
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:4, 2012

506

Abstract—Demand over web services is in growing with

increases number of Web users. Web service is applied by Web
application. Web application size is affected by its user’s
requirements and interests. Differential in requirements and interests
lead to growing of Web application size. The efficient way to save
store spaces for more data and information is achieved by
implementing algorithms to compress the contents of Web
application documents. This paper introduces an algorithm to reduce
Web application size based on reduction of the contents of HTML
files. It removes unimportant contents regardless of the HTML file
size. The removing is not ignored any character that is predicted in
the HTML building process.

Keywords—HTML code, HTML tag, WEB applications,
Document compression, DOM tree.

List of Symbol:
HTML: Hypertext Markup Language
n: a number
DOM: Document Object Model
P: Paragraph
px : Pixels

I. INTRODUCTION

TML document is containing code written in a high level
language which mean can be understood by human [1, 8,

and 9]. This priority of HTML code allowed developers to
expand the content of HTML document without limitations
[1]. Code or content of HTML document is an important to
initial web page in response to end user request. HTML code
contains a set of elements. These elements structure, content
and attributes affected the HTML page view in internet
browser [5]. Content expand is solved by applying
compressing algorithms over content [1, 2]. Compressing
algorithm is a technique used to reduce the content of HTML
document to save store space and reduce size of package
transfer over internet in response to end user page request [3].
Algorithm that is used to compress documents is gzip or
deflate with common LZ77-based [1, 2]. This algorithm does
not try to go throw the content of HTML document and
analyses its structure. Algorithm works to replace duplication
strings with pointer refer to string location which similar to in
the HTML document content. Our proposed algorithm goes
throw the content of HTML document, builds DOM tree,
removes characters and spaces between elements, and saves
each node in DOM tress as object related to HTML page.
DOM tree presented the structure of HTML page [6, 7, and 4].

Maryam Jasim Abdullah is with the website unit, University of Baghdad,
Al-Jadria, Baghdad, Iraq (e-mail: m.jabdullah@yahoo.com).

Bassim. H. Graimed is with the website unit, University of Baghdad, Al-
Jadria, Baghdad, Iraq (e-mail: bassim@uobaghdad.edu.iq).

Jalal. S. Hameed is with the website unit, University of Baghdad, Al-
Jadria, Baghdad, Iraq (e-mail: jalal.hameed@uobaghdad.edu.iq).

In response to end user request the algorithm use objects

related to requested HTML page to build it. Simulation results
show that the proposed algorithm for HTML documents is
reduced the HTML file size to 7.22%.

The structure of paper is as follows: Section 2 reviews
HTML code overview. In section 3 an algorithm commonly
used to compress documents is discussed. Detailed steps of
compression over documents in the proposed algorithm are
presented in section 4. In section 5 simulation results of the
proposed algorithm and a comparison with the common
algorithms are made. Section 6 provides conclusion and
summery of the work.

html

body head

titlepp

Parent

C
hi

ld

Fig. 1 DOM tree to structure HTML Elements.

II. HTML CODE

Hypertext Markup Language is language use to write a code
for a web page [1, 8, and 9]. HTML instructions exist within
tag. Each web page consists of n-tags. Tags represent the
structure of the web page and its view to the end user.
There are two types of tags:

A. Tag with a content.
Tag with content consists of three parts: start tag, content,

and end tag.
Start tag starts with the lesser than (<) character, follows by

element and its attributes, and it is ended with greater than (>)
character (e.g. <body style="font-size: 18px ;">).

End tag starts with the lesser than (<) character, follows by
forward slash (/) character and element, and it is ended with
greater than (>) character (e.g. </body>).

The content of tag is between the start tag and end tag (e.g.
<p style="color: #00b050 ;"> First paragraph</p>).

B. Tag without a content.
Tag without content consists of one part which starts with

the lesser than (<) character, follows by element and forward
slash (/) character, and it is ended with greater than (>)
character (e.g.
).

An Optimal Algorithm for HTML Page
Building Process

Maryam Jasim Abdullah, Bassim. H. Graimed, Jalal. S. Hameed

H

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:4, 2012

507

III. LZ77-BASED ALGORITHM
Gzip utility is used with LZ77-based algorithm to compress

files [1, 2]. LZ77-based algorithm is used Huffman coding to
generate a series of compressed blocks and to find the location
of Strings duplication. It replaces strings with a pointer refer to
the location of a similar string. The size of strings duplication
starts with 32k bytes to 258 bytes.

Block content is a tree code which represents the data file
structure and hold compressed data [2]. There are two types of
data which are contained by compressed data:

• Literal bytes: for data string that are not found for its
similarity strings.

• Pointers to duplicated strings: contain two value length
of the duplication string, and backward location of
parent.

