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Abstract—This paper proposes new enhancement models to the 

methods of nonlinear anisotropic diffusion to greatly reduce speckle 
and preserve image features in medical ultrasound images. By 
incorporating local physical characteristics of the image, in this case 
scatterer density, in addition to the gradient, into existing tensor-
based image diffusion methods, we were able to greatly improve the 
performance of the existing filtering methods, namely edge 
enhancing (EE) and coherence enhancing (CE) diffusion. The new 
enhancement methods were tested using various ultrasound images, 
including phantom and some clinical images, to determine the 
amount of speckle reduction, edge, and coherence enhancements. 
Scatterer density weighted nonlinear anisotropic diffusion 
(SDWNAD) for ultrasound images consistently outperformed its 
traditional tensor-based counterparts that use gradient only to weight 
the diffusivity function. SDWNAD is shown to greatly reduce 
speckle noise while preserving image features as edges, orientation 
coherence, and scatterer density. SDWNAD superior performances 
over nonlinear coherent diffusion (NCD), speckle reducing 
anisotropic diffusion (SRAD), adaptive weighted median filter 
(AWMF), wavelet shrinkage (WS), and wavelet shrinkage with 
contrast enhancement (WSCE), make these methods ideal 
preprocessing steps for automatic segmentation in ultrasound 
imaging. 
 

Keywords—Nonlinear anisotropic diffusion, ultrasound imaging, 
speckle reduction, scatterer density estimation, edge based 
enhancement, coherence enhancement. 
 

I. INTRODUCTION 
 
EDICAL ultrasound imaging is an important imaging 
modality for diagnostic procedures [1]. There are three 

primary characteristics that contribute to the widespread use 
of medical ultrasound. Ultrasound is a real-time modality, 
does not utilize ionizing radiation, and provides quantitative 
measurement and imaging of blood flow. However, 
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ultrasound does have one major shortcoming – the presence of 
speckle noise. Speckle is a random interference pattern 
present in all images obtained using coherent radiation in a 
medium containing subresolution scatterers. Speckle has a 
negative impact on ultrasounds images because the speckle 
pattern does not correspond to the underlying structure of the 
image. Work by Bamber and Daft suggest that speckle may 
reduce the detectability of a lesion by approximately a factor 
of eight [2]. Speckle is ultimately responsible for the poorer 
effective resolution of medical ultrasound when compared to 
other medical modalities. Therefore, speckle reduction has 
become an active area of research [3]. 
 Several methods of speckle reduction have been proposed 
[6,9-15,21-26]. Bamber et al. studied adaptive filtering for 
speckle reduction which changes the amount of smoothing 
depending on the ratio of local variance to local mean [6]. In 
order to preserve details, Bamber et al. smoothing is increased 
in homogenous regions while reduced or totally avoided in 
other regions. Bamber et al. method has a difficulty to 
removing speckle near or on image edges. The adaptive 
weighted median filter (AWMF) [38] is based on the pixel 
replication method used in traditional median filter but it has 
the assumption that speckle must be smaller than half of the 
filter window size making it sensitive to some empirically 
determined parameters. Abd–Elmoniem et al. [13] presented a 
tensor-based anisotropic diffusion method, a nonlinear 
coherent diffusion (NCD) for speckle reduction and coherence 
enhancement [12-13]. Wavelet shrinkage (WS), and wavelet 
shrinkage with contrast enhancement (WSCE) methods are 
referred in [13] as a wavelet speckle reduction methods.   

A speckle reduction and structure enhancement method by 
multichannel median boosted anisotropic diffusion was presented 
in [39] and showed to be superior to methods like AWFM and 
Gaussian regularized anisotropic diffusion. While NCD had a 
better performance compared to AWFM, WS, and WSCE, it has 
several criticisms mentioned in [39]. One such criticism being 
anisotropic tensor formulation is regarding the size of speckle that 
may occupy more than the size of a pixel.  

Lee [22], Frost [23], and Kuan [24-25] proposed noise 
reduction filters based on the multiplicative speckle model. Yu 
and Acton [26] developed a speckle reducing anisotropic 
diffusion (SRAD) filtering scheme based upon work by Lee 
and Frost. Their SRAD filter developed to suppress speckles 
while preserving edges has shown good performance as NCD 
with different levels of speckle. NCD and SRAD can preserve 
and enhance prominent edges when removing speckle, but 
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they have common limitation in retaining subtle features as 
small cysts or lesions in ultrasound images. While the 
multichannel median boosted anisotropic diffusion method 
presented in [39] was successful compared to AWFM and 
Gaussian regularized anisotropic diffusion, their results with test 
ultrasound phantoms and clinical ultrasound images of different 
levels of speckle noise, size, and distribution were not compared.  

