
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:11, 2012

2472

 

 

  
Abstract—This paper presents an new vision technique for 

robotic manipulation of randomly oriented objects in industrial 
applications. The proposed approach uses 2D and 3D vision for 
efficiently extracting the 3D pose of an object in the presence of 
multiple randomly positioned objects. 2D vision permits to quickly 
select the objects of interest for 3D processing with a new modified 
ICP algorithm (FaR-ICP), thus reducing significantly the processing 
time. The extracted 3D pose is then sent to the robot manipulator for 
picking. The tests show that the proposed system achieves high 
performances.   
 

Keywords—3D vision, Hand-Eye calibration, robot visual 
servoing, random bin picking.  

I. INTRODUCTION 
OBOTIC bin picking is a process that is widely used in 
industrial applications. In general the objects of interest 

are put in a controlled environment and the manipulation 
becomes an easy task. 2D vision can be used efficiently to 
detect the object and send its position to the robot manipulator 
for picking. This visual servoing of robot arms to accomplish 
simple tasks has been previously studied [1]-[4]. However 
when the objects are randomly positioned, the task becomes 
more complex. The complexity is further increased when we 
have a randomly oriented object, making its manipulation a 
difficult task for a robot hand.  In this later case 3D vision [5] 
is necessary in order to extract the 3D pose of the object and 
orient the robot hand for its manipulation. Many available 
solutions use a 3D camera (in general a laser triangulation 
system) put on a robot hand in order to scan the randomly 
oriented objects. The 3D pose of an object is computed and 
the robot picks one object at a time. After picking the object 
the process of scanning starts again. This is done for each 
object to manipulate, making the random bin picking a time-
consuming task. In order, to make this process more efficient, 
we propose the use of a hybrid 2D-3D system for 
manipulating randomly oriented objects. The proposed system 
permits an intelligent monitoring of the robotic manipulation 
process, thus avoiding repetitive scanning of the objects in the 
bin.  
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II.  PROPOSED APPROACH 
3D random bin picking can be a time consuming task due to 

repetitive scanning of the bin with a 3D laser triangulation 
camera each time an object must be picked. In order to 
accelerate this process, a new approach based on a hybrid 2D-
3D system is proposed. It operates as follows: 
1) A 3D image of the objects is captured using a 3D camera 

(in general a 3D laser triangulation camera. However the 
proposed system can be adapted to any type of 3D 
acquisition system). 

2) A 2D image of the same objects is captured 
simultaneously with the 3D image. The 2D vision system 
is fixed and positioned over the bin of randomly oriented 
objects. 

3) A 2D orientation and scale invariant pattern matching is 
performed in order to select the objects of interest. 
Various types of objects present in the same bin can be 
handled with this approach. 

4) Based on a scoring scheme the detected objects are sorted 
and N candidates are selected for further processing. 

5) For each selected candidate, the following procedure is 
performed: 

i. The position of the 2D matching is used to create a 
mask for ROI extraction. 

ii. The visible object volume is computed in order to 
evaluate the possibility of picking this object. 

iii. The pose of the object is computed using a 3D pattern 
matching algorithm and a matching score is 
computed.     

6) If the previous 3D processing detects that the object can 
be picked then: 

i. Its position and orientation are sent to the robot 
manipulator. 

ii. Otherwise, go to step 5, to process the next object. 
7) Since picking and object by a robot hand can change 

other object positions in the bin, a new 2D image is 
captured and compared to the previous captured image 
(Only the position of the previous selected objects in step 
4 are analyzed). 

8) The status of the bin is then verified. The following 
procedure is performed : 

i. If the majority of the selected objects are at the same 
configuration (as in step 2), then go to step 5. 

ii. Otherwise, go to step 1 to scan the bin with the 3D 
camera system. 

 

Moulay A. Akhloufi 

A 2D-3D Hybrid Vision System for Robotic 
Manipulation of Randomly Oriented Objects 

R



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:11, 2012

2473

 

 

 
Fig. 1 The Random bin picking robotic system with 2D and 3D 

cameras 

III. 2D VISION SYSTEM 
2D pattern matching is an area of computer vision that has 

been largely studied. Many techniques exist for pattern 
matching [6]-[11]: correlation, moments, Fourier descriptors, 
generalized Hough transform, SIFT, SURF, etc.   

Many of the available techniques are limited to a fixed scale 
and orientation. These techniques are widely used in industrial 
vision application where we can control the working 
environment.  

Since we are interested in randomly oriented objects, we 
need to use pattern matching techniques that are invariant to 
scale and orientation, like the generalized Hough transform 
(GHT). 

