
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2531

Improved Algorithms for Construction of
Interface Agent Interaction Model

Huynh Quyet Thang, Le Hai Quan

Abstract—Interaction Model plays an important role in Model-
based Intelligent Interface Agent Architecture for developing
Intelligent User Interface. In this paper we are presenting some
improvements in the algorithms for development interaction model of
interface agent including: the action segmentation algorithm, the
action pair selection algorithm, the final action pair selection
algorithm, the interaction graph construction algorithm and the
probability calculation algorithm. The analysis of the algorithms also
presented. At the end of this paper, we introduce an experimental
program called “Personal Transfer System”.

Keywords—interface agent, interaction model, user model.

I. INTRODUCTION

ODEL-BASED Software Agent for developing
Intelligent Interface Agent is a good mathematical

problem which was studied in the recent years. Neal Lesh,
Charles Rich and fellow-workers developed researches and
put forward Architecture model MI2A (Model-based
Intelligent Interface Agent Architecture) [1,2]. In this one,
Interaction model and Task model play a very important role
[1]. Predictor agent used Interaction model for predicting the
future action as well as the purpose of users [1]; User Model
Manager updated Interaction history and Interaction model.
Yanguo Jing [3,4,5] studied process proposal and algorithms
for developing interaction model of interface agent. In this
paper we presented improving the algorithms for development
interaction model of interface agent, which helps it to be
developed more effectively.
The structure of this paper is developed as follows: In section
II we presented Interaction model, method of developing it
and algorithms applied in Development interaction model
process. In section III we presented in detail algorithms
applied in Development interaction model process and
proposal improvement applied for algorithms with analysis,
evaluation of algorithms complication level. In section IV we
presented experiment installation on specific application. In
section V is evaluation and conclusion.

Manuscript received January 15, 2007. This work was supported in part by
the Ministry of Science and Technology of Vietnam under Grant
KHCB2.034.06.

Huynh Quyet Thang is a Head of Software Engineering Department, Hanoi
University of Technology, Hanoi, Vietnam (phone: 844-8682595; fax: 844-
8692906; e-mail: thanghq@it-hut.edu.vn).

Le Hai Quan is a senior engineer of the FPT corporation, Hanoi, Vietnam.
(e-mail: quanlh76@yahoo.com).

II. INTERACTION MODEL AND PROPOSED IMPROVEMENT

Figure 1 shows interface architecture MI2A (Model-based
Intelligent Interface Agent Architecture) [1,2,6]. In this model
there are interface agents: DM Manager - Domain Model
Manager, facilitator agent, reactor, guide, reactor, UM
Manager-User Model Manager). The details of each agent role
are in [1,2]. Interaction model plays an important role in this
architecture model. The observer follows one person’s action
to supervise their interactions and collect actions. It updates
the latest actions of the user in the predictor. Observer agent
also sends action chains to the user model manager agent in
order to update the interaction history of the user. Using
interaction model, predictor can predict future actions of user.
The method of developing interaction model was illustrated in
figure 2, including 5 steps: action segmentation, action pair
selection, final action pair selection, interaction graph

M

Fig. 1 Model-based Intelligent Interface Agent Architecture

Fig. 2 Method of constructing interaction model

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2532

construction and probability calculation [1,5]. When the user
interacts with the system, many actions and manipulations are
carried out. The Agent will accept these actions. When trying
to finish the task, user actions, in general, depend on previous
actions and are related to the task. However, actions
performing different tasks are relatively independent of each
other. In the step of action segmentation, the actions accepted
would be segmented into sensible action chains, telling which
action the user is trying to finish. Those action chains will be
added into user interaction history. In the step of action pair
selection, it will calculate how many times action pairs appear,
and arrange action pairs in appearance order. In the step of
final action pair selection, some action pairs having more
times of appearance than or exceed a certain threshold will be
taken out from valid action pairs. Interaction graph is
constructed to show action order information. In this graph
each action can have more than one succeeding action, which
can happen and is called post-condition actions. Since then
each one will be assigned a probability value showing the
possibility of happening; and the post-condition action with
the highest probability will have the highest possibility
of becoming the user’s next action. We proposed
improvement of interaction model by adding the updating the
list of interaction model and selecting the standard one.

