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Abstract—This paper presents work characterizing finite element
performance boundaries within which live, interactive finite element
modeling is feasible on current and emerging systems. These results
are based on wide-ranging tests performed using a prototype finite
element program implemented specifically for this study, thereby en-
abling the unified investigation of numerous direct and iterative solver
strategies and implementations in a variety of modeling contexts.
The results are intended to be useful for researchers interested in
interactive analysis by providing baseline performance estimates, to
give guidance in matching solution strategies to problem domains,
and to spur further work addressing the challenge of extending the
present boundaries.

Keywords—Finite Elements, Interactive Modeling, Numerical
Analysis.

I. INTRODUCTION

MOST research and development in the general area
of computer-based structural analysis has focused on

classes of problems pushing the feasibility boundaries of
whatever contemporary hardware has been available at the
time. Research of this nature has been and continues to be
extremely useful, but in this paper the focus is on a different
boundary: the boundary between problems that can be solved
and visualized using live modeling and those that cannot.
Live modeling can be defined as a computational approach
in which one interacts with an analytical model directly via
controls or mouse gestures and observes the results of these
actions immediately in an animated, quasi-real time fashion. In
effect, the system being modeled appears “live” in the sense
that it responds immediately and realistically to input from
its environment. Clearly, the feasible live-modeling boundary
encompasses a much smaller set of problems than the simply
feasible boundary, but both boundaries have been expanding
and continue to expand on pace with the general increase in
computing power. The purpose of the work presented here, is
to characterize the current and emerging feasible boundary for
live modeling in a range of structural mechanics contexts.

An obvious fundamental issue is to define a baseline metric
for interactive analysis. There can be a significant amount
of variation in solution times necessary to achieve suitable
interaction rates for live modeling in different contexts. For
cases involving haptic as well as visual feedback, refresh rates
on the order of hundreds of Hertz are needed [1], standard
NTSC video operates at about 30 frames-per-second, while in
other instances involving complex visual display in evolving
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systems, O(1Hz) can be more than adequate. To provide a
standardized performance target in this paper, an arbitrary 1-
frame-per-second cut-off value is chosen to define the outer
limit of the live modeling boundary.

In regards to scope, practical live modeling boundaries will
be considered here in terms of two primary issues: (1) problem
size; and (2) problem complexity. Problem size refers to the
number of degrees freedom of the structural model in question,
while problem complexity refers to topology of the structural
model (such as sparsity pattern or bandwidth of the system
stiffness), conditioning quality of the linear system stiffness,
analysis type (whether linear or nonlinear), and so on.

Because of the extremely wide range of problems that can
arise in regards to complexity, it is necessary to identify
some suitably compact set of cases to enable a reasonably
focused study to be completed. At the simplest level of
complexity lie problems that are purely linear, with varying
load/generalized constraint conditions such that interactive so-
lution is essentially reduced to forward-backward substitution.
At the other end of the spectrum lie problems with fully
nonlinear geometric and material behavior, evolving topology
and loading, and dynamic effects. The principal focus of this
work is on linear problems in which load, support, topology,
and member properties are all assumed to be variable. Thus,
interactivity during these kinds of modifications in general
requires the full solution of a standard linear structural analysis
problem within the 1-second boundary described above. This
scope is of practical relevance in common design situations,
and because of the central role such linear solutions play as the
key building block in most nonlinear solution schemes, it can
provide useful predictive information for these more general
contexts, as well.

II. APPROACH

The overall approach of this study has been to construct a
unified platform to test a broad set of solution strategies and
algorithms, to verify that the performance of the platform im-
plementations are representative of contemporary high perfor-
mance solver capabilities, and then to undertake performance
testing across several classes of structural modeling contexts.
This section provides an overview of these various components
of the work.

A. Algorithms and Implementations

The solution strategies used in this study involved both
direct and iterative methods, and included Gauss Elimination,
Jacobi, Gauss-Seidel, Successive Over-Relaxation, Symmetric
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Successive Over-Relaxation, Block Jacobi, Incomplete LU
Relaxation, Conjugate Gradient, and geometric Multigrid [2],
[3], [4], [5], [6]. Various matrix ordering techniques were also
used, specifically Reverse Cuthill-Mckee [7], (Approximate)
Minimum Degree Ordering [8], and Nested Dissection Or-
dering [9]. The solution algorithms were implemented and
assembled into a single framework for purposes of abso-
lute and relative performance comparison and investigation
of suitability for interactive use. By introducing a single
implementation framework, the number of variables affecting
performance are reduced so that performance tests can be
conducted mainly focused on key variables. The framework
itself was developed within the broader context of a prototype
interactive modeling environment, and so the full range of live
modeling issues could be considered.

