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Abstract—Traditionally, project scheduling and material
planning have been treated independently. In this research, a mixed
integer programming model is presented to integrate project
scheduling and materials ordering problems. The goal is to minimize
the total material holding and ordering costs. In addition, an efficient
metaheuristic algorithm is proposed to solve the model. The proposed
algorithm is computationally tested, the results are analyzed, and
conclusions are given.

Keywords—Project scheduling; metaheuristic; material ordering,
optimization

I. INTRODUCTION

ROJECT planning plays an important role in project
management. Project scheduling and material planning are

two main elements of a project plan. It is the responsibility of a
project manager to make sure that the employees have the
material required to perform their activities on time.
Traditionally, these two issues have been treated
independently. Following this strategies, usually the trade-offs
between cost elements such as, material ordering cost and
inventory holding cost are complexities, therefore the total cost
of project are increased. While this approach usually results in
a non-optimal solution for the material planning, the best
solution is obtained when the project scheduling and the
material ordering are determined simultaneously.

In 1980, Aquilano and Smith [1] introduced the
incorporated problem of project scheduling and material
ordering (PSMO). They developed a model by critical path
method and material requirement planning in which it's
consisting of materials and inventory levels scheduling. Smith-
Daniels and Smith-Daniels [2] investigated the problem with
fixed activity duration and showed that the latest starting time
schedule provides an optimal solution to the problem. They
proof that once the activities schedule is determined, the
optimal ordering plan for each of the materials required is
obtained by the economic lot size model of Wagner and
Whitin. Dodin and Elimam [3] extended Smith-Daniels and
Smith-Daniels’s work to include variable activity duration,
reward and penalty policy for the project and showed that, the
variability in activity duration gives more flexibility to project
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scheduling, resulting in more cost reduction and allowing for
saving on the complete activities and material ordering cost.

Sajadieh et al. [4] proposed a genetic algorithm to solve the
PSMO problem where the ordering times of materials for each
activity were determined independently.

In this paper, the PSMO problem is extended in a way that
the ordering times of materials are corporately determined by
considering all activity requirements. This approach reduces
the total cost significantly. In addition, an efficient hybrid
algorithm is proposed to solve this problem, especially for
large-scale problems.

The rest of the paper is organized as follows: In section two,
the problem is precisely defined. In section three, we propose
a metaheuristic algorithm to solve the problem. We measure
the performance of the proposed method in section four, and
finally the conclusion comes in section five.

II.PROBLEM FORMULATION

A project is given with a set of n  activities indexed from 1
to n . Activities 1 and n , are dummies and represent the
project start and completion respectively. The project network
is imposed zero-lag finish-to-start precedence constraints on
the sequencing of activities and shown by an activity on node

network with no loop. Activity i has a fixed duration id .

Duration id is given where activity i  is started and it runs

id time without preemption.

The execution of the ith activity requires f , ( 1,2,..., )f F

types of materials (non-renewable) over its duration. The
resource usage over an activity is taken uniform and a typical
activity i uses ifu  units of material f per period. In addition,

fA and fH  denote the ordering cost and the holding cost per

unit of the f th material per unit time, respectively. Further, the
type and the quantity of all materials must be determined at the
beginning of each period.

The activities are to be scheduled such that the makespan of
the project does not exceed a given due date (DD).
Furthermore, we assume that the lead time is assumed
inappreciable.

We can now formulate the PSMO as follows:
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0 ;       1, 2,...,   ,   0,1,..., 1ftQ f F t DD (10)

0 ;       1, 2,...,   ,   0,1,...,ftI f F t DD (11)

Where the decision variables are defined as follows:

itX : A binary variable where it is one if activity i  is started in

period t  and zero otherwise.

ft : A binary variable where it is one if material f  is ordered

in period t  and zero otherwise.

ftQ : The ordered quantity of material f  in period t .

ftI : The inventory level of material f  in period t .