IV. SETTING TAG OBJECTS FOR HTML PAGE

This section presents how our algorithm arranges each tag in
HTML page as object to reduce page size. The following
example for HTML code is containing six elements with
attributes and content. This HTML code is used as input to
explain each steps in our algorithm execution.

HTML code
<html>

<head>
< title > Sample of code </title >

</head>
<body style="font-size: 18px ;">

<p style="color: #00b050 ;"> First
paragraph</p>
<p> Second paragraph </p>

</body>
</html>

A. Building a DOM Tree

DOM tree consists of many nodes. Each node is parent from
zero-to-n child [6, 7, and 4]. Parent node connects to its child
by adage. DOM tree for HTML page represents its structure
and each node in DOM tree holds one tag of HTML page.

HTML code example contains six tags. As it can see in
Figure.1, The DOM tree for the HTML code contains six
nodes which are: html, head, title, body, and two p nodes. The
<HTML> tag is a parent to the entire tags in the HTML page
code, <head> tag is parent for < title > tag, and <body> tag is
parent for two <p> tags.

B. Creating a Tag Object

 Tag object is a node in DOM tree which saves all
information need to present tag in the view of HTML page.
The following are Tag object variables:

• Element.

• Parent: Tag object.

• Sequence: Tag objects order of view between its parent
children.

• Attribute: Saving values of tag object attributes.

• Page: Name of HTML page which is tag related to it.

• Content: Data containing by tag to present in HTML
page.

 The pseudo-code below is written to find tag and their
variables. Element and tag attributes are located in the start tag
(example <body style="font-size: 18px ;">). Content of tag is
located between start and end of tag. (Example < title >
Sample of Code </ title >, the content of < title > tag is
“Sample of Code” which is between < title > and </ title >).
The pseudo-code extracts element, tag attributes, and tag
content variables of object tag.

if(HTMLCodeText.length()>0)
 {
start = HTMLCodeText.indexOf("<");

end= HTMLCodeText.indexOf(">");
element=HTMLCodeText.substring
(start+1,HTMLCodeText.indexOf(Next Space).trim();
SetTagAttributes(HTMLCodeText.indexOf(Space),end);
HTMLCodeText=HTMLCodeText.substring (end+1).trim();
end =this.getText().indexOf("<");

ContentOfTag=HTMLCodeText.substring (0,
end).trim();
HTMLCodeText=HTMLCodeText.substring.substrin
g(end).trim();
 }

Parent and sequence values are affected by opening and

closing tags. The steps to extract parent and sequence values
for each tag object in HTPL page are illustrated in Fig.2. Steps
are as following:

• Flowchart is starting by checking the HTML code text

length. If HTML code text length equals “0”, the function
is ended. Otherwise, go to set end variable to equal index
of first ">" character find in HTML code text and forward
slash to equal index Of first "/" character find in HTML
code text.

• If forward slash is less than end, that mean tag is now
closed. In other mean tag now is not further parent for any
next open tag. Then removed end tag from HTML code
text, set parent to be equal to parent of closed tag which is
still open and its end tag have not get yet, and set
sequence to be at value of high tag sequence in parent tags
children and increasing it by 1.

• Continue in comparison until end is less than forward slash.
That means new tag is open.

• Create a new tag object and set its variables element, tag
attributes, tag content, parent, and sequence.

• Sequence is increasing. By created new object in pervious
step a new child was added to the parent. So next child
order must increase by 1.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:4, 2012

508

• Checking HTML code text length is continuing until adding
all tag objects with their variables.

C. Tag Object for Code Size Reduction

Our algorithm depends on saving each tag with their
variables in one object. All Characters and spaces which can
be added back to its location during the building process of the
page in request time are removed. The objects for HTML
pages are grouped in one document to minimize the size of
HTML pages for one web application.

By applying our algorithm over HTML code six tag objects
are created. Figure.3. shows that each object holds values.
These values represent tag view in the HTML page in request
time. Total number of characters is reduced from 143 to 79
characters in the HTML code text. This reduction affects the
total size of the web application if we apply it over all HTML
pages and save all object created for each page in one
document.

* Remove end tag from HTML Code Text.

* Parent = Parent .getParent();

* Sequence = getHighTagSeq(parent) + 1;

end=HTMLCodeText.indexOf(">");

forwardslash=HTMLCodeText.indexOf("/");

 if
forwardslash <end

end=HTMLCodeText.indexOf(">");

forwardslash=HTMLCodeText.indexOf("/");

create new tag object.

Start

If
HTMLCodeText.length

> 0
end

Sequence=Sequence+1;

true

false

truefalse

Fig. 2 Flowchart to find parent and sequence value for each tag
object in the HTML code

P
aren

t

C
h
ild

Fig. 3 HTML code containing six tag objects.