In [3,4] it puts forward 5 applied algorithms constructing
the interaction model: the action segmentation algorithm, the
action pair selection algorithm, the final action pair selection
algorithm, the interaction graph construction algorithm, and
finally the probability calculation algorithm. Next we will
present in detail algorithms and proposal improvements to
each algorithm and the interaction model list updating
algorithm.

III. AN ALGORITHMS FOR CONSTRUCTION OF THE
INTERACTION MODEL AND PROPOSED IMPROVEMENTS

A. The action segmentation algorithm
In Model-based Intelligent Interface Agent Architecture

(Figure 1), observer agent will take responsibility for
collecting all users’ actions. Observer agent follows user’s
actions, collects them (due to events of mouse and keyboard),
selects the meaningful actions and sends them to User model
manager agent. This one will create and save Interaction
model. Collecting method is quite simple, but it’s
complicating to segment theses actions into meaningful
actions. A chain of meaningful actions will include user’s
actions, which are carried out to get a certain task. We will
distinguish the function of each action followed by task
model. Each action can associate with one or more tasks in
task model. A chain of actions won’t be terminated only when
it is in one of the following cases [3,4]:

When the associated tasks of the new-collected action
include the previously attempted task.
When the associated tasks of the new-collected action are
post-condition tasks of the previously attempted task.

Description of this algorithm is shown in figure 3 [3,4].
Evaluative analysis: This is the first algorithm among 5

algorithms constructing user’s interaction model. The action
segmentation algorithm proves quite simple and deploy easily.
This algorithm bases oneself on Task model constructed
before and mapping board of duties in the task model through
actions collected by users (these actions will be also defined
before) in order to segment chain of actions collected from
users into smaller chains (meaningful chain). The
segmentation condition is based oneself on post-condition
tasks in Task model. The meaningful action chain needs
constructing, at the first moment is empty. Algorithm inspects
each action in “coarse” action chain collected by observer
agent. Examine its task is whether the post-condition task of
task associating action inspected before or not. If this
condition is satisfied, which means that this action is still
belong to action chain of which purpose is to fulfill the current
task, it will be taken in the action chain. In contrast, when this
condition is not satisfied, which means that the task associated
with this action is not the post-condition task of the task
associated with the previous action; it can be considered that
this action is the beginning of a new task. In other words, the
user moves on to carry out a new task, and the current task
finished in the previous action. We will finish this action
chain here and save it in the interaction history. Next this
action chain will be restarted empty and begin a cycle of
creating new action chain, which will finish the next task.

Stemp Ø
aj null
foreach ai in L do {
 if Task(aj) Task(ai)
 or Task(ai) are the post-condition tasks of Task(aj)
then {
 Add ai to Stemp as the last added action in it

aj ai (aj is the last added action in Stemp)
 }
else {
 Add Stemp to S

Stemp Ø

The performance time is assessed as linear O(n); the
number of repetition times is equal to the number of action
collecting. The result of this algorithm will be an important
starting point to the next algorithm.

B. The action pair selection algorithm
Based on the first algorithm result, the action pair selection

 Add ai to Stemp
aj ai (aj is the last added action in Stemp)

 }
 }
S : Interaction history
Stemp : Segmented action chain
aj : Previously attempted action
ai : Current action
Task(a): Function returns the tasks that associated with
action a

Fig. 3 Action segmentation algorithm

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2533

algorithm will select every action pair from every chain of
actions in the interaction history (from the action
segmentation algorithm), and then put them into list of action
pair, signed PAIRLIST. The actions from chains of actions
will be put in pairs in order. To make it convenient for the
next algorithm, this algorithm also count the appearance times
of these action pairs each time they repeats in the PAIRLIST,
put it into a variable signed COUNT.

 Before analyzing the action pair selection algorithm, it is
necessary to examine following definitions [16]:

Definition1: (action1, action2) is used to represent an
ordered action pair which means action1 is performed before
action2 is performed. actionPair(J) is used to represent an
action pair, which is the Jth one in a PAIRLIST (see
Definition 3 below). actionPair(J).firstAction is used to
represent the first action in this action pair;
actionPair(J).secondAction is used to represent the second
action in this action pair.

Definition 2: COUNT(action1, action2) is used to
represent the number of occasions that action pair (action1,
action2) occurs in the interaction history.

Definition 3: PAIRLIST is used to represent the action
pair list that is produced from the interaction history.