The objective function (1) minimizes the total costs of the
project. Inequality (2) enforces the precedence relations
between activities. Constraint (3) states that every activity
must be started only once. Inequality (4) is ensures that the
project ends by the latest allowable completion time.
Constraints (5) and (6) balance the levels of the materials over
the project execution. Inequality (7) denotes relationship
between ft and ftQ . Where, iES is the earliest starting time,

iLS  is the latest start time of activity i  and M  represents a

large number. Sets of constraint (8)-(11) denote the domains
of the variables.

III. A SOLUTION PROCEDURE

In this section, a meta-heuristic algorithm is proposed to
solve the model. The detailed framework of the solution
procedure is presented as follows.

A. Proposed Simulated Annealing Algorithm
Simulated annealing (SA) is one of the best meta-heuristics

that were initially presented by Kirkpatrick et al [5]. This
algorithm, attempts to solve hard combinatorial optimization
problems through a controlled randomization. The proposed
hybrid algorithm to solve the extended PSMO model consists
of two loops. In the first loop, SA attempts to find a schedule
for activities. In the second loop, a genetic algorithm is used to
find the best materials ordering policy for the activities
schedule such that the minimum total holding and ordering
costs of materials is obtained.

B. Simulated annealing for PSMO
In the basic scheme, SA starts with generation of an initial

solution (one point), in the SA part of the proposed hybrid
algorithm of this research, it starts with generation of several
initial solutions (multi-point). In this research, the initial
solution is generated by the critical path method, by which the

earliest start time ( )iES and the latest start time ( )iLS of the

activities are obtained. Then the results of forward and
backward pass computations allow for the calculation of float
values of the network activities.  In other words, the total float
of activity i is defined as:

i i iTF LS ES         (12)

Moreover, the floating time of an activity at a given
schedule is equal to the difference between the activity's
starting time at the schedule and its earliest starting time, i.e.,

the floating time of activity i , at a given schedule H , ( )HF i is

obtained as follows [6]:

( ) ( )H H iF i ST i ES         (13)

Where ( )HST i denotes the starting time of activity i  at

schedule H . We note that the used floating time of an activity
should be less than or equal to its total floating time, i.e.,

0 ( )H iF i TF                                                                    (14)

An initial solution is denoted by a vector of 2n

elements (2), (3),..., ( 1)F F F F n , where the position of

each element corresponds to the number of a non-dummy
activity and its value denotes the floating time of the activity.
As a result, initial solutions can be generated randomly from

the feasible region of vector F . In order to evaluate the
objective function for a given feasible solution, both the
starting times of all activities and the order quantities of the

required materials are needed. Based on the F  vector, the

schedule vector (2), (3),..., ( 1)ST ST ST ST n  that

contains the start time of the activities is obtained by adding up

the elements of the vector F  and the earliest starting times of
the activities. Then, its near optimal material requirement
planning is determined using a genetic algorithm to evaluate a
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schedule.
The SA continues by generating neighborhoods of initial

solutions. The roulette wheel procedure is applied as a
neighborhood search structure to generate new feasible
solutions. Through this mechanism, each activity can move
backward or forward to new position based on its floating
time. More specifically, a uniform random number is first
generated in the interval [2, 1]n  for each activity. Then, the

activities can move to their new positions based on their
corresponding floating times and the generated random
number. To avoid infeasible solutions, the floating time of the
activities given in equation (14) must be met.

As an example, the neighborhood structure of the proposed
SA for generating new feasible solutions is illustrated in Fig.1,
in which an activity can shift forward (positive numbers in the
second row) and backward (negative numbers in the second
row) based on the generated uniform random number.

Fig. 1 Neighborhood structure of the proposed SA

When SA proceeds, the temperature is gradually lowered
under a certain mechanism called cooling schedule. In this
paper, a linear cooling scheme is applied to decrease the
temperature.

The details of the proposed GA in finding the order
quantities of materials and determining the minimum total
ordering and holding costs are described in the next
subsection.

