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Abstract—Biclustering aims at identifying several biclusters that 

reveal potential local patterns from a microarray matrix. A bicluster is 
a sub-matrix of the microarray consisting of only a subset of genes 
co-regulates in a subset of conditions. In this study, we extend the 
motif of subspace clustering to present a K-biclusters clustering (KBC) 
algorithm for the microarray biclustering issue. Besides minimizing 
the dissimilarities between genes and bicluster centers within all 
biclusters, the objective function of the KBC algorithm additionally 
takes into account how to minimize the residues within all biclusters 
based on the mean square residue model. In addition, the objective 
function also maximizes the entropy of conditions to stimulate more 
conditions to contribute the identification of biclusters. The KBC 
algorithm adopts the K-means type clustering process to efficiently 
make the partition of K biclusters be optimized. A set of experiments 
on a practical microarray dataset are demonstrated to show the 
performance of the proposed KBC algorithm. 
 

Keywords—Microarray, Biclustering, Subspace clustering, Mean 
square residue model.  

I. INTRODUCTION 
enerally, the measurements of a microarray experiment 
are organized using a matrix format, called microarray 

matrix, whose rows represent genes and columns represent 
various specific experimental conditions. Each element in the 
matrix records a numeric value that represents the expression 
level of a particular gene under a given experimental condition 
[1]. Given a microarray matrix, biclustering aims at identifying 
subgroups of genes and subgroups of conditions by performing 
simultaneous clustering of both genes and conditions instead of 
clustering these two dimensions separately [2]. In each 
identified bicluster, each gene is identified based on only a 
subset of all conditions while each condition is selected using 
only a subset of all genes [3]. Through biclustering, biologists 
can efficiently annotate the genes with unknown functions and 
discover the functional relationships between genes [4].  
 A type of clustering methods, named subspace clustering [5], 
can find clusters from subspaces of data instead of the entire 
data space so that each found cluster is a set of objects 
identified by a subset of dimensions and different clusters are 
represented in different subsets of dimensions. Therefore, 
subspace clustering is suitable to address the microarray 
biclustering issue. The simultaneous clustering and attribute 
discrimination (SCAD) algorithm [6], one of the classical 
subspace clustering methods, adopts the K-means type 
clustering process [7] to efficiently make the partition of K 
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clusters converge toward an optimal solution. During its 
clustering process, the SCAD algorithm adds an additional step 
to compute weights of dimensions in different clusters. The 
weight of each dimension in each cluster is adaptively adjusted 
to reflect the contribution of the dimension in forming the 
particular cluster. Through the SCAD algorithm, the subspaces 
of all K clusters can be respectively identified by their 
corresponding dimension weights.  

In this study, we aim at extending the motif of the SCAD 
algorithm to develop a novel K-biclusters clustering (KBC) 
algorithm. The KBC algorithm is more appropriate for the 
biclustering issue than the SCAD algorithm since it adopts a 
more meaningful objective function. Besides minimizing the 
dissimilarities between genes and bicluster centers within all 
biclusters, the objective function of the KBC algorithm 
additionally takes into account how to minimize the residues 
within all biclusters. The residue is an indicator that measures 
the difference between the observed expression level of a 
particular gene under an experimental condition and its 
corresponding expected value [2]. Based on the notion of 
residue, the Mean Square Residue (MSR) model is accordingly 
defined to quantify the value coherence of each bicluster. 
Therefore, we attempt to integrate the MSR model into the 
objective function of the KBC algorithm. To accomplish the 
integration successfully, the MSR model is refined as a 
generalized form based on the memberships of a gene and a 
condition that belong to each bicluster respectively. In addition, 
the objective function also maximizes the entropy of conditions 
to stimulate more conditions to contribute the identification of 
biclusters. Similar to the SCAD algorithm, the proposed KBC 
algorithm adopts the K-means type clustering process to 
efficiently make the partition of K biclusters be optimized 
simultaneously through finite iterations. As a result, the 
biologically meaningful information hidden in a microarray 
matrix can be successfully uncovered through the proposed 
KBC algorithm.  