D. Page Request

 By applying our algorithm over HTML code documents for
web application and create all objects for each HTML
documents, objects created for all HTML are saved in one
document source in the server side. The following steps are to
create HTML page request by end user:

• When end user request for page, page name is save as
request parameter.

• Our algorithm uses page name parameter in the request
to get all tag objects related to the page and save them
in list.

• Sort tag list. First tag in the sorted list will be <html>
tag following by its children. Children are sorted
depends on value of sequence variable for each child.
Each child is parent for next level of tags. So each tag
object is parent follow by its children and these
children are sorted depends on values of sequence
variable for each child.

The following pseudo-code is a function uses the sorted tag
list to generate HTML page:
Function String build-HTML-Page (List Tag-obj-list)

String Page="";
For all tag in Tag-obj-list

Page=page+ '<' +tag.getElement ();
Page=page +getTag Attributes(tag);
Page=page + '>' ;
Page=page + '<' +tag.getContent();
Page=page + '</' +tag.getType()+">";

Return page;

String page generated in this function is a complete HTML
page.

V. ALGORITHMS COMPARISON
To show the high performance of our proposed algorithm, a

comparison is made with common LZ77 algorithm. In the
LZ77 algorithm, the compression of HTML files depends on
finding string duplication and to replace them with a pointer
refer to its parent string that is similar to it. While our
algorithm technique goes throw the HTML cod structure and

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:4, 2012

509

remove all characters and spaces which their locations can be
predicted in process of building HTML page on time of end
user request.

LZ77-based algorithm starts to search for duplication string
with size of 32 K bytes. The size is reduced to 258 bytes if the
similarity is not found. LZ77-based algorithm will not have
any compression effect over HTML file if its size is less than
(258 *2) bytes [2]. A sample HTML file with 83 bytes size is
taken for the comparison.

The proposed algorithm in this work algorithm generates
file that is gathering all important information for each tag in
the HTML file with size of 77 bytes. This is showing that the
size of HTML file is reduced by 7.22% of the total size of
HTML file. LZ77-based algorithm will not have any effect
over that HTML file of 83 bytes size because the lowest
HTML file size for duplication string is 258 bytes. The
proposed algorithm in this paper is affected on the size of
HTML file by removing characters and spaces regardless of
the size of HTML file. This removing is not ignored any
character that is predicted in the HTML building process.

The proposed algorithm is created one document source for
all HTML pages. One source for read and write HTML pages.
In request time, there is a read of all tags for HTML page from
source document to build HTML page. In response, all updates
over tags for HTML page are saved on the same document.

Our algorithm is use to represent each tags of HTML page
as object. This gives HTML page the ability to restructure its
tags easily. That means, we can easily add, remove, and update
tag object.

VI. CONCLUSIONS
In this paper, an optimum algorithm is proposed to

compress HTML documents for web application. The
proposed algorithm generates file that is gathering all
important information for each tag in the HTML file. This is
leading to an improvement in the HTML building process by
reduction the total size of HTML file. The high performance
of the proposed algorithm is provided by removing characters
and spaces with no ignoring of any character that is predicted
in the HTML building process.

REFERENCES
[1] Przemyslaw Skibinsk : Improving HTML Compression. Data

Compression Conference, 2008. DCC 2008 , Page(s): 545.
[2] Deutsch, P.: DEFLATE Compressed Data Format Specification version

1.3. RFC1951, (1996), http://www.ietf.org/rfc/rfc1951.txt.
[3] Nielsen H.F.: HTTP Performance Overview,2003,

http://www.w3.org/Protocols/HTTP/Performance/.
[4] Document Object Model (DOM) Level 2 Core Specification, Version

1.0, W3C Recommendation 13 November, 2000.
http://www.w3.org/TR/DOM-Level-2-Core/Overview.html.

[5] Matthijs, N. "HTML, the Foundation of the Web," March, 2008.
[Online]. Available:
http://www.wpdfd.com/issues/86/html_the_foundation_of_the_web/.
[Accessed: Aug. 10, 2010].

[6] Chakrabarti. S. Integrating the document object model with hyperlinks
for enhanced topic distillation and information extraction. In WWW10,
Hong Kong, May 2001. Online at http://www10.org/cdrom/papers/489.

[7] Rozinajová.V and Hluchý.O, "One approach to HTML wrappers
creation: using Document Object Model tree", in Proc. CompSysTech,
2009, pp.41-41.

[8] HTML code tutorial, "Document Tags ". URL
http://www.htmlcodetutorial.com/document/.

[9] Web Source, "HTML Tags / Codes / Web Page Design". URL
http://www.web-source.net/html_codes_chart.htm.