This algorithm concern only about the order of two actions;
two actions in an action pair will define an order for the action
pair. Every certain interaction history includes many chains of
actions, the algorithm that select action pair from table 4.2
will use the action pairs collected from the interaction history
and count the appearance times of every action pair, using
function COUNT above.

Improving the action pair selection algorithm:

The algorithm begins with examining every chain of actions
in the interaction history. With every chain of actions, it will
examine each action from bottom to top then gather them in
pairs. If one gathered pair is not yet in the PAIRLIST, then
assign 1 to their COUNT and put them into PAIRLIST. On
the contrary, if the action pair is already in the PAIRLIST,
then add 1 to their COUNT. However, there are some
disadvantages about the action pair selection algorithm (figure
4). In case there are two similar actions in an action pair, but
the algorithm does not reject this kind of pair. Moreover, in
case there is only one action in an action pair, the algorithm
will create only one action pair in which there are two similar
actions. Thus, this action pair is not chosen; then in case chain
of actions has only one action, we can reject it. To overcome
these disadvantages, we can fix the algorithm by adding
element-checking part (action) in the chain of actions before
gathering in pairs (blue text in the algorithm is the added part).

 Fixing process: In the third loop of the algorithm, while
chain of actions is being checked, index l begins from (j-l) not
from j; then we exclude the chains of actions in which there
are two similar actions. To exclude chains of actions that have
only one action, we can use function LENGTH that return the
number of actions in chain of actions to examine. If the
returned value of LENGTH is larger than 1 then we can do the
next step of the algorithm. If not, we will ignore this chain of
actions and move on to the next chain of actions.

foreach As in S do {
 if (LENGTH(As) < 2)
 continue
 foreach aj in As do (j n downto 1) {
 foreach ak in As do (k j-1 downto 1) {
 if (ak, aj) PL then {
 COUNT(ak, aj) COUNT(ak, aj) + 1
 }
 else {
 Add (ak, aj) to PL
 COUNT(ak, aj) 1
 }

 The algorithm is simply carried out with three joined
loops. If we see the total actions in chains of actions as n, then
the algorithm complex level is O(n2), time counting is
multinomial. After the algorithm finishes, we have the list of
chains of actions in order and their total appearance times in
the interaction history. It will be the input for the third
algorithm.

C. The final action pair selection algorithm
 After receiving the list of action pairs from the action pair

selection algorithm, the final action pair selection algorithm
aims at selecting meaningful action pairs from the list. In this
algorithm, we mention of opposite action pair. There are many
reasons for the appearance of opposite action pairs such as
task model, distributing method, the number of actions
attached to task. In case one task need many actions in order
to be complete and these actions is not necessarily in order,
then there will be opposite action pairs. Opposite action pairs
usually appear when users operate in different orders, or when
they fix wrong operations. In case each task is associated with
only one action, there is no opposite action pair. Because at
the first algorithm, while chains of actions are being created,
this algorithm itself did not put actions that the task associated
with it is in previous conditional task chain of the task
associated with previous action into chain of actions. Yet,
these actions can create opposite action pairs. In fact,
however, one task can be associated with some actions and
thus opposite action pairs case can occur. In order to carry out
the final action pair selection algorithm, we should check up
the following concepts [3,4]:

 }
 }
}
S : Interaction history
As : Chain of segmented action in S
n : Number of actions in S
ak, aj : Action in As
PL : List of selected action pairs
(ak, aj) : Action pair is selected and put in PL
COUNT(ak, aj) : Number of (ak, aj) appearance times
LENGTH(As) : Function returns number of actions in As

Fig. 4 Action pair selection algorithm

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2534

 Definition 4: The Action Pairs (ai, aj) and (aj, ai) are
called contradictory action pairs.

Definition 5: Action Pair Confidence (APC):
 APC(ai,aj)=COUNT(ai,aj)/(COUNT(ai,aj)+COUNT(aj,

ai)).
 APC is used to represent the likelihood that action ai

occurs before action aj.
 The final action pair selection algorithm will be presented

in figure 5. A certain action pair in chain of action pairs
(PAIRLIST) is developed from appearance times counting
algorithm of action pairs; cardinal number COUNT and one
threshold to choose, signed as THRESHOLD. This algorithm
will select the final action pairs from PAIRLIST on condition
that the action pairs with APC equal or larger than
THRESHOLD. The selected action pairs will create the chain
of final action pairs, signed as FPAIRLIST.