With few exceptions, implementations were developed es-
sentially from scratch using a variety of sparse storage
schemes. The primary departure of this work from existing
implementations was to use tensor and vector-based data as
the fundamental units of computation. This approach has been
used by the authors previously in more limited contexts, and
full descriptions of the motivations and implementation issues
can be found in [10], [11]. Among other things, this approach
can lead to exploitation of inherent natural data blocking,
which can improve run-time efficiency, and enables the direct
use of coordinate-free element formulations [12], which can
simplify and streamline code development.

B. Performance Verifications

To ensure that the performance of the testing platform
would be representative of contemporary high-performance
implementations, it was compared to existing high perfor-
mance libraries. External libraries used for this study included
ATLAS [13], GotoBLAS [14], NIST Sparse BLAS [15],
[16], LAPACK [17], METIS [9], AMD [18], CHOLMOD [19],
UMFPACK [20], SuperLU [21], and PETSc [22]. These
libraries are optimized via special compiler options and inlin-
ing technique or machine-specifically tuned using benchmark
test suites during compilation. ATLAS , GotoBLAS , NIST

Sparse BLAS , and LAPACK were used to measure the
performance of basic operations while METIS , AMD , CHOLMOD
, UMFPACK , SuperLU , and PETSc were used to compare
the performance of direct and iterative solvers. Since high
performance solver implementations typically combine several
layers of libraries—CHOLMOD , UMFPACK , and SuperLU are
built on top of ATLAS or GotoBLAS , and PETSc is built
on top of ATLAS and LAPACK —the libraries used here can
be considered representative because solvers using similar
foundational libraries tend to exhibit similar performance.

In addition to competitive benchmark tests relative to exist-
ing the-state-of-art solvers, further benchmarking for identify-
ing performance level of individual solution methods that have
been incorporated into the prototype was also performed. Al-
though the primary class of problems considered in this study
are those that can be solved within the real-time boundary,
large scale problems were also taken into account so as to
examine the general scaling behavior of solution algorithms

and consider possible usage of iterative algorithms in live-
modeling contexts.

Performance comparisons were carried out on a variety of
platforms using multiple compilers and a range of problem
types and sizes. A partial set of results of these performance
comparisons are presented in [10], and more recent and
complete results can be found in [23], along with further
details of the testing procedures. Because the performance of
any solver implementations relies on many factors such as
compilers, algorithms [24], CPU speed, cache size, memory
hierarchy, front side bus characteristics, and so on [25],
performance results are best interpreted as indicative rather
than definitive measures. This having been said, the signifi-
cant outcome of these comparisons for the purposes of this
paper is that the implementations developed for this study
were found to be competitive with existing high-performance
solution packages, and thus can be considered representative
of current technologies. This was especially true for problems
in the range of sizes amenable to interactive modeling, in
which the prototype implementation was frequently found to
exhibit the best performance (performance differences between
implementations of similar algorithms typically were on the
order of 10-15%, with no single implementation being superior
in all contexts).

C. 1-Second Performance Boundary Testing

Using the arbitrary 1-second target solution time discussed
above as the demarcation limit of interactive analysis, a broad
series of testing was performed to investigate the problem size
limits for which interactive analysis is feasible. This testing
again included the use of numerous solution methods on
various platforms in the context of a range of problem types.
Because the 1-second boundary tests ultimately could be run
on only a limited number of machines, SPEC benchmark [26]
results, which are available for hundreds of machines, were
investigated as a means to extend the direct test results for a
broader class of machines. The outcomes of this investigation
will be discussed further in the results section of the paper.

Identification of 1-second boundaries was achieved in a
conceptually straightforward manner: problems of a given
class were set up with parameterized size variables, and then
solutions were obtained for a series of problems of increasing
size (in terms of total number of degrees of freedom). When
the solution time exceeded one second, a simple linear interpo-
lation was used on the problem sizes bracketing the 1-second
boundary, and this was considered the crossover problem size.
Because of the inherent granularity of the discrete problem size
increases associated with the problem size parameterizations,
the crossover problem size values determined in this manner
did not actually correspond exactly to an actual mesh or
configuration from the problem class in question. The associ-
ated “errors” of such an identification scheme, however, are
well within the ranges of variability associated with any such
performance testing involving multiple compilers, processors,
and solution algorithms.
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III. 1-SECOND BOUNDARY PERFORMANCE RESULTS

