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Abstract—The main objective of this work is to provide a fault 

detection and isolation based on Markov parameters for residual 
generation and a neural network for fault classification. The 
diagnostic approach is accomplished in two steps: In step 1, the 
system is identified using a series of input / output variables through 
an identification algorithm. In step 2, the fault is diagnosed 
comparing the Markov parameters of faulty and non faulty systems. 
The Artificial Neural Network is trained using predetermined faulty 
conditions serves to classify the unknown fault. In step 1, the 
identification is done by first formulating a Hankel matrix out of 
Input/ output variables and then decomposing the matrix via singular 
value decomposition technique. For identifying the system online 
sliding window approach is adopted wherein an open slit slides over 
a subset of ‘n’ input/output variables. The faults are introduced at 
arbitrary instances and the identification is carried out in online. 
Fault residues are extracted making a comparison of the first five 
Markov parameters of faulty and non faulty systems. The proposed 
diagnostic approach is illustrated on benchmark problems with 
encouraging results. 

 
Keywords—Artificial neural network, Fault Diagnosis, Identification,  

Markov parameters. 

I. INTRODUCTION 
AULT diagnosis of dynamical systems is an active area of 
research in the control community over the past two 
decades. Industrial systems in real working environment 

suffer parameter deviation with the passage of time. Hence it 
becomes mandatory to detect these parameter variations to 
make the system fool proof and robust. Many control 
approaches utilize the system parameters for affecting the 
control law – one notable approach is the famous state 
feedback control, If parameters deviate from the nominal 
values, the control which depends in these parameters also 
varies and the closed loop performance of the system 
degrades. In all parameter based control approaches, the 
parameter identification becomes the first step 
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[1],[2],[40],[41],[42]. With the passage of time, either the 
parameters vary slowly or in case of fault these parameters 
make a rapid transition from their nominal values. Hence 
continuous supervision of these parameters from the 
measurement of available system variables becomes 
absolutely essential to ensure a sturdy performance of the 
system in closed loop. Fault  diagnosis  is  very  often  
considered  as  fault  detection  and  isolation  ,abbreviated  as 
FDI  in  the literature [3]-[4]. The detection  and  isolation  of  
faults in  engineering  systems  is  of  great  practical  
significance. The  early  detection  of  the  occurrence  of  
faults  is  critical  in  avoiding  product  deterioration, 
performance  degradation,  major  damage  to  the  machinery  
itself  and  damage  to  human  health  or  loss  of  lives. The  
quick and  correct  diagnosis  of  the  faulty  component  then  
facilitates  the  making  of  appropriate  and  optimal  
decisions  on  emergency  and  corrective  actions,  and  on  
repairs.  These  aspects  can  minimize  downtime,  increase  
the  safety  of  the  plant  operations  and  reduce  
manufacturing  costs. The  traditional  approaches  to  fault  
detection  and  diagnosis  involve  the  limit  checking  of  
some  variables  or  the  application  of  redundant  sensors .  
More  advanced  methods  are  data-driven  process  
monitoring  methods[5],[6],  most  heavily  used in  many  
chemicals  and  manufacturing  industries.  Principal  
component  analysis  and  partial  least  squares  are  
multivariate  statistical  methods  that  generalize  the  
univariate  control  charts  that been  applied  for  decades.  
Fisher  discriminant  analysis  and  canonical  variate  analysis  
have  also  been  for  diagnosis  purposes. Other  methods  
rely  on  analytical  redundancy[4],[7],[8],the  comparison  of  
the  actual  plant  behaviour  to  that  expected  on  the  basis  
of  a  mathematical  model.  These  models  take  their  origins  
from  chemical  process  control,  where  the  traditional  
material  and  energy  balance  calculations  evolved  into  
systematic  data  reconciliation  and  the  detection  of  gross  
errors[9].  The latter approach includes methods that are more 
deterministically   framed  such as parity relations from input 
–output model [3] and observers [4],[10] and those formulated 
are more statistical basis (Kalman filter[11] ) and parameter 
estimation [12]. When  analytical  models  are  not  readily  
available,  a  correctly  trained  neural  network  can  be  used  
as  a  non  linear  dynamic  model  of  the  system[8],[13],[14]. 
Sometimes,  further  insight  is  required  as  to  the  explicit  
behavior  of  the  model  involved  and  it  is  here  that  
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fuzzy[15]-[17]  and  even  neuro  fuzzy  methods[18]-[20] 
come  into  their  own  in  fault  diagnosis  applications.  Other  
authors  have  used  evolutionary  programming  tools  to  
design  observers[8],[21]  and  neural  networks[22]-[24] . 
The work on fault diagnosis Artificial Intelligence community 
was  initially  focused  on  the  expert  system  or  knowledge-
based  approaches[25],  where  heuristics  are  applied  to  
explicitly  associate  symptoms  with  fault  hypothesis.  The  
short  comings  of  a  pure  expert  system  approach  led  to  
the  development  of  model-based  approaches  based  on  
qualitative  models  in  form  of  qualitative  differential  
equations,  signed  diagraphs,  qualitative functional  and  
structural  models,  etc ., [5],[8],[26].  Most  of  the  jobs  that  
use  knowledge-based  methods  work  with  models  of  
system  in  the  presence  of  the  faults.  This  implies  the  
need  to  construct  a  different  model  to  each  possible  
fault.  Most  of  the  time,  it  is  not  possible  to  obtain  a 
model  of  the  system  with  a  particular  fault,  because  the 
system  could  be  damaged  by that  fault,  or  because  that  
might  be  dangerous  to  provoke  the  faults or  because  not  
all possible  faults  can  be  provoked. In model-based fault 
diagnosis can be defined as the determination of a system’s 
faults by comparing the available system measurements with a 
priori information represented by the system’s mathematical 
model, through the generation of residual quantities and their 
analysis [27]. A complete model-based fault detection and 
isolation system must include at least two modules: The 
residual generator where the plant behaviours checked. 
Residuals are quantities that measure the inconsistencies 
between the actual plant variables and the mathematical 
model.  They are ideally zero, but they become nonzero if the 
actual system differs from the model; this may be a caused by 
faults, disturbances, noise and modeling errors.  For a 
dynamic system, the residual generator is dynamic as well.  It 
may be constructed by means of a number of different 
techniques.  An adequate design of the residual generator 
allows fault to be isolated, and therefore, classification of the 
residual vector into a specific fault case.  An important 
performance characteristic of the residual generator is the fault 
sensitivity of the residuals that is, the ability of the generator 
to detect faults of a reasonably small size. The three main 
ways to generate residuals are observers [4],[10],[11], parity 
equations [3] and parameter estimation [12]. The linear theory 
of these approaches is well developed and their relationship is 
also well understood.  The equivalence of the various methods 
has been studied by several authors [28],[29]. For nonlinear 
systems, the fault diagnosis problem has traditionally been 
approached in two steps. Firstly, the model is linearized at an 
operating point, and then techniques are applied to generate 
residuals [30],[31]. To deal with systems with high 
nonlinearity and wide operation range, the fault diagnosis 
problem has to be tackled directly using nonlinear techniques 
[32]-[36] 