A. Generalized Hough Transform (GHT) 
The Hough Transform is a commonly used algorithm for 

detecting shapes in an image. This technique is based on the 
original Hough Transform algorithm used for detecting an 
object having a simple analytic equation describing its 
boundary. Hough transform is largely used for detecting lines, 
circles or ellipses.  

An extension of the standard Hough was proposed in [11]. 
GHT supports object boundaries of arbitrary non-analytic 
shape. Instead of using a parametric equation, GHT uses a 
look-up table to define the relationship between the boundary 
positions and orientations and the Hough space parameters. In 
order to detect an object a model of this objet is learned and a 
look-up table values computed offline.  

For example, suppose that we know the shape and 
orientation of the desired feature. (See figure 2) We can 
specify an arbitrary reference point ),( refref yx within the 

feature, with respect to which the shape (i.e. the distance r  
and angle β of normal lines drawn from the boundary to this 

reference point) of the feature is defined. Our look-up table 
(i.e. R-table) will consist of these distance and direction pairs, 
indexed by the orientation Ω of the boundary. 

 

 
Fig. 2 R-table components 

 
The Hough transform space is now defined in terms of the 

possible positions of the shape in the image, i.e. the possible 
ranges of ),( refref yx . In other words, the transformation is 

defined by: 
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(The r  and β values are derived from the R-table for 

particular known orientations Ω) If the orientation of the 
desired feature is unknown, this procedure is complicated by 
the fact that we must extend the accumulator by incorporating 
an extra parameter to account for changes in orientation. 

B. Object Matching Selection 
GHT is an interesting technique for invariant matching. 

However this technique can be time consuming if we need to 
support various scales and orientations. Also, when we learn 
an object shape, we need to learn different views of this object 
since it is randomly positioned.  

In order to handle these situations we use the following 
strategies: 
1) Only a fixed set of views of the same object are learned. 

If a view is not used in the learning process, the matching 
score will be lower and the object will not be picked. It 
will be processed and picked later. 

2) If all the matching scores are very low, a robot is used to 
shake the bin in order to unravel the objects. This strategy 
can only be used in cases where the objects car not be 
damaged with this manipulation. 

3) To speed-up the processing, a pyramidal matching-search 
strategy is performed. Lower scale images are used for 
the matching and best candidates are verified in upper 
scales.   

4) To reduce the search in the Hough space for orientation 
and scales we use the following: 

i. The orientation is searched using a coarse to fine angle 
search. 

ii. The orientation search is restricted based on the 
learned views of the object. 

iii. The data form the 3D image is used to restrict the scale 
search. 
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Once the matching is performed a score is computed. This 
score represent the best fit between the learned object and its 
match in the image. The index of the best matching model 
corresponds to one of the object views. 

With this approach, different objects can be learned when a 
bin contains various types of objects randomly oriented.  

IV. 3D VISION SYSTEM 
In this work, we use a 3D pattern matching technique for 

object recognition and pose estimation. An algorithm based on 
ICP (Iterative Closest Point) is used. This algorithm is called 
FaR-ICP (Fast and Robust ICP) and permits the robust and 
fast convergence of ICP by exploiting a 2D data for 
initialization and a robust algorithm for outlier detection and 
elimination. 

A. Iterative Closest Point 
Iterative Closest Point (ICP) is an algorithm employed to 

minimize the difference between two clouds of points. ICP is 
often used to reconstruct 2D or 3D surfaces from different 
scans, to localize robots and achieve optimal path planning, to 
co-register 3D models, etc. The algorithm is conceptually 
simple and is commonly used in real-time. It iteratively 
revises the transformation (translation, rotation) needed to 
minimize the distance between the points of two raw scans. 

The ICP Algorithm was developed by Besl and McKay [12] 
and is usually to register two given point sets in a common 
coordinate system [13]. The algorithm calculates iteratively 
the registration. In each iteration step, the algorithm selects the 
closest points as correspondences and calculates the 
transformation, i.e., rotation and translation ),( tR , for 
minimizing the following equation: 
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where mN and dN are the number of points in the model 
set M  and data set D , respectively, and 

ijw  are the weights 
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Equation (2) can be reduced to:  
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, , since the correspondence matrix can be 

represented by a vector V containing the point pairs, i.e., 
[ ]),(,),,(),,( )()(2)(1 21 Ndd dfNdfdf mdmdmdV …= , with 

)(xf the search function returning the closest point. The 
assumption is that in the last iteration step the point 
correspondences, thus the vector of point pairs, are correct. 

In each ICP iteration, the transformation can be calculated 
by any of these four methods:  
1) A SVD based method of Arun et al. [14].  
2) A quaternion method of Horn [15].  
3) An algorithm using orthonormal matrices of Horn et al. 