II. RELATED WORKS 

A. Mean squared residue model for biclustering 
Assume a set of genes G={gi|i=1,…,I} is experimented 

under a set of experimental conditions C={cj|j=1,…,J}, and 
then the microarray matrix E with size JI × , is accordingly 
obtained. An element eij in E records the observed expression 
level of the gene gi under the condition cj. gi=(ei1,…,eij,…,eiJ) 
represents its all expression levels under all J conditions is 
represented as. Similarly, cj =(e1j,…,eij,…,eIj) represents its all 
expression levels for all I genes. A bicluster Bk essentially 
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corresponds to a sub-matrix of E that exhibits some coherent 
tendency. Note that k=1,…,K where K is the number of 
biclusters determined by users in advance. Each bicluster Bk is 
consisting of expression levels derived from a subset of G, 
denoted as Gk ∈ G, and a subset of C, denoted as Ck ∈ C. 
Assume the number of genes in Gk is Ik, Ik ≤I, and the number of 
conditions in Ck is Jk, Jk ≤J, so that the bicluster size of Bk 
equals to Ik  multiplied by Jk. Cheng and Church [2] proposed 
an additive-based value-coherent bicluster model to translate 
an expression level eij in Bk into the sum of different effects, 
shown as Equation (1):  
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value-coherent if all eij in Bk satisfies:  
 

kij
kk

Ij
k

iJij eeee B∈∀−+= for    )()()( µ                                          (2) 
 

However, given an arbitrary sub-matrix of E, it might not be 
a fully value-coherent bicluster. To quantify the value 
coherence of a bicluster, the notion of residue is introduced to 
calculate the difference between the observed and expected 
values of eij. The residue rij

(k) with respect to eij in Bk can be 
calculated as follows:  
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The lower the residue rij

(k), the stronger the coherence of eij in 
the bicluster Bk is. Accordingly, the total incoherence of the 
genes Gk and the conditions Ck in Bk can be measured using the 
mean squared residue (MSR) defined as Equation (4):  
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The lower the MSR value of Bk, the stronger the coherence 

exhibited by Bk is, i.e., the better the quality of Bk is. As a result, 
the biclustering problem can be regarded as an optimization 
model to find out the most appropriate K biclusters so that the 
sum of the K mean squared residues of all K biclusters can be 
minimized, shown as follows:  
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In the past decade, many scholars proposed their individual 
methods to optimize this MSR model [8, 9, 10, 11, 12, 13, 14].   

B. Simultaneous clustering and attribute discrimination 
algorithm  

Frigui and Nasraoui [6] proposed the simultaneous 
clustering and attribute discrimination (SCAD) algorithm for 
subspace clustering of large high-dimensional sparse data. 
When applying the SCAD algorithm to the biclustering issue, 
not only all I genes in G can be partitioned into K biclusters but 
also different weighting values will be assigned to different 
conditions for each bicluster based on the importance of the 
conditions in identifying the corresponding biclusters. Assume 
the all I genes have to be clustered as K biclusters 
B={Bk|k=1,…,K} where Bk represents the kth bicluster with a 
center ok=(ok1,…,okj,…,okJ) also contains J values. Note that the 
all K bicluster centers are organized by a set O={ok|k=1,…,K}. 
Therefore, the objective of SCAD is to minimize the sum of 
dissimilarities among all I genes and all K centers. The 
dissimilarity between gi and ok is defined as:  
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where wkj is the weight of the jth condition for the kth bicluster, 
and β (>1) is the parameter that controls the power of condition 
weight and is given by users. Based on Equation (6), the 
objective function of the SCAD algorithm is presented as:  
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where U is a KI ×  matrix that records the gene-bicluster 
memberships and uik is an element in U that represents the 
membership of gene gi belongs to bicluster Bk. In addition, 
W={wkj|k=1,…,K and j=1,…,J} is a JK ×  matrix that records 
the weights of all J conditions for the K biclusters. α (>1) is the 
fuzzifier parameter given by users that controls the fuzziness of 
the memberships. When O and W are fixed, the update equation 
of uik for Equation (7) is shown as:  
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When U and W are fixed, the update equation of okj for 
Equation (7) is given by:  
 