                   The decision module must evaluate the reliability of every 
residual, as well as the decision risk. Faulty conditions must 
cause certain residual changes, depending on the fault case.  A 
large variety of tests may be applied [37].The appropriate 
statistical test is chosen according to the properties of the 
residual. However, residual behavior is often less reliable than 

desired due to the presence of modeling errors, disturbances 
and noise. In order to avoid false alarms, the thresholds of 
fault detection tests are frequently selected high enough. This 
implies conservative criteria, and often, therefore, a delay in 
fault diagnosis. The model uncertainty increases the problem 
of threshold selection and even adaptive thresholds have been 
proposed [38]. The parity equations approach checks the 
consistency of the mathematical equations of the systems with 
the measurements. In the early development of fault diagnosis, 
the parity relations approach was applied to static or parallel 
redundancy schemes that may be obtained directly from 
measurements of from analytical relations. The parity relation 
concept was using the temporal redundancy relations of the 
dynamic system. The parity equations can also be constructed 
using a z-transformed input-output model or discrete transfer 
matrix representation [39], [3]. 

               The main  goal  of  the  fault  diagnosis  methods  are  
reliability  and  robustness,  because  they  allow  these  
methods  to  be  implemented  in  industrial  systems.  The  
uncertainty  of  system  models,  the presence  of  noise  and  
the  stochastic  behavior  of  several  variables  make  it  hard  
to  reach  these  goals.  To tackle these kinds of problems, in 
this paper a Markov parameter based approach is proposed for 
the diagnosis of faults in linear dynamical systems. The 
approach basically consists of identifying a system by forming 
a Hankel matrix from i/p and o/p pairs. Using the sliding 
window approach the system is identified online. Parameter 
deviation are introduced arbitrarily in between and the faulty 
system is identified.. The residue for the fault classification is 
obtained by comparing the Markov parameters of faulty and 
non faulty systems. The ANN trained through the BPN 
algorithm for known fault conditions serves as a classifier to 
classify the fault.  The complete fault diagnosis module 
encompasses a fault preprocessor and fault classifier. The 
objective of the fault processor is to identify the system and 
generate Markov parameters of the faulty /non-faulty system. 
The fault classifier makes comparison of the Markov 
parameters of faulty system with that of the nominal system 
and does the fault classification. In section II a brief 
mathematical analysis of the proposed technique is dealt. 
Section III addresses the proposed diagnosis approach. In 
section IV, the algorithm for the proposed method is given. 
The proposed approach is illustrated on a standard benchmark 
problem and the simulation results are summarized in section 
V. Finally, in Section VI, we conclude by giving some 
comments on the application of the technique.  