[16].  
4) A calculation based on dual quaternions of Walker et al. 

[17].  
These algorithms show similar performance and stability 

concerning noisy data [18]. 
Besl and McKay show that the iteration terminates in a 

minimum [12]. Normally, implementations of ICP would use 
a maximal distance for closest points to handle partially 
overlapping point sets. In this case the proof in [12] does no 
longer hold, since the number of points as well as the value of 

),( tRE  might increase after applying a transformation. 
The basic algorithm has been previously extended in a 

number of ways:  
1) Correspondence between a point and a tangent plane to 

overcome the lack of an exact correspondence between 
the two sets [19].  

2) Robustifying the algorithm to the influence of outliers and 
features lacking correspondences [20],[21].  

3) Using a weighted least-square error metric [22]. 
4) Matching between features using a metric trading off 

distance and feature similarity (based local shape 
invariances) [23].  

All of these approaches assume a rigid Euclidean 
transformation between the corresponding features.  

B. Initialization 
Initialization of ICP is critical for achieving fast 

convergence. In our approach we initialize ICP with the 
results obtained in the 2D matching step. The index of the best 
matching model corresponds to one of the object views. This 
information is used as an initial guess for the 3D matching 
process. The 2D matching gives the 2D position of the object 

),( yx and the 2D angles ),( yx θθ along the x-y plan. The 

initial z  coordinates is computed by averaging the 3D data 
from the scanned point cloud corresponding to the detected 
object. The initial guess of angle zθ  along the z axis is 
computed as follows:  
1) When some object features are detected in the 2D image, 

they are extracted in the 3D image and used to estimate 
the angle.  

2) When no feature is present, the initial guess is kept equal 
to 0 degrees.  
 

The initial guess permitted to accelerate the processing and 
increase the robustness of ICP even when some data are 
missing from the object. 
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C. Outlier Processing 
Other important aspect for ICP robustness is the presence of 

outliers. 3D scanning is prone to invalid data points that can 
have dramatic impacts in the obtained results.  For outlier 
detection and elimination we used RANSAC algorithm [24].  

RANSAC or "RANdom SAmple Consensus". It is an 
iterative method to estimate parameters of a mathematical 
model from a set of observed data which contains outliers. It 
is a non-deterministic algorithm in the sense that it produces a 
reasonable result only with a certain probability, with this 
probability increasing as more iteration are allowed. 

A basic assumption is that the data consists of "inliers", i.e., 
data whose distribution can be explained by some set of model 
parameters, and "outliers" which are data that do not fit the 
model. In addition to this, the data can be subject to noise. The 
outliers can come, e.g., from extreme values of the noise or 
from erroneous measurements or incorrect hypotheses about 
the interpretation of data. RANSAC also assumes that, given a 
(usually small) set of inliers, there exists a procedure which 
can estimate the parameters of a model that optimally explains 
or fits this data. 

The input to the RANSAC algorithm is a set of observed 
data values, a parameterized model which can explain or be 
fitted to the observations, and some confidence parameters. 

RANSAC achieves its goal by iteratively selecting a 
random subset of the original data. These data are hypothetical 
inliers and this hypothesis is then tested as follows:  
1) A model is fitted to the hypothetical inliers, i.e. all free 

parameters of the model are reconstructed from the data 
set. 

2) All other data are then tested against the fitted model and, 
if a point fits well to the estimated model, also considered 
as a hypothetical inlier. 

3) The estimated model is reasonably good if sufficiently 
many points have been classified as hypothetical inliers. 

4) The model is estimated again from all hypothetical inliers, 
because it has only been estimated from the initial set of 
hypothetical inliers. 

5) Finally, the model is evaluated by estimating the error of 
the inliers relative to the model. 

This procedure is repeated a fixed number of times, each 
time producing either a model which is rejected because too 
few points are classified as inliers or a refined model together 
with a corresponding error measure. In the latter case, we keep 
the refined model if its error is lower than the last saved 
model. Figure 3 gives the details about the RANSAC 
algorithm. 
 

 
Fig. 3 RANSAC Algorithm 

V.  2D-3D IMAGE REGISTRATION 
In order to process the 2D and 3D images as proposed in 

this work, we need to register the 2D and 3D images. 
Different techniques exist for 2D-3D [25],[26] based on the 
extraction and matching of detected features. In this work we 
use a measuring square like tool with known 3D dimensions 
and visible in 2D and 3D image in order to register the 
obtained images. Since the 3D image is acquired at high 
resolution using a Laser triangulation 3D camera, we use the 
detected tool to affine transform the 3D image to the 2D 
image scale. We obtain two co-registered images with 
corresponding pixel positions. 

