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A new time discontinuous expanded mixed element

method for convection-dominated diffusion equation

Jinfeng Wang1, Yuanhong Bi1, Hong Li2∗, Yang Liu2∗, Meng Zhao2

Abstract—In this paper, a new time discontinuous expanded
mixed finite element method is proposed and analyzed for two-order
convection-dominated diffusion problem. The proofs of the stability
of the proposed scheme and the uniqueness of the discrete solution
are given. Moreover, the error estimates of the scalar unknown, its
gradient and its flux in the L∞(J̄ , L2(Ω)-norm are obtained.
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I. INTRODUCTION

I
N this paper, we consider the following convection-

dominated diffusion equation





ut −∇ · (a(x, t)∇u) + b · ∇u(x, t)

+ cu(x, t) = f(x, t),Ω× J

u(x, t) = 0, ∂Ω× J̄ ,

u(x, 0) = u0(x), Ω̄,

(1)

where Ω is a bounded convex polygonal domain in Rd(d =
1, 2, 3) with Lipschitz continuous boundary ∂Ω, J = (0, T ]
is the time interval with 0 < T < ∞. u0(x) and f(x, t)
are given functions, coefficients a = a(x, t) and c = c(x, t)
are two smooth and bounded functions, coefficient b(x) =

(b1(x), · · · bd(x)) is a bounded vector, and |b| = (
d∑

i=1

b2i )
1

2 ≤

1

2
.
Convection-dominated diffusion equations are a class of

important evolution partial differential equations, and have

a lot of applications in many physical problems. Ref [1]

proposed some numerical methods based on combining the

method of characteristics with finite element or finite differ-

ence procedures for convection-dominated diffusion problems.

Ware [2] studied a spectral Lagrange-Galerkin method for

convection-dominated diffusion problems. Chen [3] talk a

mixed element method for the convection-dominated diffusion

problems with small parameter ε. Ref [4] proposed and anal-

ysed a nonconforming local projection stabilized method for

the non-stationary convection diffusion problem. John et al. [5]

studied a streamline-diffusion method of nonconforming finite

element approximations for convection-diffusion problems.
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Ref [7] analysed a mixed time discontinuous space-time finite

element method for convection diffusion equations.

In 1997, a expanded mixed finite element method was

proposed and analysed by Arbogast et al. [11]. And some

mathematical theories were given and proved by Chen [12]

for second-order linear elliptic equation, [13] for second-order

quasilinear elliptic equation and [14] for fourth-order elliptic

problems. With the development of the expanded mixed finite

element method, the method were applied to many evolution

equations. In [15], some error estimates of the expanded

mixed element for a kind of parabolic equation were given.

Woodward and Dawson [16] studied the expanded mixed finite

element method for nonlinear parabolic equation. In [17], a

posteriori error estimator for expanded mixed hybrid methods

was proposed. Chen et al. [18] studied a two-grid method for

expanded mixed finite-element solution of semilinear reaction-

diffusion equations. In [19], a two-grid method with expanded

mixed method was studied for nonlinear racction-diffusion

equations. Song and Yuan [20] proposed the expanded upwind-

mixed multi-step method for the miscible displacement prob-

lem in three dimensions. Guo and Chen [21] developed

and analysed an expanded characteristic-mixed finite ele-

ment method for a convection-dominated transport problem.

In 2010, Chen and Wang [22] proposed an H1-Galerkin

expanded mixed method for a nonlinear parabolic equation

in porous medium flow and Liu and Li [23] studied the

H1-Galerkin expanded mixed method for pseudo-hyperbolic

equation. Liu [24], studied the H1-Galerkin expanded mixed

method for RLW-Burgers equation and proved semi- and fully

discrete optimal error estimates. Che et al. [28] studied the H1-

Galerkin expanded mixed method for nonlinear viscoelasticity-

type equation. In [25] and [26], the expanded mixed covolume

method was studied for the linear integro-differential equation

of parabolic type and elliptic problems, respectively. Jiang and

Li [27] studied an expanded mixed semidiscrete scheme for

the problem of purely longitudinal motion of a homogeneous

bar.