II. PROPOSED FAULT DIAGNOSIS APPROACH 
   The work carried out to deals with the identification of 
parameter deviations in a system using Markov parameter and 
the schematic is shown in Figure 1. 
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Fig. 1 Proposed fault diagnosis approach 

The steps involved in fault diagnosis are outlined below: 

A. System identification 

B. Computation of Markov parameters 

C. Extraction of fault residues 

D. ANN based classification. 

In this work the black box identification process is considered 
for the following reasons. 

a)    More flexibility 

b)    More independence in choosing the order  
       the system 

    The identification process constructs a matrix from the 
input/output data in a specialized format. This matrix is 
known as Hankel matrix. The Hankel matrix is decomposed 
using singular value decomposition (SVD) and the system is 
identified using recursive least square method. This method 
proposed by [41] is employed in our work for fault diagnosis. 
The comfortness in choosing this method lies in identifying a 
system for limited number of input/output data. The algorithm 
is simple, accurate and works in discrete domain. The 
algorithm is flexible in the sense if it works for random inputs 
and pseudo binary random sequence (PRBS). As the 
algorithm works for limited number of input/output data the 
diagnosis becomes very fast in nature. Random inputs can be 
very easily generated and there are simple state machine and 
shift registers that generate pseudo binary sequence. Faults are 
introduced arbitrarily. When faults are introduced, the output 
signals due to random input sequence vary considerably and 
the Hankel matrix elements also change. The identified system 
is to faulty system and the Markov parameters differ when 
compared to that of the healthy system. The Markov 
parameter is employed in this work for extracting the fault 
residue. Markov parameters are those parameters, which are 
identical for two systems producing similar input/output 
combinations. Markov parameters are the unique combination 
of input/output and system matrices. Though two systems are 
dissimilar physically Markov parameters identifies a new 
system with respect to input/output parlance. In the proposed 
diagnostic approach, the Simulation Before Test (SBT) 
analysis is carried out initially with known different system 
faults. The identification process is done and the Markov 
parameters are extracted. Similar procedure is carried out for 

single as well as multiple faults. Faults are so introduced that 
system doesn’t become unstable. This restriction gives bounds 
for fault magnitudes. The fault residue is computed by finding 
the difference between the Markov parameters of the healthy 
and faulty system. ANN with suitable pre-training does the 
fault classification. The benchmark problems are chosen of 
different types. Practical system is considered to make the 
work industry friendly. Standard second system is taken into 
consideration. The main advantage in the proposed technique 
is the scheme also works satisfactorily for stochastic systems. 
As the diagnosis scheme takes lesser time on line 
identification with proper atomization ensures satisfactory 
system performance for a considerable period of time by 
switching the system from the ‘normal’ to ‘diagnosis’ mode. 
In this work, the first 5 Markov parameters for extracting the 
residues are taken to demonstrate the illustrations.  The ANN 
classifier structure has 5 neuron in the input layer 10 neuron in 
the hidden layer and one neuron in the output layer. The ANN 
is trained using BPN algorithm and does accurate 
classification of faults based on the difference between the 
Markov parameter of the healthy and faulty system. The main 
assumption incorporated into the work is that the system is 
completely observable. The limitation of the scheme is that the 
fault diagnosis is done only for system faults. With slighter 
modification the proposed detection algorithm could be 
extended for actuator fault as well. This is not a serious 
limitation in the sense that if the state space description is in 
controllable canonical form, the problem is solved 
automatically. In this system, the proposed approach for the 
diagnosis of system faults is dealt with. The system is initially 
subjected to known fault condition and the fault signature is 
extracted by comparing the Markov parameters of the nominal 
system and the faulty system. Similar set of fault signatures 
are extracted for various known fault conditions and are used 
for training an artificial neural network for classification 
purpose. This pre-trained ANN does the classification of 
unknown fault that enters into the system. 

A. System identification  
    Identification aims at finding a mathematical model from 
the measurement record of inputs and outputs of the system. A 
state space model is the obvious choice for a mathematical 
representation because of its widespread use in system theory 
and control. The main step in the identification procedure 
consists in the singular value decomposition of a block Hankel 
matrix. As it will turn out only the left singular basis is 
required, both the computational load and the noise sensitivity 
are considerably reduced. The discrete system is excited with 
‘m’ number of random inputs and the corresponding output 
variables are measured. The problem now is to identify the 
system matrices A, B, C, D of the unknown system from the 
given input/ output measurements, The deterministic 
algorithm consists of forming Hankel matrix H constructed 
from the I/O sequences u[k],u[k+1] … and y[k], y[k+1] … As 
it is obvious that only the observable part of the system can be 
identified from observed I/O data, it can be assumed that the 
system is completely observable., thus omitting the 
unobservable part at the very outset. The Hankel matrix thus 
formulated is decomposed using singular value decomposition 
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and system matrices Ai,Bi,Ci,Di are then identified 
straightaway by solving the set of linear equations in least 
square sense. The system identification scheme is given in 
Figure 2.  
 