Ideally, though, denoising techniques should not only 
reduce noise, but also prevent blurring and preserve signal 
edges. Since the work of Perona and Malek in 1987 [7], the 
use of partial differential equations has been studied as a way 
of increasing the inhomogeneity of denoising filters. This is 
ideal because a constant (in space and time) diffusivity 
equation gives rise to a linear diffusion equation with the 
undesirable characteristics of homogeneous diffusion, which 
smoothes the entire image, including edges. By introducing an 
inhomogeneous diffusivity equation, which depends upon x, y, 
and the image being filtered, one can create filters which 
prevent edge blurring while reducing noise. Perona and Malek 
implemented this filtering technique by introducing a function 
based on the derivative of the image at time t [8].  This 
isotropic (the diffusivity function is a scalar) case of 
inhomogeneous diffusion does a fairly decent edges 
preservation, while smoothing background noise. 
 Diffusion-based denoising is affected by several factors 
such as the choice of diffusivity function, the method used for 
discretization of the PDE, the choice of parameters used for 
solving the PDE including the diffusivity constant, and the 
method used for solving the system of equations. Quite often 
the edges are noisy, causing inaccurate edge preservation or 
edge smoothing when the isotropic filter is used [17]. 
Therefore, Weickert proposed two tensor based filtering 
methods which attempt incorporate the directionality in the 
image to better estimate the perceptual orientation of the edges 
and thus these diffusion methods have increased feature 
preservation characteristics as compared to isotropic diffusion 
[35-36]. The first such filtering method, introduced as ‘edge 
enhancing diffusion’, involves constructing the diffusion 
tensor so that it mirrors the edge structure, thus preserving the 
edges by smoothing parallel to the edges. This allows 
smoothing near the edge, while preserving the edges 
themselves. Later, Weickert introduced coherence enhancing 
diffusion [36]. The diffusion tensor is built using the well 
known structure tensor [36], so that the filter incorporates the 
coherence of the image to better preserve the flow-like 
features in the image. Both methods have been shown to be 
more effective at preserving image features than the isotropic 
case. Again, the performance of these techniques is subject to 
choices, such as the stencil used for solving the nonlinear 
tensor diffusion equation and the various parameters in the 
diffusivity functions.   

Mean square error and signal to noise ratio are often used 
for tuning and evaluating the denoising process [13, 16-17].  
Signal-to-noise ratio (SNR) and Peak signal-to-noise-ratio 
(PSNR) image measures are derived from the root mean 
squared error (RMSE) and used as image quality measures in 
compression, representation, and standards [19, 31]. Higher 
quality measures do not always mean better visual quality of 
enhanced edges and denoised structures. Edge enhancement 

and edge preserving quantitative evaluation is applied by the 
Pratt’s figure of merit (FOM) as a measure for edge 
preservation and edge enhancement between the ideal image 
and processed one, and can be used as a measure of an 
object’s segmentation quality [34]. 
 Incorporating the scatterer density in the image into the 
nonlinear isotropic diffusivity equations was proposed in [27]. 
This method demonstrated improved performance over 
previous methods, which use gradient alone to weight 
diffusivity function.  Our paper proposes a new method for 
tensor based diffusion to reduce speckle in ultrasound images. 
We propose including the scatterer density in the formulation 
of the anisotropic diffusion tensor, allowing further 
improvement of the edge and orientation preserving 
characteristics of nonlinear anisotropic diffusion. For reasons 
of computational simplicity, the case of tensor-based diffusion 
was implemented using the standard stencil described by 
Weickert in [37]. 
 