Improving the final action pair selection algorithm:
In this algorithm, we use variable APC to determine

whether one action pair can be put into the chain of final
actions or not. APC is the ratio of the appearance times of
action pair to their total appearance times plus the appearance
times of their opposite action pair. If APC exceed a specified
threshold, then this action pair can be put into the list of final
action pairs. The final action pair selection algorithm will
check up every action pair in the list of final action pairs,
signed as FPAIRLIST. On the contrary, if the opposite action
pair of the being-checked action pair appears, the algorithm
will start calculating APC, and then compare APC with the
specified threshold, signed as THRESHOLD. If APC is equal
or larger than the threshold then the action pair will be put into

FPAIRLIST. If APC is smaller than the threshold then the
action pair will be left out. Thus, It depends a lot on selecting
a threshold to decide whether one action pair can be put into
FPAIRLIST or not. The value of threshold is within (0, 1], if
we choose 1 as threshold then only action pairs without
opposite action pairs are put into FPAIRLIST. The chosen
threshold must be larger than 0. Because if we choose 0 as
threshold then it is no need to perform the algorithm but all
the action pairs in PAIRLIST can be put into FPAIRLIST.
There is still one point need to be fix in the algorithm in order
to make it more optimal. It is examining cases each time we
choose different thresholds. It is separated into two cases. If
we choose 1 as threshold then it is not necessary to calculate
APC but we do not put it into FPAIRLIST as long as they are
two opposite action pairs. Thus we can escape from loop. If
the threshold is smaller than 1, then compare with threshold
and escape from loop right away (the blue text in the
algorithm is the added fixing part). foreach api in PL do {

 Pass TRUE
 foreach apj in PL do {
 if ISCONTRA(api, apj) then {

 if THRESHOLD = 1 then
 Pass FALSE

This algorithm is easily carried out with two joined loops.
The list of final action pairs FPAIRLIST is used to construct
interaction graph.

D. The interaction graph construction algorithm

Action pairs in order were constructed from chain of action
that stored in the interaction model. Then, final action pairs
are chosen from action pairs in order based on threshold ratio.
Finally, these final action pairs, one by one, will be put into a
graph (we use an arrow to connect 2 actions in a pair, the
arrow points at the second action in action pair). Algorithm
Prune Successor(s) and Prune Predecessor(s) [3] are used to
simplify the graph. Each node in the graph of the interaction
model includes: ID, name, pre-condition, post-condition,
position and probability distribution. Probability distribution

 else if APC(api) < THRESHOLD then
 Pass FALSE
 break
 }
 }

if Pass then
 Add api to FPL
 }
PL : List of action pairs
FPL : List of final action pairs
Pass : Check whether APC of action pair is greater than
threshold
api, apj : Actions in PL
APC(api) : Action Pair Confidence
APC(api)=COUNT(api1,api2) / (COUNT(api1, api2) +
COUNT(api2, api1))
ISCONTRA(api, apj) : Function returns TRUE if api and
apj are contradiction action pairs, otherwise returns
FALSE.

Fig. 5 Final action pair selection algorithm

foreach api in FPL do {
 if NOT ISPRECOND(api.firstAction,
api.secondAction) then {
 Add api.firstAction to pre-condition of
api.secondAction
 Add api.secondAction to post-condition of
api.firstAction
 }
 Prune_Algorithm_1(api.firstAction, api.secondAction)
 Prune_Algorithm_2(api.firstAction, api.secondAction)
}

FPL : List of final action pairs
api : Action pair in FPL
api.firstAction : First action in api
api.secondAction : Second action in api
ISPRECOND(a1, a2) : Function returns TRUE if a1 is
pre-condition action of a2, otherwise returns FALSE.
Prune_Algorithm_1(a1, a2) : First prune algorithm
Prune_Algorithm_2(a1, a2) : Second prune algorithm

Fig. 6 Interaction graph construction algorithm

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2535

Prune_Algorithm_1(a1, a2) {
 foreach ac1 in POST(a2) do {
 if a1 PRE(ac1) then {
 Remove a1 from PRE(ac1)
 Remove ac1 from POST(a1)
 }

else
 Do Prune_Algorithm_1(a1, ac1)
 }
}
a1, a2 : Two actions in action pair are parameters
POST(a) : Post-condition actions of a
PRE(a) : Pre-condition actions of a
ac1 : Action in POST(a2)

Fig. 7 First Prune Algorithm

of each node shows us the probability y that whether a post-
condition action can be the next action of the node or not. The
interaction graph construction algorithm is described in figure
6. First Prune Algorithm (Prune_Algorithm_1) as shown in
figure 7 [3,4], is used to remove the first action from the pre-
conditions of all the second action's Successors.