          U (K)                                                                  Y(K) 
 

    
 
 
 
 
                                                                                               A 
                                                                                               B 
                                                                                               C 

                                                                                    D 
 

Fig. 2 System Identification 
 
B. Computing Markov parameters and extracting fault   
    residues  
     The impulse response terms 0nforBCA 1n ≥− (n - 
order of the system) are known as Markov parameters.  
Hence, the Markov parameters are known as impulse response 
coefficients. The Markov parameters ho, h1, h2,…  can be 
constructed from the given impulse responses of the system 
matrices A,B and C. In general, Markov parameters are 
unaffected by system transformation like eigen values. The 
advantage of the Markov parameters is that it gives unbiased 
estimated of the system matrices with the state sequence 
approach in a straightforward way.  
     The fault residue is the difference between the Markov 
parameters of the healthy and faulty system. The system is 
initially subjected to known fault condition and the fault 
residue is extracted by comparing the Markov parameters of 
the nominal system and the faulty system. Similar set of fault 
signatures are extracted for various known fault conditions 
and are used for training an artificial neural network for 
classification purpose. The neural network is trained using 
back propagation algorithm in which the weights and bias of 
the ANN are automatically updated based on the difference 
between the actual output of the network and the target. The 
network is trained for a number of known faulty conditions. 
The introduced faults are so chosen in such a way that the 
system doesn’t loose its stability under fault. Once the 
network is trained it does fault classification for unknown 
fault conditions. This pre-trained ANN does the classification 
of unknown fault that enters into the system. The schematic is 
shown in Figure 3. 

             
               

Fig. 3 Extracting fault residues  
 
C. Pattern classifier                        
    Since the pattern classifier test pattern for the systems as 5 
inputs and 1 output, the ANN pattern classifier should have 5 
neurons in the input layer and 1 neuron in the output layer. 
The number of hidden layer and its neurons are randomly 
varied till satisfactory results are obtained. It is determined 
that one hidden layer with 10 neurons is enough for the 
classifier to perform the task of classifying the faults. 
Therefore the ANN structure boils down to 5:10:1. The 
classifier for the proposed method is shown in Figure 4. 
 

 
Fig. 4   Pattern classifier  

  
   In back propagation neural network, each input is weighted 
with an appropriate ‘w’. The sum of the weighted inputs and 
the bias forms the input to the transfer function ‘f ’. Neurons 
may use any differentiable transfer function ‘f ’ to generate 
their output. The transfer function used for hidden layer in the 
classifier designed is ‘tansig’ bipolar sigmoid transfer function 
and for output layer is ‘purelin’ transfer function. The linear 
output layer lets the network produce values outside the range 
-1 to +1. On the other hand, if the outputs of a network are 
need to be constrained (such as between -1 and +1), then the 
output layer should use a sigmoid transfer function (such as 
tansig). Similarly if the outputs of a network are need to be 
constrained (such as between 0 and 1), then the output layer 
should use a sigmoid transfer function (such as logsig). 
Generally the training function is ‘trainlm’. This updates 
weight and bias values according to Levenberg-Marquadrt 
optimization. The adaptation learning function ‘learngd’ is the 
gradient descent weight and bias learning function. The 
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performance function is ‘mse’ known as mean squared error 
as it measures the network’s performance according to mean 
squared errors. 
D. Mathematical Analysis of the Proposed Technique 

1. Formation of Hankel matrix  
             Consider a Linear Non faulty discrete system, 

            
)k(DU)k(CX)k(Y

)k(Bu)k(AX)1K(X
+=

+=+                            (1)  

           Where AЄ Rn*n is the system matrix 
           B Є Rn*m   is the input matrix 
           C Є Rr*n   is the output matrix 
           D Є Rr*m is the direct transmission matrix 
The discrete system is excited with ‘m’ number of random 
inputs and the corresponding output variables are measured. 
The problem now is to identify the system matrices A ,B,C, D  
of the unknown system from the given input/ output 
measurements, The deterministic algorithm consists of 
forming Hankel matrix H constructed from the I/O sequences 
u[k],u[k+1] … and y[k], y[k+1] … As it is obvious that only 
the observable part of the system can be identified from 
observed I/O data, it can be assumed that the system is 
completely observable., thus omitting the unobservable part at 
the very outset. The system matrices A, B, C, D are identified 
by making use of the SVD of H. The Hankel matrix H is 
constructed by concatenating two matrices  
 
H1ЄR(k+i-1)*(k+j-1)andH2ЄR(k+i)*(k+i+j)                                                             (2) 

 
where 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+++−+
−+++−+

+++
+++

−++
−++

=

]2ijk[y..................].........ik[y]1ik[y
]2ijk[u.....................].........ik[u]1ik[u

.

.
]jk[y...................].........2k[y]1k[y
]jk[u.....................].........2k[u]1k[u

]1jk[y....................].........1k[y]k[y
]1jk[u......................].........1k[u]k[u

H1

                  (3)          

and 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+++−+
−+++−+

++++++
++++++

−+++++
−+++++

=

]2i2jk[y................].........i2k[y]1i2k[y
]2i2jk[u.................].........i2k[u]1i2k[u

.