In this article, we will develop a new expanded mixed

finite element method based time discontinuous finite element

method [6], [7], [8], [9], [10], prove the stability and unique-

ness for discrete scheme, and obtain the error estimates. In

the near future, we will study the space-time discontinuous

expanded mixed finite element method for some evolution

equations.

II. NOTATIONS AND DEFINITIONS

In order to introduce the mixed time discontinuous space-

time finite element method for equation(1), we discretize the
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time interval [0, T ] by 0 = t0 < t1 < · · · < tN = T
firstly. Let In = (tn, tn+1), time step kn = tn+1 − tn, n =
0, 1, 2, · · · , N − 1. Th is the regular partition of Ω and the

partition unit is τ . Define the space-time domain Q := Ω×J ,

the space-time slab Sn := Ω×In. Suppose Th,n is the regular

partition of Sn and the partition unit is K = τ × In. Let

hn = max
K∈Th,n

(hK), n = 0, 1, 2..N − 1, h = max
n

hn. Define

discrete approximate spaces

Wh,n = {v : v|K ∈ Pk(τ)× Pk(In), ∀K ∈ Th,n},

Qh,n = {v : v|K ∈ Pm(τ)× Pm(In), ∀K ∈ Th,n},

Vh,n = {ϕ : ϕ|K ∈ (Qh,n)
d,∇ · ϕ|K ∈ Qh,n, ∀K ∈ Th,n},

Λh,n = {ϕ : ϕ|K ∈ (Qh,n)
d, ∀K ∈ Th,n},

where Pk denotes the polynomial space of degree at most k .

We introduce definitions and lemmas which will be used in

this paper.

Definition 1: Define the inner product of space-time slab

Sn by (ω, v)n = (ω, v)Sn =
∫
In
(ω, v)ds,

where(ω, v) is the inner product in Ω, and the corresponding

norm is ||v||n = (v, v)
1/2
n = (

∫
In

||v||2
Ω
ds)

1

2 .

Definition 2: At the time level t = tn (n = 0, 1, · · · , N −
1), define the inner product of L2 by 〈ω, v〉n =
〈ω(·, tn), v(·, tn)〉Ωand the corresponding norm is |v|n =

〈v, v〉
1/2
n .

Definition 3: Define the left and right limits by v±(x, t) =
lim

s→0±
v(x, t + s), and the jump term at discontinuous nodes

in time by [v] = v+ − v−. Define norm |||v|||2 = 1

2
(|v|2N +

|v|20 +
N−1∑

n=1

|[v]|2n).

Definition 4: Define the norm of space L2(J, L2(Ω)) by

||v||2Q =
∫ tN

0
||v||2

Ω
dt.

Definition 5: Define the norm of space L∞(J̄ , L2(Ω)) by

max
t∈J̄=[0,T ]

‖ · ‖Ω, where ‖ · ‖Ω denotes the corresponding norm

of Sobolev space L2(Ω).

Definition 6: V = H(div; Ω) = {v ∈ (L2(Ω))d|∇ · v ∈
L2(Ω)}, with norm ‖ v ‖2V =‖ v ‖2 + ‖ ∇ · v ‖2,W = L2(Ω)
or W = {w ∈ L2(Ω)|w|∂Ω = 0},Λ = (L2(Ω))d.

III. THE EXISTENCE, UNIQUENESS AND STABILITY FOR

SEMI-DISCRETE SCHEME

Introducing the two auxiliary variables λ = −∇u and σ =
−a(x, t)∇u = aλ, we obtain the following first-order system

for (1)






(a) ut +∇ · σ − b · λ+ cu = f, (x, t) ∈ Ω× J,

(b) λ+∇u = 0, (x, t) ∈ Ω× J,

(c) σ − aλ = 0, (x, t) ∈ Ω× J,

(d) u(x, t) = 0, (x, t) ∈ ∂Ω× J̄ ,

(e) u(x, 0) = u0(x), x ∈ Ω.