 First Prune Algorithm (Prune_Algorithm_1) as shown in
figure 7 [3,4], given an action pair, this algorithm removes the
first action from the direct pre-condition of all the second
action's post-conditions.

Second Prune Algorithm (Prune_Algorithm_2) is shown in
figure 8 [3,4], it is used to remove the second action from the
Post-condition of all the first action's Predecessors.

This algorithm removes the second action from the direct
post-condition of all the first action's pre-conditions. In this
algorithm, there are also two parameters - two actions in
action pair (a1, a2).

Improving the interaction graph construction algorithm:
The algorithm will examine every action pair in the

FPAIRLIST, decide whether the first action is the pre-

Prune_Algorithm_2(a1, a2) {
 foreach ac1 in PRE(a1) do {
 if a2 POST(ac1) then {
 Remove a2 from POST(ac1)
 Remove ac1 from PRE(a2)
 }

else
 Prune_Algorithm_2(ac1, a2)
 }
}
a1, a2 : Two actions in action pair are parameters
POST(a) : Post-condition actions of a
PRE(a) : Pre-condition actions of a
ac1 : Action in PRE(a1)

Fig. 8 Second Prune Algorithm

a1

a3 a2

First action

Second action

Pre-condition
action of first

action

a2 is post-condition
action of a3

Association is
removed

Fig. 10 Second Prune Algorithm

a1

a3 a2

First action

Second action

Post-condition action of
second action

a1 is pre-condition action
of a3

Association is
removed

Figure 9: First Prune Algorithm

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2536

condition action of the second one or not. If not, we will add
the first action to the list of pre-condition actions of the
second one, and add the second action to the list of post-
condition actions of the first action. After that, the algorithm
will perform two prune algorithms: the first prune algorithm
and the second prune algorithm. These prune algorithms aim
at removing unnecessary actions in the list of their pre-
condition and post-condition actions. In other words, they
remove unnecessary connection in the interaction model. The
first algorithm will remove the first action of action pair from
pre-condition actions of post-condition action of the second
action.

On the contrary, the second prune algorithm will remove
the second action from the post-condition actions of pre-
condition action of the first action.

 Through the figure, we can imagine how these two
algorithms remove unnecessary connection between action
pairs in the model. The algorithm that examines every action
pair has linear time, the two prune algorithms have linear time
as well, and thus it is easy to perform.

For the improvements, we add up the storage part in order
to compare interaction models. We will build a list of
interaction models, and a calculating variable named COUNT
for each model. Every time after an interaction model is built,
we compare this interaction model with other interaction
models in the list. If this interaction model is not yet in the list,
then we add it in and assign 1 to variable COUNT. Otherwise,
if the interaction model already exists, we have to add 1 to
variable COUNT. The interaction model list update algorithm
improves interaction graph construction algorithm as shown in
figure 11.

The important thing in this supplementary algorithm is,
while comparing two interaction models whether they are
“equal” or not, we can skip optional actions in the interaction

model. Because, these actions can be done or not, thus it is not
necessary to put them into compare.

Update_IG(IG) {
ISEXIST FALSE

 foreach IGi in IGLIST do {
 if IGi = IG then {
 COUNT(IGi) = COUNT(IGi) + 1
 ISEXIST TRUE

break

After each time revising interaction model, we can check up
variable COUNT of every interaction model. If one
interaction model has the largest variable COUNT, then it is
the standard interaction model for users.

E. The probability calculation algorithm
The probability calculation algorithm is used to calculate

probability of the next action occurrence to each action node
in the interaction model. Each action depends only on the
previous action. The collected data are used to calculate each
action pair continuous occurrence and then calculate
probability. This algorithm increases probability of the chosen
closest post-condition action. The algorithm uses a constant
named , this constant will decrease probability of the post-
condition actions but not the closest ones, easily by multiple
probability of these actions with . Probability of the closest
post-condition actions is multiplied with , too, but plus (1-).
This way, we can make sure that probability of the post-
condition actions is equal or smaller than 1, and probability of
the closest post-condition actions will continuously increased
or stay still in some cases.