∑∑ ×=
==

I

i
ik

I

i
ijikkj ueuo

11
)()( αα   JjKk ≤≤≤≤  1 ,1                      (10) 

 
Finally, the update equation of wkj is shown as Equation (10) 

when U and O are fixed:  
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Initially, O and W are randomly generated randomly. 

Afterward, the SCAD algorithm repeats to execute the three 
update equations (9), (10) and (11) until all K bicluster centers 
in O remain the same without being changed. The pseudo-code 
of the SCAD algorithm is illustrated in Fig. 1. Through the 
SCAD algorithm, which genes belong to the bicluster Bk can be 
recognized based on the elements uik for i=1,…,I in U. 
Similarly, which conditions are used for the bicluster Bk can be 
identified based on the elements wkj for j=1,…,J in W. 
Therefore, the goal of biclustering can be achieved by the 
SCAD algorithm.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 The pseudo-code of the SCAD algorithm  

III. THE PROPOSED K-BICLUSTERS CLUSTERING ALGORITHM 
In this study, we present a novel K-biclusters clustering 

(KBC) algorithm which extends the motif of the SCAD 
algorithm for effective microarray biclustering. First, we 
introduce how to re-express the MSR model used to quantify 
the value coherence of each bicluster as a refined form. The 
refined MSR model is integrated with the original objective of 
SCAD to construct the objective function of the KBC algorithm. 
Therefore, the new objective function not only minimizes the 
dissimilarities among genes and centers within biclusters but 
also minimizes the total residues within biclusters. Its 
corresponding computational procedures to optimize the 
objective function are then expounded.  

A. Refinement of the MSR model  
Through using the matrixes U and W to represent the 

gene-bicluster and condition-bicluster memberships, the base 

kkj ij
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the background effort kkki kj ij
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bicluster Bk can be respectively redefined as:  
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Accordingly, the residue rij

(k) with respect to eij in Bk for 
i=1,…,I and j=1,…,J is also re-defined as:  
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where uik ∈ {0,1} is an element in U that represents the 

membership of gene gi belongs to bicluster Bk, and wkj ∈ [0,1] 
is an element in W that represents the membership of condition 
cj belongs to bicluster Bk. When the matrixes U and W are 
known, the value of each residue rij

(k) can be effortlessly 
calculated using Equation (15). Based on Equation (15), we 
define a novel form of MSR model used to measure the 
incoherence of Bk as:  
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The lower the MSR value of Bk, the stronger the coherence 

exhibited by Bk is. The refined MSR model that minimizes the 
sum of K MSR values of all K biclusters is shown as:  
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When the value of ∑
=

K

k

kMSR
1

)(  is small, each of the K 

biclusters is compact or separated from other biclusters. When 

the value of ∑
=

K

k

kMSR
1

)(  is large, by contrast, some of these K 

biclusters are not compact or separated from other biclusters. 
Through the above analysis, the purpose of refined MSR model 
is close to the purpose of the SCAD algorithm. Therefore, the 
objective function in Equation (17) can be integrated with the 
objective function of SCAD in Equation (7) for effective 
microarray biclustering.  