(2)

The new time discontinuous expanded mixed weak formula-

tion of (2) is as follows






(a)

∫ tN

0

(ut, w)dt+

∫ tN

0

(∇ · σ,w)dt−

∫ tN

0

(b · λ,w)dt

+

N−1∑

n=1

〈[u], w+〉n + 〈u+, w+〉0 +

∫ tN

0

(cu, w)dt

=〈u,w+〉0 +

∫ tN

0

(f, w)dt,

(b)

∫ tN

0

(λ, v)dt−

∫ tN

0

(u,∇ · v)dt = 0, ∀v ∈ V, t ∈ J,

(c)

∫ tN

0

(aλ, µ)−

∫ tN

0

(σ, µ) = 0, ∀µ ∈ λ, t ∈ J.

(3)

That is in interval In = (tn, tn+1), it holds






(a) (ut, w)n + (∇ · σ,w)n − (b · λ,w)n

+ 〈[u], w+〉n + (cu, w)n = (f, w)n,

(b) (λ, v)n − (u,∇ · v)n = 0,

(c) (aλ, µ)n − (σ, µ)n = 0.

(4)

Then, the semi-discrete mixed finite element scheme for (4)

is to determine (σh, λh, uh) ∈ Vh,n ×Λh,n ×Wh,n such that






(a) (uh
t , ω

h)n + (∇ · σh, wh)n − (b · λh, wh)n

+ 〈[uh], wh
+〉n + (cuh, wh)n = (f, wh)n,

(b) (λh, vh)n − (uh,∇ · vh)n = 0,

(c) (aλh, µh)n − (σh, µh)n = 0.

(5)

We will prove the stability for semi-discrete scheme (5).

Theorem 3.1: The semi-discrete scheme (5) is stable and

holds the following inequality

max
0≤t≤T

(||uh||Ω + ||σh||Ω + ||λh||Ω) ≤ M(||uh0||Ω + ||f ||Q),

where M is a constant independent of hn and kn.

Proof: Choosing wh = uh, vh = σσσh,µµµh = λλλh in (5) and

summing from n = 1 to N , we have

∫ tN

0

(uh
t , u

h)dt+

∫ tN

0

(uh,∇ · σσσh)dt−

∫ tN

0

(b · λh, uh)dt

+

N−1∑

n=1

〈[uh], uh
+〉n + 〈uh

+, u
h
+〉0 +

∫ tN

0

(cuh, uh)dt

=〈uh, uh
+〉0 +

∫ tN

0

(f, uh)dt,

∫ tN

0

(λh,σσσh)dt−

∫ tN

0

(uh,∇ · σσσh)dt = 0,

∫ tN

0

(aλλλh,λλλh)dt−

∫ tN

0

(σσσh,λλλh)dt = 0.

(6)
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Adding the three equations, we obtain
∫ tN

0

(uh
t , u

h)dt+

∫ tN

0

(aλλλh,λλλh)dt−

∫ tN

0

(b · λλλh, uh)dt

+
N−1∑

n=1

〈[uh], uh
+〉n + 〈uh

+, u
h
+〉0 +

∫ tN

0

(cuh, uh)dt

=〈uh, uh
+〉0 +

∫ tN

0

(f, uh)dt.

(7)

Integration by parts for the first term in (7), we have

|||uh|||2 +

∫ tN

0

(aλλλh,λλλh)dt+

∫ tN

0

(cuh, uh)dt

=〈uh, uh
+〉0 +

∫ tN

0

(f, uh)dt+

∫ tN

0

(b · λλλh, uh)dt.

(8)

Using Cauchy-Schwarz inequality and Young inequality, we

obtain

|||uh|||2 +

∫ tN

0

||λλλh||2Ωdt+

∫ tN

0

||uh||2Ωdt

≤||uh
0 ||

2
Ω +

∫ tN

0

||f ||2Ωdt.