II. NON LINEAR DIFFUSION 
 
    A. Nonlinear Diffusion in Image Denoising 
Diffusion is a physical process describing the equilibration of 
two unequal concentrations without creating or destroying 
mass. In mathematical terms, if u is the concentration and C is 
the diffusivity function, then the diffusion equation can be 
written as:        

)( uCdivut ∇=∂ (1) 
 When dealing with images, the analog of the concentration, 
u, is the grey scale intensity level. When C is constant, we 
describe the diffusion as homogeneous. When C varies with 
position x, y, we describe the diffusion as inhomogeneous. 
Often the diffusivity function is a function of the local 
gradient at time t or some other image feature, therefore the 
diffusion filter is said to be a nonlinear. The diffusion-based 
filter calculates a filtered image u(x,y,t) of the original noisy 
image f(x,y) as a solution to the nonlinear diffusion equation 
as shown: 

)),(( uyxCdivut ∇=∂ , (2) 
with the original image f(x,y) as the initial state: 

),,()0,,( yxfyxu =  (3) 
and reflecting boundary conditions on the image boundary: 

: 0nu∂ = , (4) 
where n denotes the normal to the image boundary. The 
nonlinear diffusivity function C(x,y) is usually given as a 
strictly decreasing function of the magnitude of the gradient. 
 Perona and Malek suggested including the image gradient in 
the definition of the diffusivity function to produce adaptive 
edge preserving diffusion filters [8]. Since then, several 
authors have suggested different diffusivity functions based on 
the image gradient, some are shown in [17]. However, 
incorporating other physical image characteristics has, until 
recently received little attention. 
 Previous work has shown that weighting the gradient by the 
scatterer density in the diffusion equation (Isotropic case) 
increases the noise reduction and edge enhancing performance 
of the filter [27]. In this paper we attempt to incorporate those 
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same image characteristics for the anisotropic tensor 
formulated case to study filters performance on the edge and 
coherence orientation preserving characteristics of these 
filters. 
 
B. Image Gradient 
 Gradient edge detection is the most widely used technique 
to weight the nonlinear diffusion filters. To calculate the 
gradient, the image f(x,y) is convolved with two kernels. One 
estimates the gradient in the horizontal direction, Gx, and one 
estimates the gradient in the vertical direction, Gy. The 
magnitude of the gradient for any point f(x,y) can be written 
as: 

22
yGGf x +=∇ , (5) 

 
III. ULTRASOUND  SCATTERER DENSITY MODEL 

 
     Previously it has been shown that NLD methods can be 
improved by including the scatterer density in the diffusivity 
equation. Scatter density has been shown to increase in areas 
of large scatteres density and wherever there is a transition 
between different tissue mediums. Therefore, the scatterer 
density gives a meaningful measurement of the physical 
characteristics of the image. 
For a large number of scatterers (infinite), the Rayleigh 
distribution can be used to model the scatterer density. 
However, in most cases the scatterer density is finite [13]. 
Therefore, a model to determine the distribution of a finite 
number of ‘effective’ scatterers is needed. The proposed 
solution to the problem utilizes the so-called K distribution 
[4,18]. The envelope of the received backscatterered signal, A, 
can be evaluated as: 

( )
1

1( ) 2 ( )
2
A bp A K bA

α α

αα

+

−
⎛ ⎞= ⎜ ⎟ Γ⎝ ⎠ , (6) 

where 2

4
{ }

b
E A

α
= and Kβ() is the modified Bessel function of 

the second kind of order β. The K distribution is a 
generalization of the Rayleigh distribution, allowing one to 
account for a finite number of ‘effective’ scatterers, which is 
represented by the term α in Eq. (6). To solve for the effective 
number of scatterers, α, we use the K distribution moments 
[4,18], which can be written in closed form as: 

2 / 2
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Γ , (7) 

Writing the expression for the moments in closed form allows 
one to estimate the parameters of the K-distributed data using 
sample moments. Blacknell [5] used normalized moments to 
estimate the scatterer density, α. In this work we use the 
method of second and fourth order moments to estimate α. 
Using Eq. (7), the normalized ratio of the fourth moment to the 
second moment squared can be written as:  

4

2 2

{ } 12(1 )
{ }

E A
E A α

= + , (8) 

Replacing E{A4} and E2{A2} with the corresponding sample 
moments, and solving for α, we obtain and estimate for the 
scatterer density, α̂ : 

2

2

2
2

4 −
=

∧

μ
μα , (9) 

where the sample moments are given by: 

