aligned and a mean shape, x , was calculated. Alignment was
performed by scaling, translating, and rotating the tongue
shapes as in [11]. Fig. 4(a) shows the 39 original tongue
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shapes superimposed and Fig. 4(b) shows the 39 aligned
tongue shapes. 

(a)  (b)

Figure 4. Alignment results. (a) Original tongue shapes superimposed. (b)
Aligned tongue shapes superimposed.

The next step is to perform principal component
analysis (PCA) and calculate the covariance matrix. The 
principal axes of the set of aligned shapes are described by the
eigenvectors of this matrix, which describe the most
significant modes of variation modifying different parts of the
tongue. The results of PCA are presented in Table I. 

TABLE I
SET OF EIGENVALUES OF THE COVARIANCE MATRIX DERIVED FROM THE 

ALIGNED TONGUE SHAPES

Eigenvalue Percentage Accumulated
percentage

1 87.39 72.2 72.2

2 21.85 18.0 90.3

3 2.85 2.3 92.7

4 1.57 1.3 94.0

5 1.35 1.1 95.1

6 1.11 0.9 96.0

The model of the tongue is then defined as:

Pbxx  (1) 

where x  is the mean shape, P is the matrix of eigenvectors
and b is the column vector of the corresponding eigenvalues.
In this early work, as proof of concept and to limit
computation time, we have considered the first eigenvalue
only. Hence, b is a scalar, and P is a one-dimensional vector.

Rather than fitting the shape to the image by a
computationally-expensive iterative refinement as in [11], we
have formulated a new technique based on the Hough 
transform (HT), which uses the active shape model in an 
evidence-gathering mode. The strong advantages of the HT
are that it requires no initialisation and avoids iterative search.
In its simplest form, it searches for deformable shapes over the 
whole image, neglecting changes in size and orientation. Its
main disadvantage is that the voting space becomes very large 
for a model with many parameters, and this is the reason for
limiting initial work to the first eigenvalue only.

Starting with an edge image, for each edge pixel all
possible centroids of all possible shapes are added into a 
multidimensional accumulator space whose dimensions are x,

y, and the eigenvalues. Once all pixels have been considered,
the largest peak in the accumulator is chosen as the solution. 

We have tested this using the tongue model with (as
mentioned above) just one eigenvalue. The dimensionality of 
the accumulator space is 128 × 128 × 11 for each frame,
where 128 × 128 is the size of the image and 11 is the number
of steps into which we discretise the first eigenvalue. In
consequence, we fit 11 different tongue shapes. The shape
parameter is (as usual with active shape models) allowed to

vary in the range 33 b .

The implementation of the HT considered the tongue
shape as a set of points and not as a parametric shape. Because
of the sparse data available to us (collecting MRI data is very
expensive), the set of testing images is the same as the training
set from which the model of the tongue shape was defined.
We believe this is justified in this initial work, since if our
methods do not work on the training data, they will hardly be 
worth developing further.

Results are shown in Figure 5. The first row shows three of
the original edge images, and the second row shows 
superimposed the results of applying the new HT algorithm
(incorporating an active shape model) to extract tongue shape. 
Results for the first and second frame are quite good, defining
not only a good position of the tongue but also a good 
approximation of its shape. However, the third result was not
especially good: both the position and shape selected by the 
algorithm are poor, judged visually. We surmise that this is
because the images are analysed in isolation. 

Figure 5. The first row shows the original edge image obtained from SDMRI.
The second row shows the results of extracting tongue shape using the new
DHT+ASM tongue model, superimposed on the edge image.

To exploit information contained in other frames in the
sequence, we propose to combine ASMs with the dynamic
Hough transform.

IV. DYNAMIC HOUGH TRANSFORM (DHT)

The DHT algorithm has been demonstrated in [13], [14] to
give excellent results for tracking known objects with
arbitrary velocity by finding a smooth trajectory across the
whole image sequence using dynamic programming. The 
implementation of this algorithm (but using now the generated
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tongue model) involves the inclusion of another constraint:
smoothness in the deformation of the tongue.

The original algorithm maximises the energy function:

332211 EwEwEwE (2)

where is the sum of the evidence peaks in the accumulator

across the sequence, E

1E

2 is the sum of the smoothness terms
and E3 is the sum of the velocity terms—see [13],[14]. We
have added a fourth constraint, namely the sum of the
deformation of the tongue shape (i.e., the sum of the
differences of the eigenvalues for adjacent point in a
trajectory). Thus, the algorithm returns the optimal shape in
each image.

A first implementation of this algorithm has been done in
Matlab. The efficiency limitations of Matlab necessitated
using just the eigenvalue with the most significant mode of
variation, discretised into only 11 different values, as 
previously described. The optimisation first applies the new 
version of the Hough transform to each frame in the sequence 
individually. Then a second pass finds the optimal sequence of 
peaks (or ‘near peaks’) by dynamic programming. Since the
tongue only deforms and does not translate, the search was 
carried out over a small change of velocity of  pixels per
frame.

2

Results are shown in Figure 6. As previously (Fig. 5), the
first row shows the original edge image, and the second row 
shows superimposed the results of using the new DHT+ASM
tongue-extraction algorithm. As can be seen, the shape is well
defined and matched with the original edge image. Results are
clearly superior to those of Figure 5. 

Figure 6. The first row shows the original edge image obtained from SDMRI.
The second row shows the tongue shape extracted using the new DHT
algorithm with the ASM tongue model, superimposed on the edge image.

V. CONCLUSIONS

We have described work aimed at the automatic extraction
of information of vocal tract shape and dimensions from
magnetic resonance images acquired during speech 
production. The SDMRI method can be used to infer dynamic
information about rapid changes in articulator shape and
position, apparently increasing acquisition rate by a factor
of 136. A new shape extraction algorithm which combines an

active shape model with the dynamic Hough transform has 
been introduced and described. Experimental results reveal
that this new algorithm is very effective in tongue shape 
extraction from a sequence of images. The key is to use the 
complete sequence to constrain the search in Hough space so 
as to find a global optimum. We conclude that combining the
established computer vision techniques of active shape models
and the dynamic Hough transform does offer advantages in
this application and gives promising results.

For the immediate future, the current rather slow Matlab
software will be reimplemented in C to decrease the
computational time, making the method more practical. As 
with other applications of the DHT, this algorithm is expected
to maintain good performance when some information of the
tongue is missing, although this remains to be tested. We also
intend to test the algorithm with ‘unseen’ images, to verify the
suitability of applying a model of the tongue found from one 
subject to a different subject.
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