In this section, the maximum number of degrees of freedom
that can be solved within a nominal 1-second boundary for
various structure classes of models using various solvers are
identified. The classes of structural models considered are
depicted in Figure III. The solvers employed for locating 1-
second boundaries in this section are symmetric LU decom-
position (LU), Cholesky factorization (CHOL), 2 × 2 block-
based symmetric LU decomposition (2×2LU), incomplete LU
preconditioned Conjugate Gradient (ILUPCG), and geometric
Multigrid (MG) (see [23] for full implementation details).
For the iterative solver, various tolerance levels (10−4

∼

10−12) are used because a different level of tolerance can
be selected depending on differing levels of accuracy that
might be suitable for a particular application. By exploiting
this additional level of flexibility of iterative solvers, one
can increase the number of degrees of freedom amenable to
interactive analysis for cases in which reduced accuracy is
acceptable for a given application. An iterative solver with
a tolerance of 10−12 generates solutions that are close to
solutions generated by direct solvers, while reduced accuracy
is obtained with a tolerance of 10−4.

The run-time measures presented here include the time
for stiffness matrix assembly, stiffness matrix ordering (when
appropriate), and linear system solution. For iterative solvers,
time for converting data structures into appropriate forms is
included (the test implementation uses a linked-list structure
to represent stiffness for assembly and some direct solution
algorithms, but converts to array-based storage for iterative
methods), and the mesh hierarchy set-up time is also included
for the Multigrid solver. Model display time is not included
because model display time varies depending on the quality
of the graphics. The particular test results reported in this
section were run on a Pentium Mobile 1.73GHz (64KB L1,
2MB L2, 533MHz FSB, and 1024MB RAM). The GNU gcc
3.4.4 (cygming special) compiler was used with the ‘-O3’
optimization option. Machine-specific optimization options
such as ‘-march=pentium-m’ reduces solution time slightly in
some cases, but the performance gains were marginal, and thus
they were not used here. Although the results presented in the
following sections represent a subset of the overall results,
they can be considered as representative of the general trends
seen in the broader testing.

The particular algorithm/ordering combinations used in the
following sections are those that were determined to exhibit
the best performance for the case in question. Virtually all
reasonable combinations of solvers, ordering schemes, and
data structures were considered in identifying the particular
top performers presented below. More details of these inves-
tigations can be found in [23].

Because the focus of this study was on solution times
rather than modeling accuracy, the elements used in the
various models were generally standard types, the basic nodal
connectivity being the most significant factor in the overall
testing. This having been said, in the case of shell elements it
is relatively difficult to identify a “standard” type—this study
used a shell element based on the work in [27].

(a) 3D cube

(b) 3D frame

(c) 3D column-footing

(d) 3D flat plate (e) 3D tube beam

(f) 3D beam-column

Fig. 1. Various structural models

†

used to locate 1-second boundaries

† For all models, elastic modulus (E) of 2.9×10
4 ksi is used. The Poisson’s

ratio (ν) of model (a), (b), and (c) is 0.3 while the other models, (d), (e), and
(f), have ν of 0.25.
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A. 3D cube

The solvers employed for detecting 1-second boundaries
for the 3D cube model are symmetric LU decomposition
(LU), Cholesky factorization (CHOL), 2 × 2 block-based
symmetric LU decomposition (2×2LU), and incomplete LU
preconditioned Conjugate Gradient with zero level of fill-in1(
ILU(0)PCG

)
. The cube is composed of identical numbers

of 8-node brick elements in all directions as illustrated in
Figure 1(a). The boundary conditions are such that the bot-
tom surface is fully constrained while the opposite surface
is loaded vertically. For direct solvers, Nested Dissection
Ordering [9], which introduces the smallest number of fill-
in elements and the fastest solution time as well, is used to
order stiffness matrices, while naturally banded matrices are
used for ILU(0)PCG, since natural ordering produces the best
ILU preconditioner for this model.
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Figure 2 shows the maximum number of degrees of freedom
that can be solved within the 1-second boundary for the
3D cube model. As shown in Figure 2, the iterative solver
accommodates a larger number of degrees of freedom than
direct solvers for all tolerance levels from 10−4 to 10−12. This
is because the model has only translational degrees of freedom
and the boundary conditions are relatively simple, resulting in
well conditioned system stiffness matrices. For example, the
375-degree-of-freedom 3D cube shown in Figure 1(a) with
material properties of E = 2.9 × 104 ksi and ν = 0.3, and a
dimension of 200 in ×200 in ×200 in has a condition number
of 1.31 × 104, while other models shown in Figure III have
condition numbers two or three orders of magnitude larger.