1

1 N

i
i

A
N

ν
νμ

=

= ∑ , (10) 

where the Ai are the N samples of the envelope of the 
received backscattered signal used to estimate the parameters 
of the K distributed data from fourth order moment, μ4, and 
second order moment, μ2 for a window of size H x W. μ2 and 
μ4  can be directly calculated from the window histogram. 
Previous estimates of the scatterer density parameter have 
used large window sizes (33 x 32) for characterization of 
reperfused infracted myocardium from high frequency 
intracardiac ultrasound imaging [28-29]. This research 
resulted in values of α ranging from 2 to 15. It also showed 
the physical meaningfulness of the scatterer density 
parameter, which displayed a significant ability to help 
characterize normal from infracted myocardium. In our 
research we calculated α using a 7x3 window to emulate the 
effective resolution in the image. In scatterer density weighted 
nonlinear diffusion (SDWND) filters presented here, we 
propose two methods of incorporating the scatterer density 
into the diffusion equation. We weighted the gradient factor 
by the scatterer density in both edge enhancing diffusion 
(SDWNEED) and coherence enhancing diffusion 
(SDWNCED). 
 

IV. FLOW OF THE DENOISING PROCESS 
 

The diffusion equation, in general, can be written as: 

)),,(),,((),,( tyxUtyxCtyxU
t

∇•∇=
∂
∂ , (11) 

where “•” represents the inner product of two vectors. When C 
is a scalar function, the diffusion process is isotropic. When C 
is a tensor-based function of the directional parameters, the 
process becomes anisotropic.  To solve the above PDE, the 
original image uo is used as the initial condition and the 
Neumann boundary condition is applied to the image borders: 
u(x,y,t)t=0 = u o= f(x,y) ,   ənu=0. (12) 
The Neumann boundary condition avoids the energy loss in 
the image boundary during the evolution of the diffusion 
process. Several different diffusivity functions, C(x,y,t), exist 
in the literature [17]. The most common are: 

Perona-Malik 1: )1/(1),,( 2

2

K
U

tyxC σ∇
+=  (13) 

Perona-Malik 2:  )2/exp(),,( 22 KUtyxC σ∇−=  (14) 

Charbonnier:  
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Weickert (with m=2, 3, and 4): (16) 
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for m=2, 3, and 4, Cm=2.33666, 2.9183, and 3.31488. In Eqs. 
(13)-(16), Uσ represents the regularization of the image, U. 
This step is necessary because the original formulation of the 
problem by Perona and Malek was ill-posed [16], where 
similar images would produce very different solutions. The 
common solution is to preprocess, or regularize, the image by 
convolving it with a Gaussian kernel of standard deviation σ 
so that Uσ can be written as: 

)),,(*( tyxUGU σσ ∇=∇  (18) 
 
A. Edge Enhancing Diffusion 
 In tensor based diffusion, the PDE for the anisotropic case 
is given as [35,17]: 

)( uDut ∇•∇=∂  (19) 
where D is a positive semi-definite symmetric diffusion tensor. 
The 2x2 matrix, D, can be written in terms of its eigenvectors,  
v1 and v2, and eigenvalues, λ1 and λ2: 
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For the case of edge enhancing diffusion (EE) the eigenvectors 
are defined as follows: 

σuv ∇1          and          σuv ∇⊥2  (21) 
where uσ is the normalized, or smoothed version of the image. 
This is defined as the image convolved with a Guassian kernel 
with standard deviation σ. Often, λ2 = 1, which allows 
smoothing in the v2 direction. Then λ 1  is taken to be C(x,y,t) as 
defined in Eqs. (13)-(16). 
 In EE diffusion, we examine two methods of edge 
enhancing diffusion. In the first, λ2 = 1 and λ1 = C(x,y,t). In the 
second case we define λ1 = C(x,y,t),  and the second 
eigenvalue as: 

),,(*1
2 tyxC

Kv
=λ  (22) 

Where Kv   is a constant ≥ 1,  and is set in our experiment to 5. 
 
B. Coherence Enhancing Diffusion 
 In coherence enhancing (CE) diffusion, the diffusion tensor 
is given as [36]: 

R
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Where R is the rotation matrix, whose columns are the 
eigenvectors of the structure tensor S, which is defined as: 
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where σG* represents the convolution with a Gaussian kernel 
of standard deviation σ. In our work we define c1 and c2 for 
each pixel as: 

)(),,(2 uCtyxCc ∇==  (25) 

))/)(exp(1max( 22
21,21 kcc λλ −−−=  (26) 

where k is small constant (0< k < 1). The eigenvalues of the 
structure tensor, λ1 and λ2, are defined as: 
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2
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Solving for the components of the diffusion tensor: 
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In this paper we will compare the proposed CED filter 
described in Eqs. (23) - (31) after incorporating scatterer 
density into diffusivity function with a more traditional filter 
described in [33]. It is identical to the proposed method except 
for that, in the latter case, c2 is a small (0< c2 < 1) constant. 