.
]jik[y..............].........2ik[y]1ik[y
]jik[u.....................]...2ik[u]1ik[u

]1jik[y...............].........1ik[y]ik[y
]1jik[u...................].....1ik[u]ik[u

H2

                   (4) 

where the integers i and j are sufficiently large and j >> max 
(mi, ri ).where m, n are the number of inputs and outputs 
,where i ≥ n , where n is the order of system. In this paper i 
and j are selected such that the Hankel matrix is a square 
matrix and the number of inputs is equal to the and is number 
of outputs (T) given by  

 T=j+2i-1                                                                            (5) 
2. Singular value decomposition 

    The Hankel matrix thus formulated is decomposed using 
singular value decomposition and the following result is 
obtained.  
   

                                                                                           (6) 
where 

 U11ЄR(mi+ri)*(2mi+n)                                                               (7) 
 U12ЄR(mi+ri)*(2ri-n)                                                                 (8)       
 S11Є(2mi+n)*(2mi+n)                                                                 (9)     

In the next step, we again perform the singular value 
decomposition of U12

T U11 S11 and the following result is 
obtained 
  
                                                                                                               

 
                                                                                        (10)                   

where         Vq Є   Rn*(2ri-n)     

3. Identification  
              The system matrices Ai,Bi,Ci,Di are then identified by 
solving the following set of linear equations in least square 
sense. 
 

                                                                                         (11) 

where the subscript ‘i’ indicates the identified matrix. In the 
identification parlance usually the Markov parameters of the 
original system and those of the identified system are 
compared as an index for identification.  

4. Computing Markov parameters 
    The impulse response of the state model shown in equation 
(12) is easily found by direct calculation. Let x(0) = 0. Then  
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 Thus the impulse response of the state-space 
model can be summarized as 
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     The impulse response terms 0nforBCA 1n >−  are 
known as Markov parameters. Thus Markov parameters are 
known as impulse response coefficients. In general, eigen 
values are unaffected by a similarity transformation. Similarly 
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Markov parameters are also unaffected by system 
transformation. If Markov parameters of original and 
identified system are same, then the actual system and the 
identified system are same. In this manner the Markov 
parameters serves as an index for the identification of 
algorithm. For the online identification of the system sliding 
window approach is incorporated .In this approach a new 
input is processed for each instant where in one old input is 
discarded and the new input/output pair enters into the system 
identification algorithm. 
 

5. Mathematical Analysis for the faulty system 
  

             Consider the Linear faulty system 
             Xf(K+1) = (A+∆A)Xf(K) + B X(K)                                                       

             Yf(K)=Cf(K)+DfX(K)                                           (14) 
 
            where ∆A Є Rn*n    is the system fault  
The faulty system is identified using the algorithm discussed 
in the previous section the identified faulty system matrices 
are Af, Bf, Cf and Df respectively. The Markov parameters for 
the identified faulty system is computed as follows   

 
 Mf(n)=C(A+∆A)n-1B,n=1,2,3……….                               (15) 

 
    6. Residue Generation 

The Markov parameters of the faulty system is compared with 
those of the nominal system and the fault residues are 
extracted 
 R =  M(n) – Mf(N). 
 

    =CAn-1B-C(A+∆A)n-1.B,n=1,2,3......                             (16) 

III. PROPOSED DIAGNOSIS ALGORITHM 
Step-1: For  the  given  reference  system , find the fault range  
            ( ∆1  -  ∆2 ) that   can   be added  to   the system matrix  
            elements to keep the system in stable. 
Step-2: For the ‘∆’ value varying from ‘∆ 1   to   ∆2’ follow the 

steps  3 to 10. 
 Step-3: Once the ‘ delta  ( ∆ ) ’ value is added to  the system 

matrix  elements,  the  new  system  matrix is formed. 
Then the new system is given for system identification 
algorithm given in steps 4-8. 

Step-4: For the first instant, the inputs are generated randomly 
and processed to the new reference system and the 
corresponding outputs are determined and the input 
data is saved for next iteration. In next iteration, this 
saved input data is taken and last input is discarded 
and a new input is generated randomly and input data 
along with new input is saved for next iteration and 
processed to the reference system to determine new 
output data. The new input data along with the new 
output data is sent for system identification analysis. 

Step-5:  Form Hankel matrix H from input and output data. 
The total number of inputs (T) should be selected 
such that hankel matrix formulated should be a 
square matrix using  (2), (3), (4) and (5). 

Step-6:  Calculate U  and  S from SVD of H using  (9) 

Step-7:  Calculate SVD of U12
T 

* U11 * S11   using (10)  
Step 8:   Identify the system parameters using (11)  
Step-9:   Find the first 5 Markov parameters of the identified  
              system.  
              5to1)( 1 == − nforBCAnh n  
Step-10: The ‘ ∆ ’ values along with its  corresponding first 5 
               Markov parameters are sent for training  
Step-11: Once the neural network is trained, it can  be  used  
              for simulation. Now the online approach takes   
              place. For every instant a new system matrix is sent   
              for   system   identification.  Follow steps 4 - 8 for   
              identifying the new system.  
Step-12: The first 5 Markov parameters of the new identified 

system are calculated and   sent to the neural network 
for simulation resulting in value of the ‘∆’ added to 
the system matrix with respect to reference system. 