B. 3D frame

For the 1-second boundary of the 3D frame model shown
in Figure 1(b), Minimum Degree Ordering is used for direct
solvers while naturally banded system matrices are used for

1Zero level fill-in means that the factorization proceeds without introducing
any additional entries to the system.

ILU(0)PCG. The boundary conditions are such that all base
nodes are clamped and forces are applied laterally at the top
floor. An 8-in diameter circular cross section is used and the
length of each member is 50 in, and so these members are
relatively stocky.
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and varying convergence tolerances for the ILU(0)PCG iterative solver. The
inset square corresponds to the use of more slender members, which results

As shown in Figure 3, the 3D frame has the same gen-
eral trend as in the 3D cube problem: among the direct
solvers, CHOL has the largest 1-second boundary, and the
iterative solver outperforms direct solvers such that the 1-
second boundary of the iterative solver for all tolerance levels
is larger than those of the direct solvers. The number of
degrees of freedom at the 1-second boundary for ILU(0)PCG
with a 10−12 tolerance is approximately 19K for the tested
frame. However, if a 4-in diameter circular cross section is
used, the condition number of the system increases, and the
feasible number of degrees of freedom decreases to 15K as
illustrated in Figure 3. This illustrates the somewhat fickle
nature of iterative solution schemes.

C. 3D column-footing

A 3D column-footing mesh composed of tetrahedron el-
ements shown in Figure 1(c) was generated using an open-
source library, Tetgen [28], which uses Delaunay triangulation
to generate conforming 3D solid or surface meshes. The
boundary conditions of the 3D column-footing are such that
all nodes on the top surface of the column are vertically
loaded and the bottom surface of the footing is completely
constrained.

Two solvers, CHOL and ILU(0)PCG, are used with Nested
Dissection Ordering and Reverse-Cuthill Mckee Ordering,
respectively. For this example, the block-based direct solvers
are not employed due to the problematic sparsity pattern such
as shown Figure 4 (an upper triangular part of 3D column-
footing matrix with a size of 3, 186 3D vector degrees of
freedom generated using Tetgen is shown), which is caused by
recursively refining certain regions of the 3D column-footing

in a reduction of the 1-second boundary for the iterative solver

Fig. 3 1-second boundary of the 3D frame model for various direct solvers

and varying convergence tolerances for the ILU(0)PCG iterative solver
Fig. 2 1-second boundary of the 3D cube model for various direct solvers
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domain. In this case, block-based approaches end up including
a large number of zero entries during the block setup phase,
and those zero elements add additional computational time.
The overall performance of block-based solution algorithms
deteriorates, even though their Mflop rate increases.

1 3186

1

3186

nonzeros=23202 (0.23%)

Natural ordering

RCM ordering

3, 186 3D tensor degrees of freedom generated by recursively refining a model
domain
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Fig. 5. 1-second boundary of the 3D column-footing model for the Cholesky
direct solver and varying convergence tolerances for the ILU(0)PCG iterative
solver.

Test results for the 1-second boundaries for the 3D column-
footing is shown in Figure 5. As in the 3D cube and the 3D
frame model, the iterative solver exhibits better performance
than direct solvers for all tolerance levels, but the performance
differences between tolerance levels are less dramatic than the
previously tested two models. This is due to the difference
in convergence history between models. For example, the
convergence history of ILU(0)PCG for the 3D cube model is
relatively uniform compared to the convergence of ILU(0)PCG
for the 3D column-footing, and in general the shape of
the 1-second boundary for iterative solvers using on various

tolerance levels is very similar to the shape of the convergence
history.

D. 3D flat plate

A 3D flat plate model with a ratio of length to thickness
of 40.0 in/1.0 in= 40 such as shown in Figure 1(d) was
generated and the 1-second boundaries were located in order
to show the effect of loading conditions on 3D structures
composed of shell elements. As illustrated in Figure 1(d),
the same number of triangular shell elements are used in
two directions for the 3D flat plate. The boundary conditions
are such that the nodes on one side of the plate are fully
constrained, and one of the end nodes of the other side of
the plate is loaded with two different loading conditions: one
introduces membrane action only and the other also produces
out-of-plane bending action. Minimum Degree Ordering is
used to renumber matrices for Cholesky factorization while
natural ordering is used for the ILU preconditioned Conjugate
Gradient

(
ILU(0)PCG

)
.
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Membrane action only

Membrane + Bending action

Fig. 6. 1-second boundary of the 3D plate model for the Cholesky direct
solvers and varying convergence tolerances for the ILU(0)PCG iterative solver.