ProbabilityCalculation(As) {

Evaluation analyzing: The algorithm begins with examining
every contiguous action pair in each action chain, then check
up whether the first action is in the interaction model or not. If
the action is in the interaction model, then we must revise
probability for the action. This algorithm use only one loop,
therefore the complication of calculation is linear, easy to
perform.

 }
 foreach (ai, aj) contiguous in As do { }

 if not ISEXIST then {
COUNT(IG) = 1

 Add IG to IGLIST
 }
}

IGLIST : List of interaction model
IGi : Interaction model in IGLIST

 if ai IG then
 UpdateProbability(ai, aj)
 }
}
UpdateProbability(a1, a2) {
 if PRO_POST(a1) is null then

PRO_POST(a1) 1/nISEXIST : Check the existence of interaction model in
IGLIST

COUNT(IG) : Repeated times of interaction model

Fig. 11 Interaction model list update algorithm

PRO_POST(a1) PRO_POST(a1) *
PRO(a2) PRO(a2) + (1-)

 }

IG : Interaction graph
As : Chain of actions is parameter
(ai, aj) : Contiguous action pair in As
(a1, a2) : Action pair is parameter
PRO_POST(a1) : Probability of post-condition actions of
a1
PRO(a2) : Probability of a2
n : Number of post-condition actions of a1

 : Specified constant
Fig. 12 Probability calculation algorithm

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2537

F. Conclusion
The five algorithms above have a close relation with each

other; the result of the previous algorithm will be the input for
the next one. The action segmentation algorithm is the first to
perform; it aims at selecting chains of meaningful actions
(action segmentation) among the actions collected from users
and then stores it in the interaction history.

The second algorithm to perform is the action pair selection
algorithm. It uses the first algorithm’s result - segmented
chains of actions in the interaction history to select action
pairs in order or meaningful action pairs. The target of this
algorithm is to select user’s actions in time order, then use
them as a basis for the interaction model construction in the
future. This algorithm uses chains of meaningful actions that
were constructed since the previous algorithm. It selects action
pairs in order then stores them in the list of action pairs
(PAIRLIST). While selecting action pairs, it calculates these
action pairs occurrence times in the interaction history and
store them in variable COUNT.

The final action pair selection algorithm is the next one to
perform. It use the results of the second algorithm - the list of
action pairs in order (PAIRLIST) and the variable that does
the action pairs occurrence times calculation in the interaction
history (COUNT) to select the final action pair (the action pair
with probability of being in the chain of actions used to
complete the task). The algorithm begins selecting action pairs
in PAIRLIST, gather them in pairs, check up whether they are
contradictory action pairs or not; calculate APC of the first
action pair and compare with threshold (THRESHOLD). If
APC is equal or larger than the threshold then this action pair
will be added in the list of final action pairs (FPAIRLIST). If
APC is smaller than the threshold then this action pair will be
left out, not in the FPAIRLIST.

The interaction graph construction algorithm is used to
construct the interaction model graph of users to system. This
algorithm examines action pairs in FPAIRLIST and then put
them into the interaction graph in turn. However, it does not
stop yet, after each action pair put into the interaction model,
it will use two prune algorithms to remove actions coincided
with the actions that was put into the model.

Mapping
Interface -

Task

Interface
specification

Task Model
Observer Agent
Collecting actions

Action segmentation
algorithm

Interaction history

Interface

Users

Generating assistance
Mapping
Action -

Assistance

Fig. 13 Assistant agent architecture in experiment

The probability calculation algorithm aims at calculating
probability contribution for the actions in chain of contiguous
actions collected from users. Based on the constructed
interaction model above, this algorithm will use constant to
adjust probability contribution for action pairs with a defined

. We can find out the probability of an action pair with the
highest occurrence possibility.