 
V. SOLTION TO THE DIFFUSION EQUATION 

 
 The straight forward solution to the diffusion equation is 
obtained using finite differences [33, 36-37]. By replacing 
spatial derivatives with central differences and tu ∂∂ /  with a 
forward difference approximation, we can solve for a future 
numerical value of u using only values from the previous time 
step without complex systems of equations. This is the so-
called explicit scheme which can be represented as: 

k
ji

k
ji

k
ji

k
ji uA

uu
,,

,
1

, ∗=
−+

τ
 (32) 

where the time, T, is given as kτ at iteration k with time step 

size τ and 
k

jiu ,  is the approximation of u(x,y,t) at pixel (i, j). 
k

ji
k

ji uA ,, ∗  is the discretization of the right-hand side of the 

diffusion equation, where k
jiA ,  is a 3x3 stencil that varies in 

time and space which is convolved with the image at iteration 
k. The discretization for the stencil used in this work (Fig. 1) is 
provided by Weickert in [37].  
 The standard stencil in [37] was used in this work for 
computational ease, however it is not stable for larger τ values. 
A more complex stencil has been presented which allows the 
use of larger values of τ, approximately ten times greater than 
the allowed with the standard discretization [37, 13]. Since our 
main aim of this study was to investigate the scatterer density 
into the nonlinear diffusion equation and study how better it 
enhances the quality and preservation of all image features 
including scatterer density, we used the straightforward 
discretization scheme [37] regardless of its being unstable for 
large values of τ. 

VI. PROPOSED METHODS 
 It is known that connective tissue with varying amounts of 
collagen and elastic fibers is a major source of scattering in 
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Ultrasound images. It is also known that collagen density in 
liver parenchyma determine how elastic the liver tissue is. In 
cases of liver cirrhosis, an increase in the amount of collagen 
causes a rigidity of the tissues with palpation and thus presents 
an increase in the ultrasound image brightness. Blood vessels 
contain varying amounts of collagen and elastic fibers which 
controls the supportive and elastic pattern of the vessels 
depending on size and function of these vessels. The blood 
vessels containing these fibers are major ultrasound scattering 
sources which in addition to the reflection between their 
interfaces show a contrast in imaging between the vessel walls 
and the blood. Scatterer density varies in tissues and vessels 
depending on the ratio of these fibers to the other histological 
contents. Scatterer density is higher in anatomy near tissue 
edges and blood vessels.  In section III, as there is an estimate 
of this scatterer density per resolution cell (α), we have 
proposed in [27] to incorporate this physical and tissue 
parameter to weight the diffusivity function.  Researchers [28-
30] rely on the estimation of this physical parameter to 
characterize tissues and abnormalities. In the following 
sections, we show how to incorporate this physical parameter 
into the diffusion equation. Thus anisotropy in the diffusion 
equation will not only be in the gradient describing edges, 
coherency in orientation and geometry of structure but also be 
in the scatterer density distribution in local regions. We will 
show how this important physical parameter enhances the 
images and produces an image with the diffusion evolution 
that anatomically corresponds to the geometrical underlying 
structure with speckle reduction, edge preservation, and 
coherence enhancement. 
 
A. Proposed Diffusivity Function 
 We propose applying the modified diffusivity function 
given in [27]: 

)(),,( uCtyxC ∇= α  (33) 
where α is the scatterer density estimate. Now any of the 
previously mentioned diffusivity functions can be weighted by 
α and the gradient. Taking (13) as an example: 