Test results are shown in Figure 6. As shown, the maximum
number of degrees of freedom for direct solvers are identical
for the two loading cases because direct solvers are not af-
fected by conditioning of the stiffness matrix or the complexity
of the loading conditions—this is a good example of the robust
behavior of direct solution algorithms when they are applied to
symmetric positive definite system. The bounding number of
degrees of freedom for ILU(0)PCG with a tolerance of 10−12

are 16, 677 for the case that introduces only membrane action
and 6, 235 for membrane plus bending action. Therefore, it
can be said that the performance of iterative solvers for 3D
structures comprised of shell elements can be significantly
affected by the load condition. For this class of problems
the direct solver (CHOL) outperforms the iterative solver(
ILU(0)PCG

)
for all tolerance levels.

E. 3D beam-like geometry

In finite element-based civil engineering applications, many
problems have beam-like geometric configurations that are

Fig. 4 Sparsity pattern for the 3D column-footing model with a size of
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typically modeled using either line elements or shell elements.
In both cases, the corresponding system matrices have ro-
tational degrees of freedom that significantly deteriorate the
performance of iterative solvers in case the loading conditions
are relatively complex.

Direct solvers are well suited for this beam-like geometry
because the system stiffness typically has a small number of
nonzero elements compared to other 3D domains that have
approximately the same number of elements in all directions,
and because direct solvers are not significantly affected by
loading conditions. Iterative solvers typically show relatively
poor performance compared to direct solvers for these 3D
beam-like problems if a high level of accuracy is required,
but they might be employed when a relatively low level of
accuracy is acceptable.

A 3D tube cantilever shown in Figure 1(e) and a 3D beam-
column shown in Figure 1(f) were used to locate 1-second
boundaries for beam-like geometry problems. Dimensions of
the 3D beam-column are such that the member lengths are
40 inches, the depths and widths are 8 inches, and the
thicknesses are 1 inch, so these are again relatively stocky
members, which tends to play to iterative solver strengths.
The ratio of length to depth for the 3D square tube cantilever
is 80/8 = 10 with 1-inch wall thickness. For the 3D beam-
column, both bottom and top column surfaces are fixed and
loads are applied at the tip of the beam, while for the 3D
tube cantilever one end is fixed and the other end is loaded
vertically. For the two problems, four solvers are used; LU,
CHOL, 2×2LU , and ILU(0)PCG. Minimum Degree Ordering
is used with the direct solvers and natural ordering is used with
ILU(0)PCG.

The test results are shown in Figure 7(a) and 7(b). As
mentioned, direct solvers outperform the iterative solver for
both problems. Among direct solvers, 2 × 2 block-based
symmetric LU decomposition (2× 2LU ) results in a larger 1-
second boundary than Cholesky factorization (CHOL) because
it is suitable for beam-like geometry (i.e., each node has six
degrees of freedom which can be naturally represented using
a 2×2 tensor block and the number of nonzeros are relatively
smaller than for 3D domains).

An observation made from Figure 7 is that 2×2 LU handles
a larger number of degrees of freedom for the 3D beam-
column than the 3D tube (i.e., 29, 481 unknowns compared to
22, 569 unknowns), while ILU(0)PCG results in a larger num-
ber of degrees of freedom for the 3D tube than the 3D beam-
column (i.e., 9, 778 unknowns compared to 5, 363 unknowns).
The performance difference between 2 × 2 LU in Figure 7(a)
and Figure 7(b) results from the relative dimensions of the
two models. The dimension of the 3D beam-column is roughly
equivalent to 80× 24, while the dimension of the 3D cube is
approximately equal to 80×32—the 3D beam-column consists
of six 40 × 8 plates and the 3D tube is composed of four
8 × 80 plates. The performance difference using ILU(0)PCG
for the two models is a result of the different quality in ILU
preconditioner.