B. The computational procedure of the KBC algorithm 
By integrating the two objectives Equation (7) and Equation 

(17) together, the new objective function used in the proposed 
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KBC algorithm is written as follows:  
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The first term in Equation (18) is used to minimize the 

within-bicluster dispersion, i.e. to minimize the dissimilarities 
among genes within biclusters. The second term in Equation 
(18) is used to minimize the within-bicluster incoherence, i.e. to 
minimize the total residues within biclusters. For stimulating 
more conditions to contribute the identification of biclusters, 
further, the new objective function in Equation (18) should 
involve an additional term used to maximize the entropy of 
conditions. Entropy is the measurement of information and 
uncertainty on a random variable [15]. In this study, we assume 
the condition weight is a random variable. Therefore, if the 
values of condition weights are distributed uniformly, the 
condition weights have the maximum entropy, i.e. maximal 
uncertainty or minimal information to know the value of a 
condition weight. The entropy of all condition weights is 

formulated as ∑ ∑−
= =
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i.e. to make the condition weights be distributed as uniformly as 
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to achieve a minimization goal, we have to add the negative 

term of ∑ ∑−
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ln  into Equation (18) when taking into 

account the entropy of all condition weights. As a result, the 
new objective function is updated as Equation (20):  
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where its corresponding constraints is the same with Equation 
(19). The parameter δ, δ>0, controls the incentive strength for 
biclustering on more conditions, and is given by users. 

Minimizing the above objective function JKB with the 
constraints is considered as a constrained nonlinear 
optimization problem. By introducing a vector of K Lagrangian 

multipliers λ=[λ1,…,λk,…,λK] to the constraints 1
1

=∑
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j
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k=1,…,K, the minimization of Equation (20) can be 
transformed to minimize a Lagrangian function shown as 
Equation (21): 
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If )ˆ,ˆ,ˆ,ˆ( λOWU  is able to minimize ),,,( λOWUΨ , the 

gradient of ),,,( λOWUΨ  in all variables must vanish. That is, 
the first partial differentiation of ),,,( λOWUΨ  with respect to 
uik, wkj, okj and λk must equal to zero. Therefore, we first fix 

UU ˆ= , WW ˆ=  and λλ ˆ=  to make the gradient of 
),,,( λOWUΨ  with respect to okj be zero, and then we obtain:  
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From Equation (22), we obtain the Equation for updating 
bicluster centers:  
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Similarly, we afterward fix WW ˆ= , OO ˆ=  and λλ ˆ=  to 

acquire the Equation for assigning each gene to a proper 
bicluster:  
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Finally, the minimization problem in Equation (21) can be 
decomposed into K independent minimization sub-problems: 
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When each of the K independent sub-problems can be 
minimized, minimizing Equation (21) is accordingly 
accomplished. Therefore, by setting the gradient of kΨ  with 
respect to λk and wkj to zero, we obtain  
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From Equation (27), we obtain  
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Substituting Equation (28) into Equation (26), we have  
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It follows that  
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Substituting Equation (30) back to Equation (28), we obtain 
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As shown in Equation (31), wkj is inversely proportional to 
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2)(2 ])()([  if δ>0. It means the condition cj is 

more important for the bicluster Bk, i.e. wkj 
is larger, when all 

genes are closer to the center ok and all residues are smaller in 
terms of the condition cj for the bicluster Bk. If δ=0, only one 
condition weight will equals to one
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condition weights. That is, each bicluster contains only one 
important condition. It may not be desirable for the biclustering 

issue. If δ>0, wkj 
is proportional to ∑ +−
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is also obviously contradictory to the original essence of 
condition weighting. Therefore, δ is suggested to be δ>0.  

Given a microarray matrix E consisting of the gene set G and 
the condition set C, the KBC algorithm initially sets the J 
condition weights for each bicluster by the same value, i.e. 
wkj=1/J for k=1,…,K and j=1,…,J. Simultaneously, each of the 

all I genes is randomly assigned to one of the all K biclusters, i.e. 
the values of uik 

for k=1,…,K and i=1,…,I are determined 
randomly at the beginning. Subsequently, the KBC algorithm 
adopts the K-means type clustering procedures to make the K 
biclusters be monotonously optimized by iteratively executing 
the following four steps through finite iterations:  
 
1. Calculate the values of all residues rij

(k) for k=1,…,K, 
i=1,…,I and j=1,…,J based on the all obtained uik and wkj 
using Equation (15).  