⎟
⎟
⎠

⎞
⎜
⎜
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⎛ ∇
+=∇= 2

2)(
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K
u

uCtyxC
α
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The scatterer density is measured locally using a H x W 
window. The function C(x,y,t) can be any of the existing 
diffusion functions in the literature and is calculated at each 
time, t, of the diffusion process. For edge enhancing diffusion  
(EED) the modified equation is to let λ2 = 1 and change λ1 to 
be )( uC ∇α . For coherence enhancing diffusion (CED), we 

let c1 in Eq. (26), and calculating the value of c2 using the 
scatterer density weighted diffusion equation (Eq. (34)). In 
(26,34) the c2 is a function of edge and scatterer density 
content, so depending on the dominant parameter, c2 will be 
determined. c1 is a function of  edge, orientation coherency, 
and scatterer density, so depending on the relative domination 
of these contents, c1 will be determined. 
 The benefits of the proposed model was described as 
weighting by alpha increases the anisotropy of the diffusion 
process while improving edge preservation and speckle 
reduction [27]. Homogeneous regions will reduce the diffusion 

process to the case of Gaussian diffusion because these 
regions will result in a small value for the gradient and have 
few scatterers per resolution cell. Alternately, in the case of 
regions of high information contained in the gradient and 
scatterer density with different weights, especially at edges, 
interfaces, vessels, speckled and textured regions, the diffusion 
process is anisotropic as a function of these parameters, thus 
operating adaptively depending on the relative contents of 
these parameters in the locally analyzed regions. 
B. Image quality measures 

Image quality measures how far a processed image is from 
an original one (noisy or reference). The RMSE, SNR, and 
PSNR are image quality measures and are given as: 

2/1

1 1

2))),(),((1( ∑∑
= =
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σ (38) 

where 
2
uσ  is the variance of the denoised image.  When it 

comes to edginess, a quantitative value is required to measure 
how far the processed edges are from the reference one. FOM 
is a quantitative measure of edge preservation and 
enhancement [34], and is calculated from the Canny edge map: 

∑
= +

=
N

i iideal dNN
FOM

ˆ

1
21

1
},ˆmax{

1
λ

 (39) 

N̂ is the number of edge pixels in the image and Nideal is the 
number of edge pixels in the reference image. The term di 
represents the distance between the detected edge pixel, i, and 
the nearest reference edge pixel. In our calculation of the FOM 
we set the parameter λ to be 1/9 as in [17]. The FOM has a 
dynamic range of [0,1], with higher values indicating better 
edge matching between the processed and ideal images. In 
addition to these image quality measures, we calculated an 
image quality index (γ) [27], which measures the overall 
image and segmentation quality between two images. In our 
analysis, we computed γ as the product of the PSNR (with 
respect to the reference image) and the Pratt's figure of merit 
(FOM).  Now we have quantitative measures of the image 
quality (PSNR, SNR, and RMSE), quality of edge preservation 
(FOM) and an overall index of image and segmentation 
quality (γ). 
  
C. Diffusion Parameters 
  The value of τ in (32) is kept small to guarantee the 
solution to the diffusion equation be stable [37]. This is due to 
limitations in the non-ideal 3x3 stencil, A.  The conductance 
parameter, K, is used to balance the amount of forward 
diffusion (smoothing the entire image) with backward 
diffusion (contrast enhancement over the entire image). We 
have tested the algorithm for different values of τ ≤ 0.2. We 
measured the quality of diffusion in SNR, PSNR, FOM, γ, α, 
the detected Canny edge map, the visual inspection of the 
diffused image, the 2D maps for α and gradient, and the 
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evolution of the overall image average scatterer density (αavg). 
For the case of coherence enhancing diffusion, we set the 
value of the constant, k to be 0.0001. 
 
D. Proposed Stopping Functions 
 The actual value of the quality measures is not physically 
meaningful, but the comparison between two values for 
different diffused or reconstructed images gives one measure 
of reconstructed or processed quality [19]. Using PSNR 
measure for example in image reconstruction, the MPEG 
committee used an informal threshold of 0.5 dB PSNR to 
decide whether to incorporate a coding optimization since 
they believed that any improvement of that magnitude would 
be visible [19]. 

We propose using a difference of PSNR values at 
successive iterations to determine when to stop the filtering 
process. The value, δ, in dB, is calculated as: 

1−−= kk PSNRPSNRδ  (40) 
PSNRk represents PSNR between the processed image at 
iteration k and the original image (at k = 0). From experiment, 
we determined that a value of δ < 0.02 dB corresponded to a 
processed image of sufficient visual quality.  
 In certain cases, a noise free image is available for quality 
measurements. In these special cases, the quality measures 
should be made between the ideal (noise free or reference) 
image and the processed image. It is in these cases that the 
value for γ is useful. The stopping function is proposed as 
[27]: 
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kk
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=  (41) 

k
avgα is the average scatterer density at iteration k and γk is the 

overall quality index. The δref   value is given as a %. 
 