So far, the 1-second boundaries presented for iterative
solvers have been based on ILUPCG rather than MG even
though PCG is more susceptible to loading conditions than
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(a) 1-second boundaries of 3D tube
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(b) 1-second boundaries of 3D beam-column

Fig. 7. 1-second boundaries of 3D beam-like geometric models

MG, and the required iteration number of PCG for conver-
gence increases with problem size, while that of MG remains
relatively constant regardless of the size of a given problem.
In spite of these favorable characteristics of MG over PCG,
PCG is still dominantly used rather than MG because of
its black-box like feature—PCG only requires two inputs, a
stiffness matrix and a right hand side vector, and returns a
solution vector. MG on the other hand, requires a sequence
of meshes which makes it less separable from the problem
details. For these reason, PCG is usually employed as a default
iterative solver for symmetric positive definite problems for
many iterative solver library implementations [29].

In case MG is used to solve beam-like geometry problems,
the 1-second boundaries can be increased such as shown
in Figure 8, in which the increased 1-second boundaries
using MG applied to the 3D cube cantilever is shown. Note
that the MG 1-second boundary increases along with the
larger tolerance level. It is almost a straight line, since the
convergence history of MG is uniform, thus MG could be
effective in special purpose modeling in which the method’s



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:5, No:3, 2011

665

coupling with problem details could be accommodated.
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Fig. 8. Increased 1-second boundaries using Multigrid applied to the 3D
tube cantilever shown in Figure 7(a)

IV. FACTORS AFFECTING 1-SECOND BOUNDARIES

The solution time for the same number of degrees of
freedom varies with various factors, and particular factors that
govern the performance of direct and iterative solvers typically
are different. The four most important factors that govern
the performance of solution algorithms are (i) the number
of nonzero elements, (ii) the sparsity patterns of the stiffness
matrices, (iii) the conditioning of the stiffness matrices, and
(iv) the loading condition.

First, the number of nonzeros affects the solution time of
both direct and iterative solvers such that the possible number
of degrees of freedom for models having a small number
of nonzeros are larger than models with large number of
nonzeros. For iterative solvers, the amount of work for solving
a linear system is roughly equivalent to the number of nonzeros
times the iteration number—that is the required amount of
work for n times of matrix-vector multiplications.

Second, as mentioned, the sparsity pattern of the stiffness
matrix governs the performance of direct and iterative solvers.
In general, the sparsity structure of the system matrix is
rearranged in order to reduce the number of fill-ins during
matrix factorization or in order to increase the quality of the
preconditioner and possibly spacial locality of data.

Third, the performance of direct solvers is essentially un-
affected by conditioning of the stiffness matrix, while that of
iterative solvers is highly sensitive to this quantity. A numer-
ical example used to illustrate significance of conditioning of
the system matrix is a 3D tube such as shown in Figure 1(e),
which has 80× 8 = 640 elements for each plate. Two models
are generated such that the one has an identical elastic modulus
of 29000 for all triangular shell elements, and the other has
a variety of elastic moduli between 1 to 32767. The iteration
number for ILU(0)PCG to converge up to the tolerance of
10−12 is 292 for the identical elastic modulus model and 319
for the random elastic modulus model. The corresponding

condition number for the two cases are 4.677 × 105 and
6.454 × 105 showing that the 3D tube with various elastic
modulus is relatively poorly conditioned.

Fourth, as already shown in the 3D flat plate example, load-
ing conditions can significantly deteriorate the performance
of iterative solvers. Experimental tests performed for this
study indicate that structural models having only translational
degree of freedom usually are not strongly affected by loading
conditions, but models with rotational degrees of freedom may
significantly affected.

In summary, among the four factors that govern the per-
formance of solution methods, sometimes significantly and
sometimes insignificantly, the number of nonzero elements
affects the performance of both direct and iterative solvers.
The sparsity pattern seriously influences direct solvers but has
relatively little impact on iterative solvers. Conditioning of
stiffness and loading condition generally only affect iterative
solvers. Based on these observations, it can be concluded that
in some instances, iterative solvers could allow for significant
expansion in the size of problems suitable for interactive
analysis. However, these instances would be limited to cases in
which the range of models was restricted (e.g., special-purpose
contexts with preset configurations). For general purpose in-
teractive modeling, direct solvers are likely to be preferable.

V. PERFORMANCE PREDICTION ON VARIOUS MACHINES

Although the trends and observations presented above are
fairly general, the numerical 1-second boundary test results
presented in the previous section are strictly valid only for
a particular processor in a particular machine. It is clearly
desirable to expand the test results for a variety of computer
systems. Although multiple machines were considered in this
study, performing truly comprehensive timing test on all
currently available machines is not realistic. As an alternative,
one might predict the performance on different machines by
using a simple extrapolation based on a simple metric like
processor clock speed. However, this would not be reliable
because the performance of the computer system is not solely
dependent on CPU clock speed, but rather is determined by
complex interactions between various factors such as CPU
speed, cache sizes, and a front side bus speed for floating
point intensive scientific computations [25].