Step-13: The neural network results in identifying the instant 
at which the reference system’s matrix is fluctuated. 

IV. ILLUSTRATION 
    The proposed fault diagnosis approach is applied to a linear 
system and the results are submitted in this section .The inputs 
and outputs of the system with and without faults are 
identified on line using sliding slit approach. When faults are 
introduced at random instances Markov parameters of the 
system vary from its nominal value. This variation is 
employed to classifying the fault using ANN classifiers. 
        Consider the discrete time system given [43] by the 
following equation 
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  (17)            

The eigen value of the nominal system are 0.4568,-0.6568. 
The eigen value lie within the unit circle and hence the system 
is stable. For identifying the system the parameters i and j are 
chosen as 4 and 16 respectively .Hence the total number of the 
input/output pair becomes T= 16+2*4-1=23; n=2,m=r=1 for 
the system. The inputs are chosen as random sequence and the 
corresponding outputs are generated. One such combination is 
shown below. 

 
 Input 
 U= [ 0.95     0.23     0.61    0.49    0.89    0.76    0.46    0.02  
         0.82    0.44   0 .62     0.79    0.92    0.74    0.18    0.41   

        0.94     0.92   0.41    0.89   0.06      0.35    0.81]      (18)                   
 
Corresponding Output 
Y = [ 0 .00    0.95   -0.91    0.84    -0.56    0.77   -0.45   0.02 
         -0.58    0.92 -0.73     0.59    -0.16    0.34   -0.30    -0.40  

        0.22   0.37    -0.03   -0.39  0.55   -1.06     0.67]        (19)                   
 
Then, Hankel matrix is identified from the input and output is 
as follows   
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0.67   1.06-   0.55   0.39-   0.03-0.37     0.22   0.40-   0.30-  0.34    0.16-  0.59   0.73-  0.92   0.58-0.02  
0.81   0.35    0.06    0.89     0.41   0.92     0.94    0.41    0.18    0.74    0.92    0.79   0.62    0.44   0.82   0.02  
1.06- 0.55     0.39-0.03-   0.37   0.22     0.40 -  0.30-  0.34    0.16-  0.59    0.73-0.92    0.58-0.02   0.45-
0.35   0.06     0.89   0.41     0.92   0.94     0.41    0.18    0.74    0.92    0.79    0.62   0.44    0.82   0.02   0.46  
0.55   0.39-  0.03-0.37     0.22   0.40-   0.30-  0.34    0.16-  0.59    0.73-  0.92   0.58-  0.02   0.45-0.77  
0.06    0.89    0.41   0.92     0.94   0.41     0.18    0.74    0.92    0.79    0.62    0.44   0.82    0.02   0.46   0.76  
0.39-  0.03-  0.37    0.22    0.40-0.30-   0.34    0.16-  0.59    0.73-  0.92    0.58-0.02    0.45- 0.77   0.56-
0.89    0.41    0.92    0.94    0.41   0.18     0.74    0.92    0.79    0.62    0.44    0.82   0.02    0.46   0.76   0.89  
0.03-  0.37    0.22    0.40-  0.30- 0.34     0.16-  0.59    0.73-  0.92    0.58-  0.02   0.45-  0.77   0.56-0.84  
0.41    0.92    0.94    0.41    0.18   0.74     0.92    0.79    0.62    0.44    0.82    0.02   0.46    0.76   0.89   0.49  
0.37    0.22    0.40-  0.30-  0.34   0.16-   0.59    0.73-  0.92    0.58-  0.02    0.45-0.77    0.56-0.84   0.91-
0.92    0.94    0.41    0.18    0.74   0.92     0.79    0.62    0.44    0.82    0.02    0.46   0.76    0.89   0.49   0.61  
0.22    0.40-  0.30-  0.34    0.16- 0.59     0.73-  0.92    0.58-  0.02    0.45-  0.77   0.56-  0.84   0.91- 0.95  
0.94    0.41    0.18    0.74    0.92    0.79    0.62    0.44    0.82    0.02    0.46    0.76   0.89    0.49   0.61   0.23  
0.40-  0.30-  0.34    0.16-  0.59    0.73-  0.92    0.58-  0.02    0.45-  0.77    0.56- 0.84    0.91- 0.95     0     
0.41    0.18    0.74    0.92    0.79    0.62    0.44    0.82    0.02    0.46    0.76    0.89   0.49    0.61   0.23   0.95  

H

 (20) 

   
   The Hankel matrix is decomposed using SVD and the  
   matrices U11, U 12  and S11 are  calculated 
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U11

 (21) 
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U 12
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                                                                      (23) 
 
The singular value decomposition of  (U12

T * U11 * S11), to 
exact Uq and Sq  as follows 
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The Identified System is as follows 
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       (26) 

The identified system eigen values are 0.4568 and -0.6568, 
which is same as that of the original system (Equation17). 
Comparing the eigen values of the original system and 
identified system is not enough to validate the system 
identification process, since the eigen values are obtained only 
by considering the system matrix (A). Therefore identified 
system is validated by comparing the Markov parameters of 
the original and identified system. In this work, the first 20 
Markov parameters are used for the comparison purpose, is 
shown in Table 1.  
 