E. Proposed Algorithm 

An iteration k, of the proposed algorithm consists of the 
following steps: 
Step 1) Convolve the image with Gσ of one standard deviation 
as in (18), τ = 0.2. 
Step 2) For each point (x,y) that belongs in the image, 
calculate the magnitude of the gradient, as in (5). 
Step 3) Calculate the diffusivity function, C(x,y,t) at iteration 
k, as in (34) for the whole image. 
Step 4) Construct the matrices for the eigenvectors and 
eigenvalues, which depend on the method being implemented.  
Step 5) Calculate the elements of the diffusion tensor matrix 
(a, b, and c). 
Step 6) Calculate the elements for the 3 x 3 stencil k

jiA ,  (Fig. 

1) and ‘convolve’ with the image at iteration k and multiply 
resultant matrix by τ. 
Step 7) Solve for 1

,
+k
jiu using: 

)*( ,,,
1

,
k

ji
k

ji
k

ji
k

ji uAuu τ+=+  (42) 

Step 8) Loop until desired image quality is obtained (δ) or 
until maximum discrete time steps, Tmax, is reached.  

VII. EXPERIMENTAL RESULTS AND EVALUATION 
 

  We investigated and tested the performance of the 
proposed SWDNLD for the tensor based cases of EED and 
CED in reducing the speckle noise for test phantom and 
clinical ultrasound images using two weighting parameters: 
the image gradient and the scatterer density, α. We tested the 
performance using two methods. First, we used only the 
traditional case, in which the diffusivity function includes only 
the gradient. Second, we altered the diffusivity function as 
suggested in Eq. (33) by weighting the gradient with the 
scatterer density.  In each case and for each iteration, the SNR, 
PSNR, FOM and γ were calculated for the processed image. 
Also, Canny edge maps, gradient maps, and scatterer density 
maps were generated, and the average scatterer density, αavg 
was calculated. The default diffusion parameters were set to σ 
= 1, K = 0.01, τ = 0.2, T = 9, and the number of iterations was 
set to 45 for comparisons, using the Perona Malek 1 diffusivity 
function, and a 3x3 window. In the coherence enhancing case, 
k = 0.0001. 
 
A. Images used for testing and evaluation  

In our experiments, we used a contrast detail phantom 
image (ATS laboratories, Bridgeport, CT). The contrast detail 
phantom was made to produce standard contrast levels from –
15 dB to +12 dB. The phantom image has a resolution of 
256x128 and consists of eight different contrast regions (four 
positive contrast regions and four negative contrast regions). 
Regions are ordered in two rows. The upper row contains 
negative contrast regions while the lower one contains the 
positive contrast regions as shown in Fig. 2. A reference image 
was constructed manually from the speckled image by 
evaluating the mean value in each region. All phantom and 
clinical images were acquired at frequency of 3.5 Mhz.  Fig. 2 
shows an original contrast detail phantom (a), its Canny edge 
map (b), its scatterer density map (c), Reference contrast detail 
phantom (d), its Canny edge map (e), and its scatterer density 
map (f). Images in Figs. 2.b and 2.c show how these gradient 
and scatterer density feature maps are vague and do not 
correspond to the underlying structures. Figs. 2.e and 2.f show 
how these image feature maps are clear and correspond to the 
underlying structure. That is the role of this novel proposed 
work to make the resulted speckle reduced images preserve the 
underlying structures. 

 
B. Scatterer density weighted nonlinear edge enhancing 
diffusion (SDWNEED) 
 In this model of EED, we used the tensor based formulation 
described in Eqs. (19)-(21), to test and evaluate the 
enhancements increased by incorporating scatterer density into 
diffusivity function. In this case, λ2 = 1 and λ1 = C(x,y,t). 
 