A better alternative to predict approximate performance on
diverse computer systems is to use reliable external benchmark
results. SPEC (Standard Performance Evaluation Corpora-
tion) CPU2000 has been chosen in this regard [26]. Since
the CPU2000 benchmark only measures the performance
of computer systems based on CPU, memory architecture,
and compiler (it does not measure the performance of I/O,
graphics, networking, and so on), it is very similar to the
performance tests that have been conducted for this study. In
addition, there are more than 4, 000 benchmark test results
available and all results are verified by SPEC team. The
CPU2000 benchmark suite is composed of two groups of tests,
SPECint and SPECfp for integer and floating point operation,
respectively. Since finite element applications are dominated
by floating point operations, the floating point benchmark



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:5, No:3, 2011

666

suite, SPECfp, is chosen to estimate the 1-second boundaries
on other machines. Among the 14 sets of benchmark tests in
the SPECfp suite, 172.mgrid and 191.fma3d are selected due
to their similarity to problems used in the previous section.
The 172.mgrid is based on a 3D potential field problem with
a simple Multigrid solver [30], and the 191.fma3d simulates
the inelastic dynamic response of a 3D solid subjected to
impulsively applied forces [31].

A small subset of SPECfp benchmark scores are reproduced
in Table I with relevant hardware (CPU speed, cache sizes,
and front side bus speed), operating system, and compiler
information. As part of the present study, performance of
iterative solvers was compared to an external reference, PETSc
, using two machines, a Pentium III 1GHz and IBM eServer
pSeries 630 1.45GHz. The SPECfp benchmark results for
these exact machines are also included in Table I. As listed
in Table I, the SPECfp performance ratio of IBM to Pentium
is 769/215 = 3.58 for 172.mgrid, and 792/290 = 2.73 for
191.fma3d. In our testing the average calculated performance
factor using incomplete Cholesky preconditioned Conjugate
Gradient (ICCPCG) between IBM and Pentium were 4.09
for the 2D 4-node case and 2.56 for the 3D 8-node case.
The matrices used in the 172.mgrid benchmark represent a
scalar field of an constant coefficient equation discretized
using a finite difference method [30]. Therefore, their sparsity
patterns and conditioning of matrices are similar to 2D 4-node
finite element matrices. On the other hand, the matrices of
the 191.fma3d benchmark are generated from finite element
discretization using various solid elements [31], hence they are
approximately equivalent to 3D 8-node matrices. Comparing
the appropriate predicted performance ratio to that actually
observed via direct testing in this representative example il-
lustrates that SPECfp benchmark estimates of 1-second bound-
aries on different hardware can be obtained that generally are
within 15% of actual values (12% (3.58/4.09 = 0.88) and 6%
(2.73/2.56 = 1.06) in this particular case).
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Fig. 9. Estimated number of degrees of freedom within 1 second boundary
on a variety of CPUs for the 3D cube shown in Figure 1(a)

Based on the scaling estimation described above, extrapo-
lated estimates for 1-second boundary for 3D cube models on

various machines using SPECfp ratios are shown selectively
in Figure 9. Based on the results shown in Figure 9, it can be
seen that using the fastest current uniprocessor machines it is
possible to perform interactive linear analyses on 3D problems
ranging from 10, 000 to close to 65, 000 degrees of freedom.

The results in Figure 9 are generally based on best-case
scenarios, and so they are best interpreted as representing
upper (i.e., optimistic) bounds on interactive analysis. It is
worth noting that to the degree single-processor CPU speed
appears to have plateaued in recent years, these single cpu
values could be valid for some time. These values also can
be used to estimate upper bound performance limits for
multiprocessor systems, simply by scaling by the number of
processors. Because true order-N speedup is generally not
possible to achieve, especially for smaller problems, a scaling
factor other 1.0 would be appropriate. However, for a given
problem type/size combination, one can use the estimates in
Figure 9 to get at least a rough idea of how many processors
one might need to bring solution times to within the interactive
range.