C. Genetic Algorithm for PSMO
Genetic Algorithms (GA) have been originally developed by

John Holland as artificial adaptive systems simulating natural
evolution and have proven themselves as powerful search
algorithms [7]. In this paper, we propose a GA approach to
find the best material ordering policy of a given activity
schedule. The GA starts by generation of an initial population,
i.e., the first generation. The initial population is randomly
generated according to demand profiles of the materials in the
activity schedule.  In order to create the next generation, after
computing the fitness values of the individuals, two operations
are employed; crossover and mutation. Finally, the algorithm
stops if a specified number of generation, denote by Gen, are
created. The best individual of the last generation is the best
ordering policy of the GA for the given activity schedule.In
this research, a real mode is used to code the search points of
the solution based on the ordered quantities of the materials in
each period. Each individual chromosome, Q , is a matrix of

F rows (for F types of materials) and ( 1)DD  columns (for

periods 0 to ( 1)DD ), where an element (gene) ftQ

represents the ordered quantity of material f  in period t .

Fig.2 presents the general form of a chromosome.

1, 110 11

, 10 1

ft

DD

F DDF F
Q

QQ Q

QQ Q

Fig. 2 A chromosome of the interior GA

In crossover operation, two parents are selected by the
roulette wheel strategy to create two children. The Uniform
continuous crossover operator is employed in this research.

Consider two individuals 1P and 2P selected for a crossover

operation. Therefore, draw a vector
1*t DD

 randomly

based on uniform distribution on the interval [0,1], where t ,

used as the crossing point. Then, each gene of the two children
1CH and 2CH  is obtained as follows:

1 1 2

2 1 2

( ) (1 )

(1 ) ( )

ft ft t ft t

ft ft t ft t

C H P P

C H P P
                                          (15)

To describe mutation operation, let Q  be the chromosome

that is selected for mutation. First, an integer random number,
R , is generated in the interval [1, ]F to select one type of

material. Then, two random numbers, 1r  and 2r such that

1 2r r , are generated in the interval [0, 1]DD . Hence,

1 2, ,, ...,R r R rQ Q  are the genes of the child considered for

mutation. Next, the amount of each gene in the new

chromosome ( )MQ  is obtained as follows:

2

1

1

, ,

, ` 20 ; 1,...,

;

r
M
R r R j

j r

M
R t

M
ft ft

Q Q

Q t r r

Q Q otherwise

                                               (16)

IV. EXPERIMENT AND COMPARISONS

In this section, we evaluate the performance of the proposed
HSA introduced in the previous sections. To evaluate the
performance of the GA we need some good solutions. Since
there is no other existing procedure to solve the PSMO
problem, we solve the mathematical modeling of the test
problems by solver software such as LINGO [36]. To get a
PSMO instance set, first three collections of RCPSP instances
with 10, 20, and 30 non-dummy activities with 1, 2 and 3
resources are generated by PROGEN [9] for the experiments.
PROGEN is an instance generator for a broad class of
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resource-constrained project scheduling problem by varying
some factors. For each combination set of the non-dummy
activities and resources, 10 problems are examined; resulting
in 90 test problems. Table 1 shows the computational results
of the proposed algorithm in which column A and B denotes
the number of instances LINGO and HSA were able to find a
local optimal solution in 3600 CPU seconds respectively. In
addition, column C displays the average of the relative
deviation percentage of instances.

TABLE I
COMPUTATIONAL RESULTS

No. of
activities

No. of
problems A B C

10 30 30 30 -0.79%
20 10 18 10 -0.80%
30 10 9 10 -1.10%

The results of the experiments on 90 test problems with
different sizes show that for 10, 20, and 30-activity problems
the average of proposed HSA has reached almost the same
solutions as the ones from. Moreover, for both 20 and 30-
activitiy problems, while there are many instances the LINGO
solver is unable to solve, there is a solution by the proposed
method.  In addition, the amount of CPU time for the
proposed method is much less than that of those obtained by
LINGO. In summary, the results show that the proposed HSA
has reached good solutions in shorter amount of CPU times
than LINGO.

V.CONCLUSIONS

This research investigated a class of project scheduling
problem, called project scheduling problem with material
ordering. The problem was formulated into a mixed integer
programming model. In addition to solve the model, a hybrid
simulated annealing was applied. Based on standard test
problems constructed by the PROGEN project generator, a
comprehensive computational experiment is performed. The
results of the experimentation were quite satisfactory.
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