IV. EXPERIMENT AND PRACTICAL DEVELOPMENT

 We test it with creating an interface for Banking Transfer
System (belong to the BIDV - Bank of Investment and
Development Branch Hanoi - Vietnam) in order to serve
customers, allow them to do any of monetary transaction from
an account to another one themselves. The transfer account
must be user’s account that was opened in BIDV, and the
transferred one can be any account opened in any bank.
Transfer is originally a profession of banks, teller is so
familiar with this job, but it is difference to customers.
Customers have never done this before and may get panic for
the first time contacting with the program. Assistant agent is
built to help customers do the transfers successfully. The
agent will observe users, store the interaction history, analyze
the interaction history, and then bring out the appropriate
assistants for users under the form of instruction messages.
Construction in testing problem of this agent is described in
figure 13. While users interact with the interface, actions are

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2538

made and agent needs to record these actions. They are stored
in the interaction history. When analyzing the interaction
history, we can realize wrong movements or unnecessary
movements from users. Thus, the interaction history will be
the input of the assistant unit, help the process of giving
appropriate instructions for users. The main target of the agent
is to assist users while they are interacting with the interface.
Thus, the assistance must be easy to understand, at the right
time and right place. The assistant messages presented must be
the combination between professor’s experience, assessments
from customers and potential users. As already stated, there
are usually opinion polls and surveys before creating the
assistant unit, make it “easy to identify”, so it can really assist
users when they are incapable of using.

The software is developed based on language C# of Visual
Studio .NET, and the specification is on language XML. The
program is tested with a set of data including information of
users and more than ten accounts. The program is capable of
reading documents under XML format, including task model
specification, interface specification, mapping between task
and elementary actions, mapping between interface and task.

V. CONCLUSION

In this paper, we presented generally current state about
intelligent user interface, the importance of the intelligent user
interface in use. The article also presented methods of
constructing interface agent based on task model and
interaction model, made a research on constructing interaction
model based on five algorithms. The article contributes to
completing the interaction model algorithms, inside there are
corrections at three algorithms: the action pair selection
algorithm, the final action pair selection algorithm and the
interaction graph construction algorithm for one specified
user. The article also proposes some improvements of the
algorithms and makes it easier to execute effectively.

Based on presented theories, the article made a test
construction of an assistant agent with the entire task model
component, included descriptions and actions associated with
each task. The agent can read the task model and documents
under XML format. The agent can be integrated with the
interface and then give instruction to help users in interacting
with the interface.

The next direction of this research may focus on making the
agent more intelligent, capable of talking to users like “a
friend”. First step, using some optional questions, the agent
gives users some choices so they can define the next action
needed to be done themselves. After that, much better, the
agent will create for itself a larger knowledge basis that allows
users to enter questions or their demands through keyboard.
The agent must be capable of answering or carrying out some
work for users.

REFERENCE

[1] Andrew Garland Neal Lesh (2004), “Applying Collaborative
Discourse Theory to Human-Computer Interaction”
www.merl.com/reports/docs/ TR2002-004

[2] Andrew Garland, Neal Lesh (2004), “COLLAGEN: Applying
Collaborative Discourse Theory to Human-Computer
Interactio,www.merl.com/reports/docs/ TR2002-004

[3] Yanguo Jing (2001), "The Interaction Model Construction Method in
Model based Intelligent Interface Agent Architecture ", Heriot-Watt
University, Department of Computing & Electrical Engineering,
Technical report RM/01/5, 2001.

[4] Yanguo Jing (2001), "The Domain Model Design in Model based
Intelligent Interface Agent Architecture ", Heriot-Watt University,
Department of Computing & Electrical Engineering, Technical report
RM/01/4, 2001

[5] Yanguo Jing (2003). A Model Based Intelligent Interface Agent
Architecture - Doctor of Philosophy, Heriot-Watt University, School
of Mathematical and Computer Sciences, Computer Science
Department Intelligent Systems Laboratory -
http://smealsearch2.psu.edu/98584.html

[6] Huynh Quyet Thang, Pham Thanh Trung (2005). Building an
Architecture Model and Tool for Interface Agent Generation.
Proceedings of FAIR (Fundamental and Applied Information
Technology Research) Hochiminh City, 23-24/9/2005, pp. 432-444
(in Vietnamese)

[7] Huynh Quyet Thang, Do Thanh Vu (2004). A Model of Development
of the Interface Agent in Standalone Application. Posts and
Telecommunication Journal, Special issue Research and
Development on Telecommunications and Information Technology
ISSN 0866-7039, No. 13, 12-2004, p. 73-81 (in Vietnamese)