Table II presents a summary overview of interactive
problem size ranges for the fundamental classes of linear
problems considered here. The table shows problem size
limits for which 1-second solution times were achievable
using the best combination of solver and data structure, and
includes an indication of which class of algorithm corresponds
to the given result. The tested processor values correspond to
those obtained using the reference machine, and SPEC-based
estimated limits are provided, as well. As discussed earlier
in this paper, there can be significant variability in any such
performance figures, so these results should be considered
indicative rather than definitive. This having been said, the
tested results provide reasonable bounds for performance
prediction.

Several conclusions can be drawn from Table II:
• In general, the best direct solvers outperform the best

iterative solvers for classes of problems in which con-
ditioning of the system stiffness is not ideal. This most
notably involves shell models (e.g. 3D tube cantilever).

• Direct solvers show better performance than iterative
solvers in most cases for the problems having beam-
like geometric configuration (relatively long one or two
directions than other direction) (e.g. 3D tube cantilever
and 3D beam-column).

• For domains having similar numbers of elements in all
directions, iterative solvers generally show the better
performance even for problems that can be solved within
the 1-second boundary (e.g. 3D cube and 3D frame).

These conclusions are similar to one would expect for
general finite element computing contexts.

VI. SUMMARY AND CONCLUSIONS

This paper has identified and characterized interactive per-
formance boundaries for a range of structural models and
solution algorithms. The key benchmark driving the study was
a solution-time limit of 1 second, which was used to define and
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TABLE I
SPECFP2000 SCORES FOR VARIOUS MACHINES (EXCERPTED FROM [26])

172.mgrid 191.fma3d
Pentium III 1.0GHz: (16+16)KB L1, 256KB L2, 133MHz Bus, Windows 2000, Intel 5.0 215 290
Pentium 4 1.7GHz: (12+8)KB L1, 256KB L2, 400MHz Bus, Windows XP, Intel 6.0 647 659
Pentium 4 2.0GHz: (12+8)KB L1, 256KB L2, 400MHz Bus, Windows XP, Intel 6.0 715 733
Pentium Mobile 755 2.0GHz: (32+32)KB L1, 2MB L2, 400MHz Bus, Windows XP, Intel 8.0 768 812
Pentium Mobile 780 2.26GHz: (32+32)KB L1, 2MB L2, 533MHz Bus, Windows XP, Intel 9.0 1122 1029
Pentium 4 3.0GHz: (12+8)KB L1, 512KB L2, 800MHz Bus, Windows XP, Intel 7.1 1197 1235
Pentium D 840 3.2GHz (12+16)KB L1, 1MB L2, 800MHz Bus, Windows XP, Intel 9.0 1443 1476
IBM eServer 630 1.45GHz: (64+32)KB L1, 1536KB L2, 8MB L3, AIX 5.2 64-bit, xlc 8.1.0 769 792

TABLE II
TESTED AND ESTIMATED 1-SECOND BOUNDARIES FOR CURRENT REPRESENTATIVE MACHINES.

Model Pentium Mobile 1.73GHz Pentium D 840 3.2GHz
# dofs Solver # dofs (estimated) Solver

3D cube 6.35K CHOL 14.00K CHOL
15.60K ILUPCG 34.47K ILUPCG

3D frame 8.28K CHOL 18.30K CHOL
15.37K ILUPCG 33.87K ILUPCG

3D column-footing 9.59K CHOL 21.12K ILUPCG
12.85K ILUPCG 28.31K ILUPCG

3D flat plate 22.50K CHOL 49.57K CHOL
16.68K ILUPCG 36.74K ILUPCG

3D tube cantilever 22.57K 2 × 2 LU 49.72K 2 × 2 LU
9.78K ILUPCG 21.54K ILUPCG

18.55K MG 40.87K MG
3D beam-column 29.48K 2 × 2 LU 64.95K 2 × 2 LU

5.36K ILUPCG 11.81K ILUPCG

investigate interactive performance. Structural models ranging
from line elements to 2D and 3D continuum and shell elements
were considered, with a primary focus on the fundamental
task of solving linear problems in contexts for which full
solutions are necessary. Solution algorithms included a broad
set of direct and iterative implementations, virtually all of
which were written from the ground up to support tensor-
based computations and to function well in interactive con-
texts. Single-CPU architectures were the primary computing
environment considered, using a combination of direct testing
and SPECfp2000-based estimation to cover the current range
of processors in typical desktop use.
The results show that the 1-second solution boundary ranges
over problem sizes of about 10,000-60,000 degrees of freedom
depending on problem type and solution algorithm. Increasing
these bounds via simple increases in processor speeds is
no longer likely to occur as in the past—rather, techniques
suitable for multicore CPUs and related architectures will need
to be exploited.
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