2. Update the K bicluster centers O={ok|k=1,…,K}, i.e. to 
update kjo  for k=1,…,K and j=1,…,J using Equation (23).  

3. Assign each gene gi to a proper bicluster Bk, i.e. to 
determine uik for k=1,…,K and i=1,…,I using Equation 
(24).  

4. Evaluate the new weights of all conditions for each 
bicluster, i.e. to calculate wkj for for k=1,…,K and j=1,…,J 
using Equation (31).  

 
After finite iterations, assume the all K bicluster centers have 

not be changed at the tth iteration. It means that each center ok(t) 
at the tth iteration is equal to ok(t+1) at the (t+1)th iteration for 
k=1,…,K where t is the number index of iteration, i.e. 

ε<−+
=

)()1( max
,,1

tt kkKk
oo

L
 where ε  is the user-specified 

threshold parameter. Note that 0.1=ε  is adopted in this study. 
In this situation, it is declared that the objective of KBC 
algorithm has been converged on a minimum state at the tth 
iteration. The total computational complexity of the KBC 
algorithm is O(KIJt). It shows that the computational 
complexity increases linearly as the number of genes, 
conditions, and biclusters increases. Therefore, the KBC 
algorithm is scalable for a large microarray matrix. The 
pseudo-code of the KBC algorithm is shown as Fig. 2.  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 The pseudo-code of the proposed KBC clustering algorithm 

IV. EXPERIMENTS 
The performance of the proposed K-biclusters clustering 

(KBC) algorithm is compared with that of the simultaneous 
clustering and attribute discrimination (SCAD) algorithm 
through several experiments. The yeast cell cycle dataset [16] 
commonly used in the literatures serves as the benchmark 
dataset in our experiments. The dataset records the expression 
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levels of 384 genes under 17 conditions. Each gene in the 
dataset has been biologically characterized and classified to one 
of the five phases of cell cycles, including early G1 phase, late 
G1 phase, S phase, G2 phase and M phase [17]. The genes in 
each phase of the cell cycle present higher expression levels at 
specific conditions than those at other conditions, so each phase 
of cell cycle can be considered as a bicluster. It means there are 
five biclusters existing in this dataset in which the bicluster 
level of each gene has been known. Its data and legend can be 
downloaded from http://faculty.washington.edu/kayee/model/.  

After executing the KBC or SCAD algorithms, their 
generated matrixes U and W can reveal the biclustering results 
to users. For the KBC algorithm, if uik=1 in U, the gene gi 
belongs to the bicluster Bk. If uik=0, otherwise, gi does not 
belong to Bk. Meanwhile, if wkj ≥1/J in W, i.e. the condition 
weight wkj is larger than the average of all J condition weights, 
then the condition cj belongs to the bicluster Bk. If wkj<1/J, 
otherwise, cj does not belong to Bk. For the SCAD algorithm, if 
uik≥1/K in U, then the gene gi belongs to the bicluster Bk. If 
uik<1/K, otherwise, gi does not belong to Bk. Meanwhile, if 
wkj≥1/J in W, then the condition cj belongs to the bicluster Bk. If 
wkj<1/J, otherwise, cj does not belong to Bk. From the 
biclustering result generated by an algorithm, therefore, we 
know each bicluster contains which genes and which 
conditions according to these principles.  