TABLE I  
FIRST 10 MARKOV PARAMETERS OF ORIGINAL AND IDENTIFIED 

SYSTEM 
 

First 20 
Markov 

parameter
s 

Markov parameters of the 
actual system (h) 

Markov parameters of 
the identified system  

(hi) 

1 1.0002 1.0002 
2 -1.2003 -1.2003 
3 0.5402 0.54027 
4 -0.468 -0.46827 
5 0.2556 0.25581 
6 -0.19152 -0.1917 
7 0.11498 0.11512 
8 -0.080453 -0.080556 
9 0.050586 0.050661 
10 -0.034253 -0.034309 
11 0.022026 0.022066 
12 -0.14681 -0.01471 
13 0.0095441 0.0095647 
14 -0.0063132 -0.0063278 
15 0.0041259 0.0041362 
16 -0.0027191 -0.0027264 
17 0.0017816 0.0017866 
18 -0.0011721 -0.0011756 
19 0.00076889 0.00077133 
20 -0.00050539 -0.00050709 

 
Now, the faulty matrix ΔA of the unknown magnitude is 
introduced at arbitrary time instants. For this study, the faults 
are introduced in the system matrix (A) at two different 
intervals is shown in Equation (27). 

   ∆A =   

⎪
⎪
⎭

⎪
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⎫

⎪
⎪
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⎪
⎪
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≤≤=
≤≤=

ctse0,40delta
40sect3.3,35delta

35sect3,30delta
30sect0,0delta

              (27) 

                                               
    The first 5 Markov parameters   of faulty system is 
extracted and compared with the Markov parameters of the 
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nominal system and the fault residues are extracted as shown 
in the following figure 5 and 6 respectively  

 
Fig. 5 Variation of 1st, 2nd and 3rd Markov parameters with respect to 

time 

 
 

 Fig. 6 Variation of 4th and 5th Markov parameters with respect to 
time 

 
The network is trained to perform the pattern classification. 
The training process requires a set of trained data of network 
inputs (input1 to input5=first 1 to 5 Markov parameters) and 
network output (target1=delta). During training the weights 
and biases of the network are iteratively adjusted to minimize 
the network performance function. The training data generated 
is used to train the neural network. The network is trained for 
1000 epochs. The training goal is varied to get maximum 
convergence. The performance plot is shown in Figure 7.  
 

        
Fig. 7 Performance plot of the classifier 

 
     The pretrained neural network does the fault classification 
and gives the fault magnitude of 3 between 30 to 35 samples 
and 3.3 between 35 to 40 and zero other wise. Hence the 
network classifies the fault quite satisfactorily The 
corresponding plot is shown in figure 8. 

 
Fig. 8 ANN output for change in delta values corresponding to time 

V. DISCUSSION 
In this work, a new approach to fault diagnosis using 

Markov parameters has been presented. The significant 
advantage of the new approach is that it is given unbiased 
estimates of the parameter variations in a straightforward way. 
As a result, any adaptive effects due to ill conditioning of the 
input signals are minimized. Our results indicate that this 
approach of identifying fault in system matrix is effective in 
terms of its ability to detect the exact magnitude of change in 
parameter of the system matrix and to some relatively low 
dimensional state space model. Interestingly, the task is 
accomplished without having to compute explicitly the system 
dependent interaction matrix itself. The main aspect of this 
work was the use of linear system fault diagnosis to avoid the 
complexities that would otherwise be inevitable if nonlinear 
models are used. As stated in the introduction chapter there is 
certainly an increasing interest in the research literature in the 
use of non- linear methods and it is only a question of time 
before these techniques find their way into full application 
projects. However, as the feature of system supervision is to 
monitor the operation and performance of the system with 
respect to an expected point of operation, linear system 
methods are still very valid. Deviations from expected system 
behaviour could be used to monitor system performance 
changes as well as system component malfunctions. One 
drawback of the proposed method is that it has a relatively 
complicated procedure. The main contribution of this paper is 
the demonstration of a Markov parameter based fault 
detection and diagnosis of the linear system of different types. 
The proposed algorithms have been validated by means of two 
case studies. These suggest that the algorithm is very robust 
than the work already reported in the literature. The novelty of 
the work is that the Markov parameters are employed for the 
diagnosis of fault for the first time. Owing to the faster 
identification the work could be easily employed in an 
industrial environment for detecting the deterioration of 
parameters that age with time automatically. 