 

 
Fig. 4 A measuring square like tool with known 3D dimensions for 

2D and 3D image registration 

VI.  INTELLIGENT DATA PROCESSING AND ROBOT CONTROL 
 The algorithm presented in section 2 is implemented as an 

intelligent data processing manager. This system process the 
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information captured by the 2D and 3D cameras, selects the 
best matches in 2D and 3D space and sorts the objects to be 
manipulated by the robot. The system also monitors the image 
for change detection and dispatches the different processing 
modules. It also computes the position and orientation of the 
object in the robot space and sends necessary controls for 
object manipulation.   

In order to manipulate the objects based on the visual 
information captured by the hybrid 2D-3D vision system, a 
hand-eye calibration procedure is performed. This calibration 
permits the projection of the detected image data to the robot 
space. A simple hand-eye calibration is presented in [27]. 

The intelligent data processing system is illustrated by 
figure 5. 

 

 
Fig. 5 Intelligent data processing system 

VII. RESULTS 
Experimental tests were conducted using a three-axis XYZ 

Cartesian robot. A 5MP 2D camera (2500x1900pix) and a 3D 
laser triangulation camera with a depth resolution of 0.2mm 
were used. The 2D camera was fixed to capture the working 
field of view and a 3D camera was fixed on the moving end of 
the robot in order to scan the objects positioned in the working 
area (Figure 6). 

 

 
Fig. 6 XYZ 3-axis robot system with 2D and 3D cameras 

 
The high resolution 2D camera captures the working area 

(Figure 7) and then the same area is scanned using the high 
speed 3D camera (3000 profiles/s) (Figure 8 a.). The 3D 

image is used to extract and reconstruct 3D points cloud of the 
captured scene (Figure 8 b.).  

 

 
Fig. 7 2D image captured with a 5MP camera 

 

 
(a) 

 
(b) 

Fig. 8 3D image captured with a 3D laser triangulation camera (a); 
Reconstructed 3D points cloud of the objects (b) 

 
The measuring square like tool (upper left area in the 2D 

and 3D images in Figure 7 and 8) is used to register the 2D 
and 3D images.  
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A 2D pattern matching permits the extraction of the N best 
candidates based on the matching scores (Figure 9). 

 

 
Fig. 9 Selected objects 

 
The best candidates are then selected and processed as 

proposed in the algorithm presented in section 2. The highest 
score best match is selected and processed first (Figure 10). 
An area of interest around this best match is selected as 
illustrated in figure 11 a. and b. The 3D point cloud of this 
object is then extracted for a 3D pattern matching using FaR-
ICP (Figure 11 c.). 

 

 
Fig. 10 First best object selected for processing 

 
 

   
(a)                                            (b) 

 

 
(c) 

Fig. 11 First best object: selected area of interest in the 2D image (a); 
and its corresponding 3D image (b); 3D points could extracted for 

ICP (c) 
 
The 3D data is matched with a 3D reference model of the 

object using the proposed ICP strategy presented in section 4. 
The proposed initialization and outlier detection strategies 
permit a robust and fast convergence of the FaR-ICP 
algorithm (Figure 12). 

 The 3D matching permits the computation of the pose data 
of the object, its position and orientation in 
space ),,,,,( zyxzyx θθθ . This information is projected to 

the robot reference frame for manipulation using the 
calibration data extracted during the hand-eye calibration 
procedure. 

 

 
(a) 
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(b) 

Fig. 12 FaR-ICP: starting point (a); after ICP convergence (b). In 
red the reference model and in bleu the extracted object points cloud 

 
The tests conducted with the three-axis Cartesian robot 

show that the positions were correctly computed. Also, the 
computed were verified manually on multiple objects and the 
results correspond to the ground truth.   

The steps presented in this section are repeated for different 
detected objects as presented in the algorithm of section 2. 

VIII.  CONCLUSION 
In this work, we introduce a new algorithm for efficiently 

manipulating randomly positioned and oriented objects. The 
approach uses a hybrid 2D-3D vision system and an 
intelligent control system for selecting the best object to 
manipulate by a robot arm.  

A new modified ICP algorithm for 3D matching was 
presented. FaR-ICP is a fast and robust iterative closest point 
algorithm for extracting the 3D pose of known object in the 
scene using its reference model.  

The performance of the proposed algorithms was 
successfully tested using a three-axis Cartesian robot. 
Ongoing work is conducted in order to adapt the proposed 
system to a six-axis industrial robot manipulator. Since the 
proposed system is generic, it will be adapted and tested with 
major industrial robot arms (Fanuc [28], KUKA [29], ABB 
[30], etc.).  

Future work includes testing the system with different 3D 
acquisition technologies and increasing the speed of different 
processing steps using GPGPU technology.   
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