Because the yeast cell cycle dataset is a labeled microarray 
dataset, the performance of an algorithm for the biclustering 
issue can be evaluated based on the accuracy rates of bicluster 
recognition. The accuracy rate is the number of genes that are 
correctly classified into the corresponding biclusters divided by 
the number of all genes. The larger the accuracy rate, the better 
the effectiveness of an algorithm is. The number of biclusters 
K=5 is directly assigned to the two algorithms. Further, two 
parameters α and β have to be assigned for the SCAD algorithm. 
We take six values of α=0.5, 1, 1.5, 2, 2.5, 3 and six values of 
β=0.5, 1, 1.5, 2, 2.5, 3 to form 36 parameter pairs of (α,β) for 
the SCAD algorithm. By contrast, only one parameter δ is 
specified for the proposed KBC algorithm. Therefore, eight 
values of δ=0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 are concerned in our 
experiments. The SCAD and KBC algorithms both randomly 
generate initial bicluster centers. For sake of fair comparison, 
they both need to be performed five times for each parameter 
setting and the average of experiment results in the five runs is 
finally recorded.  

 Fig. 3 shows the accuracy rates using the SCAD algorithm 
with different parameter settings for this dataset. As shown in 
Fig. 3, the relationship between the accuracy rate and the 
parameters (α,β) is seen as a mountain function in which the 
peak (i.e. corresponding to the highest accuracy rate) occurs at 
(α,β)=(2,1.5). On the other hand, the accuracy rates using the 
KBC algorithm with different values of δ for this dataset is 
shown as Fig. 4. When δ=0, i.e. disregarding the effort of the 

term ∑ ∑ ×
= =

K

k

J

j
kjkj ww

1 1
ln  in Equation (20), the generated accuracy 

rate is relatively poor. When δ≥1 is given, the generated 
accuracy rate will become relatively good.  

 
Fig. 3 The accuracy rates using the SCAD algorithm with different 

settings of (α,β) for the yeast cell cycle dataset  
 

 
Fig 4. The accuracy rates using the KBC algorithm with different 

values of δ for the yeast cell cycle dataset  
 

The comparisons between the two algorithms based on 
accuracy rate are summarized in Table 1. From Table 1, we 
know that the effectiveness of the proposed KBC algorithm is 
superior to the effectiveness of the SCAD algorithm because its 
average of accuracy rates is relatively high. In addition, using 
the KBC algorithm can get the smaller standard deviation of 
accuracy rates than using the SCAD algorithm. It means that 
the effectiveness of the KBC algorithm is more insensitive to 
the parameter settings than the SCAD algorithm. Figure 4 also 
reveals this contention since the high accuracy rates can be 
obtained as long as δ≥1. The insensitivity to the parameter 
settings will facilitate the manipulation of the KBC algorithm 
for biologists.  
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Table I  The summarization of accuracy rates generated by the SCAD 
and KBC algorithms for the yeast cell cycle dataset  

 

V. CONCLUSION 
In this study, we present the K-biclusters clustering (KBC) 

algorithm for microarray biclustering. To achieve effective 
biclustering, the KBC algorithm attempts to minimize the 
dissimilarities between genes and bicluster centers, to minimize 
the residues within all biclusters, and to involve conditions as 
many as possible. Through our experiments on the yeast cell 
cycle dataset, the KBC algorithm is indeed effectively conduct 
the microarray biclustering issue. By following the K-means 
type clustering process, furthermore, the algorithm is capable 
of efficiently finding several biclusters simultaneously. It 
prevents from the more duplication degrees among biclusters 
occurred in traditional bilcustering approaches. In addition to 
the number of biclusters, only one parameter δ needs to be 
assigned to the KBC algorithm. Our experiment results show 
that the performance of the algorithm is insensitive to the 
parameter setting, which facilitates the manipulation of the 
algorithm for users.  

How to assign a proper number of biclusters K is still a 
challenge for the KBC algorithm, especially when applying it 
to real applications. It is well-known that the biclustering result 
will be highly influenced by the parameter. In the future, 
therefore, we will exploit the notion of data self-agglomeration 
to refine the KBC algorithm so that the KBC algorithm will 
automatically determine the proper number of biclusters 
without manual setting.  
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