(9)

Take µµµh = σσσh in (5c) and use Young inequality to get
∫ tN

0

||σσσh||2Ωdt ≤ C0

∫ tN

0

||λλλh||2Ωdt. (10)

Combing (9) and (10) and taking the max norm with respect

to time t, we get the conclusion for theorem 3.1.

Theorem 3.2: There exists a unique discrete solution to

semi-discrete scheme (5).

Proof: In fact, since (5) is linear, it suffices to show that

the associated homogeneous system





(a) (uh
t , w

h)n + (∇ · σσσh, wh)n − (b · λλλh, wh)n

+ 〈uh
+, w

h
+〉n + (cuh, wh)n = 0,

(b) (λλλh, vh)n − (uh,∇ · vh)n = 0,

(c) (aλλλh,µµµh)n − (σσσh,µµµh)n = 0,

(d) (uh(0), wh) = 0,

(11)

has only the zero trivial solution.

Taking wh = uh, vh = σσσh,µµµh = λλλh in (11) and adding the

three equations, we get

|uh
−
|2n+1 − |uh

+|
2
n + 2||a

1

2λλλh||2n

+ 2|uh
+|

2
n + 2||c

1

2uh||2n = (b · λλλh, uh)n.
(12)

Using Cauchy-Schwartz inequality, we have

|uh
−
|2n+1 + |uh

+|
2
n + 2(a0 − ε)||λλλh||2n

+ 2(c0 − 2ε0)||u
h||2n ≤ 0

(13)

So, we have λλλh = 0 and uh = 0.

Choosing µµµh = σσσh in (11c), using Cauchy-Schwarz inequal-

ity and Young inequality, we have

||σσσh||n ≤ C||λλλh||n. (14)

so, we have σσσh = 0.

IV. ERROR ESTIMATES FOR L∞(J̄ , L2(Ω)) NORM

In order to analyze the error estimates of the method,

we first introduce the expanded mixed elliptic projection

associated with our equations.

Lemma 4.1: Let (ũh, λ̃λλh, σ̃σσh) ∈ Wh,n × Vh,n × ΛΛΛh,n be

given by the following mixed relations(see Refs [12], [13],

[15])






(a) (∇ · (σσσ − σ̃σσh), wh)n

+ (b · (λλλ− λ̃λλh), wh)n = 0, ∀ωh ∈ Wh,n,

(b) (λλλ− λ̃λλh, vh)n − (u− ũh,∇ · vh)n = 0, ∀vh ∈ Vh,n,

(c) (a(λλλ− λ̃λλh),µµµh)n − (σσσ − σ̃σσh,µµµh)n = 0, ∀µµµh ∈ ΛΛΛh,n.
(15)

the corresponding approximation properties hold

‖ λλλ− λ̃λλh ‖≤ Chl(‖ λλλ ‖l + ‖ σσσ ‖l), 1 ≤ l ≤ k + 1, (16)

‖ σσσ − σ̃σσh ‖≤ Chl(‖ λλλ ‖l + ‖ σσσ ‖l), 1 ≤ l ≤ k + 1, (17)

‖ u− ũh ‖≤

{
Ch ‖ u ‖2, k = 1,
Chl ‖ u ‖l, 2 ≤ l ≤ k, k ≥ 2.

(18)

Theorem 4.2: Let (σσσ,λλλ, u) and (σσσh,λλλh, uh) be the solution

to (2) and (5), respectively. There exists a positive constant

C independent of the spatial mesh parameters hn and time-

discretization parameter kn such that

max
t∈J̄

(||σσσ − σσσh||Ω + ||λλλ− λλλh||Ω)

≤

{
Ch(||u||2,Q + ||σσσ||2,Q + ||λ||2,Q), k = 1,
Chl(||u||l,Q + ||σσσ||l,Q + ||λ||l,Q), 2 ≤ l ≤ k, k ≥ 2,

max
t∈J̄

||u− uh||Ω ≤

{
Ch||u||2,Q, k = 1,
Chl||u||l,Q, 2 ≤ l ≤ k, k ≥ 2.