 
VI. CONCLUSION 

 
      A new approach towards the fault diagnosis of linear 
dynamical systems using Markov parameters is proposed in 
this write up. The given discrete time system is excited using 
random input signals and corresponding output signals are 
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generated .Using this input /output combination the system 
identification is done using a mathematical approach. Markov 
parameters are used on performance index for classifying 
faulty and non faulty system. The artificial neural network 
trained using known faulty condition does the fault 
classification. The proposed diagnosis approach is illustrated 
on a suitable benchmark system with encouraging results. The 
future work is at present oriented towards the diagnosis of the 
actuator faults in linear system 
           

APPENDIX 
 

 TABLE II  
TRAINING PATTERNS OF CLASSIFIER 

 

Neural Network Inputs NN 
target S.No 

Inp1 Inp2 Inp3 Inp4 Inp5 tar1 
1 1.00 1.00 0.75 -0.38 0.19 -0.3 
2 1.00 1.00 0.66 -0.40 0.23 -0.2 
3 1.00 1.00 0.59 -0.44 0.25 -0.1 
4 1.00 1.00 0.54 -0.47 0.26 0 
5 1.00 1.00 0.51 -0.49 0.25 0.1 
6 1.00 1.00 0.50 -0.50 0.25 0.2 
7 1.00 1.00 0.51 -0.49 0.26 0.3 
8 1.00 1.00 0.54 -0.45 0.29 0.4 
9 1.00 1.00 0.59 -0.38 0.36 0.5 

10 1.00 1.00 0.66 -0.28 0.48 0.6 
11 1.00 1.00 0.75 -0.13 0.69 0.7 
12 1.00 1.00 0.86 0.08 0.99 0.8 
13 1.00 1.00 0.99 0.33 1.42 0.9 
14 1.00 1.00 1.14 0.65 2.00 1 
15 1.00 1.00 1.31 1.04 2.77 1.1 
16 1.00 1.00 1.50 1.50 3.75 1.2 
17 1.00 1.00 1.71 2.04 4.98 1.3 
18 1.00 1.00 1.94 2.67 6.50 1.4 
19 1.00 1.00 2.19 3.39 8.35 1.5 
20 1.00 1.00 2.46 4.20 10.56 1.6 
21 1.00 1.00 2.75 5.13 13.19 1.7 
22 1.00 1.00 3.06 6.16 16.28 1.8 
23 1.00 1.00 3.39 7.30 19.87 1.9 
24 1.00 1.00 3.74 8.57 24.03 2 
25 1.00 1.00 4.11 9.97 28.81 2.1 
26 1.00 1.00 4.50 11.50 34.25 2.2 
27 1.00 1.00 4.91 13.17 40.43 2.3 
28 1.00 1.00 5.34 14.99 47.39 2.4 
29 1.00 1.00 5.79 16.96 55.21 2.5 
30 1.00 1.00 6.26 19.08 63.96 2.6 
31 1.00 1.00 6.75 21.38 73.69 2.7 
32 1.00 1.00 7.26 23.84 84.48 2.8 
33 1.00 1.00 7.79 26.47 96.41 2.9 
34 1.00 1.00 8.34 29.29 109.54 3 
35 1.00 1.00 8.91 32.30 123.96 3.1 
36 1.00 1.00 9.50 35.50 139.75 3.2 

37 1.00 1.00 10.11 38.90 156.99 3.3 
38 1.00 1.00 10.74 42.51 175.77 3.4 
39 1.00 1.00 11.39 46.33 196.14 3.5 
40 1.00 1.00 12.06 50.36 218.26 3.6 
41 1.00 1.00 12.75 54.63 242.20 3.7 
42 1.00 1.00 13.46 59.12 268.04 3.8 
43 1.00 1.00 14.19 63.86 295.83 3.9 
44 1.00 1.00 14.94 68.80 325.72 4 
45 1.00 1.00 15.71 74.00 357.90 4.1 
46 1.00 1.00 16.52 79.50 392.44 4.2 
47 1.00 1.00 17.35 85.12 429.03 4.3 
48 1.00 1.00 18.15 91.25 475.70 4.4 
49 1.00 1.00 19.00 97.17 510.49 4.5 
50 1.01 1.01 20.12 104.21 557.77 4.6 
51 0.99 0.99 20.47 111.61 602.83 4.7 
52 1.03 1.03 22.44 118.63 648.43 4.8 
53 0.98 0.98 22.12 126.12 698.23 4.9 
54 1.00 1.00 23.60 110.64 773.47 5 
55 1.03 1.03 25.59 139.11 839.74 5.1 
56 0.98 0.98 24.79 180.94 921.82 5.2 
57 1.02 1.02 27.35 156.98 959.57 5.3 
58 0.98 0.98 26.35 98.81 1048.60 5.4 
59 0.93 0.93 26.08 149.41 1225.00 5.5 
60 1.00 1.00 29.71 -25.02 1560.70 5.6 
61 1.01 1.01 31.12 200.69 1191.30 5.7 
62 1.01 1.01 31.64 192.48 1242.00 5.8 
63 0.38 0.38 2.57 85.42 1095.40 5.9 
64 1.88 1.88 75.21 233.10 1410.00 6 
65 1.17 1.17 42.58 289.54 -168.30 6.1 
66 1.00 1.00 36.49 47.72 470.10 6.2 
67 -0.14 -0.14 -16.15 574.99 -481.61 6.3 
68 2.02 2.02 103.05 158.78 1620.10 6.4 
69 0.32 0.32 9.20 279.04 -4039.70 6.5 

70 0.65 0.65 21.84 419.89 5675.50 6.6 
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