Proof: Let

u− uh = u− ũh + ũh − uh = ζ1 + ζ2,

σσσ − σσσh = σσσ − σ̃σσh + σ̃σσh − σσσh = ηηη1 + ηηη2,

λλλ− λλλh = λλλ− λ̃λλ
h
+ λ̃λλ

h
− λλλh = θθθ1 + θθθ2.

Using (3)-(5) and Lemma, we have

∫ tN

0

(ut − uh
t , w

h)dt+

∫ tN

0

(∇ · ηηη2, w
h)dt

−

∫ tN

0

(b · θθθ2, w
h)dt+

N−1∑

n=1

〈
[u− uh], ωh

+

〉
n

+
〈
(u+ − uh

+), w
h
+

〉
0
+

∫ tN

0

(c(u− uh), wh)dt

=
〈
u− uh, wh

+

〉
0
,

∫ tN

0

(θθθ2, vh)dt−

∫ tN

0

(ζ2,∇ · vh)dt = 0,

∫ tN

0

(aθθθ2,µµµ
h)dt−

∫ tN

0

(ηηη2,µµµ
h)dt = 0.

(19)
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Take wh = ζ2, vh = ηηη2,µµµ
h = θθθ2 in (19) and add the three

equations to obtain

∫ tN

0

(ut − uh
t , ζ2)dt−

∫ tN

0

(b · θθθ2, ζ2)dt

+
N−1∑

n=1

〈
[u− uh], ζ2+

〉
n
+
〈
(u+ − uh

+), ζ2+
〉
0

+

∫ tN

0

(c(u− uh), ζ2)dt+

∫ tN

0

(aθθθ2, θθθ2)dt

=
〈
(u− uh), ζ2+

〉
0
.

(20)

Using the definition of |||v|||, the above equation can be

written as

|||ζ2|||
2 +

∫ tN

0

(ζ1t, ζ2)dt+

∫ tN

0

(cζ2, ζ2)dt

+

∫ tN

0

(cζ1, ζ2)dt−

∫ tN

0

(b · θθθ2, ζ2)dt

+

N−1∑

n=1

〈[ζ1], ζ2+〉n + 〈ζ1+, ζ2+〉0

+

∫ tN

0

(aθθθ2, θθθ2)dt =
〈
(u− uh), ζ2+

〉
0
.

(21)

Integration by parts for the second term in the left hand side

of (21)

|||ζ2|||
2 +

∫ tN

0

(cζ2, ζ2)dt+

∫ tN

0

(aθθθ2, θθθ2)dt

= 〈ζ1 + ζ2, ζ2+〉0 +

∫ tN

0

(ζ2,t, ζ1)dt

+

N−1∑

n=1

〈ζ1−, [ζ2]〉n − 〈ζ1−, ζ2−〉N

−

∫ tN

0

(cζ1, ζ2)dt+

∫ tN

0

(b · θθθ2, ζ2)dt.

(22)

Using Cauchy-Schwarz inequality, Young inequality and the

definition of |||v|||, we have

|||ζ2|||
2 +

1

2

∫ tN

0

||ζ2||
2
Ωdt+

1

2

∫ tN

0

||θθθ2||
2
Ωdt

≤
1

2
|||ζ2|||

2 +K(
N∑

n=1

|ζ1−|
2 + ||ζ1||

2
Q).

(23)

Using the inequality (16)-(18), we obtain

|||ζ2|||+ ||θθθ2||Q + ||ζ2||Q ≤ Chl||u||l,Q. (24)

Take µµµh = ηηη2 in (19) and use Cauchy-schwarz inequality to

get

||ηηη2||Q ≤ C||θθθ2||Q. (25)

Apply (24), (25), (16)-(18) and the triangle inequality to get

the conclusion of theorem 4.2.

V. CONCLUDING REMARKS

In this article, we propose a new time discontinuous ex-

panded mixed finite element scheme for convection-dominated

diffusion equation. In the near further, the proposed method

will be applied to others evolution equations such as evolution

integro-differential equations.
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