B.1 Results of SDWNEED for contrast detail image 
 Fig. 3 shows the progressions of the diffused images and 
their Canny edge maps for 45 iterations of τ = 0.2 at intervals 
corresponding to T = 1, 3, 6 and 9 (5, 15, 30 and 45 
iterations). Fig. 4 shows the corresponding Canny edge maps. 
From the figures we see that, visually, the images become 
clearer in the region around T = 6 – 9. Also, the Canny edge 
maps, which begin as vague and meaningless in the first 
iteration, start to show meaningful edge features as the 
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diffusion process progresses. The circular patterns of the 
phantom images begin to appear clearly around T = 6. Notice 
that by visual inspection alone, the Canny edge maps at T = 6 
and 9 in Fig. 4 are much closer to the Canny edge map for the 
reference image than the map in Fig. 2b. Quantitatively 
speaking, the FOM progresses from 0.181 at T = 1, to 0.2124, 
0.2604, and finally to 0.3242, indicating the overall increase in 
segmentation quality with the progression of the filtering 
process. Fig. 5 shows the gradient and scatterer density maps 
at T = 1 and T = 9. With the evolution of the process in time, 
we see the gradient and scatterer density maps progress from 
vague to clearly showing image features that correspond to the 
anatomical underlying structures in the image. The overall 
scatter density (αavg) progressively decreases from 0.3231 (T = 
0), 0.2537, 0.1907, 0.1515, 0.1329 (T = 1, 3, 6, and 9).  The 
values of γ were 4.367, 4.566, 5.646, 7.15, 9.028 (T = 0,1,3,6 
and 9). These values illustrate the increase in overall image 
and segmentation quality with time. 
  
B.2 Choice of Conductance Parameter, K, on SDWNEED 
 For large values of K (K≥ )( u∇α ), the diffusivity function 
reduces to linear diffusion, where the entire image is smoothed 
at the cost of edge preservation. For small values 
(K )( u∇≤ α ), the diffusion process exhibits edge preservation 

at the cost of speckle noise reduction. The conductance 
parameter, K, can be used as a time varying function as in [20] 
in order to cool down the system. The value of K is used to 
balance the amount of forward diffusion (where everything is 
smoothed) and backward diffusion (where contrast 
enhancement is happened). Ideally, K will be chosen to 
balance these two properties to reduce speckle noise and 
preserve edges. Choosing K was done by applying edge 
enhancing diffusion for 25 iterations (T = 5). Fig. 8 shows the 
graphs of the image and segmentation quality measurements 
for various values of the conductance parameter. From Fig. 8 
we see that, for very small K (< 0.05), the values for PSNR, 
FOM, αavg, and γ change rapidly with K, indicating values of K 
corresponding to high contrast enhancement. For larger values 
of K ( ≥ 0.05), there is little change in the values of the image 
and segmentation quality measurements, indicating 
approximately linear image smoothing for these values of K.  

TABLE  I 
COMPARING FOM, αavg, PSNR, AND γ FOR DIFFERENT CHOICES OF 

CONDUCTANCE PARAMETER, K FOR SDWNEED (λ2 = 1). 

K FOM αavg PSNRref γ 
0.001 0.1861 0.2094 25.17 4.684 
0.005 0.217 0.169 26.63 5.781 
0.01 0.2254 0.1609 27.25 6.142 
0.05 0.2648 0.1609 27.63 7.316 
0.1 0.2503 0.1619 27.63 6.916 
0.2 0.2442 0.1618 27.62 6.746 
0.3 0.2677 0.1617 27.62 7.395 
0.4 0.2663 0.1616 27.62 7.355 
0.5 0.2666 0.1617 27.62 7.363 
1 0.2643 0.1616 27.62 7.300 

Figs. 6-7 show the diffused images and its associated Canny 
maps after 25 iterations for various values of K. Values of K ≥ 

0.05 display much smoothing across edges – an undesirable 
quality. The image corresponding to K = 0.001 has too little 
noise reduction, also undesirable. After 25 iterations, the 
image corresponding to K = 0.01 displays the ideal 
combination of noise reduction and edge preservation. The 
values for the FOM, αavg, PSNR, and γ, is shown in Table I. 

 
B.3 SDWNEED in removing noise and preserving edges  
 The noise removal and edge preservation performance of 
SDWNEED was measured by adding Gaussian noise (σ = 20) 
to three ultrasound test images – a fetal face test image (Fig. 9 
of 433 x 580 pixels), a heart image (Fig. 10 of 256 x 256 
pixels), and a phantom reference image (Fig. 11 of 256 x 128 
pixels). The diffusion parameters used to test the effectiveness 
of our method were, σ = 1, τ = 0.2, K = 0.01, T = 3, using the 
Perona-Malek 1 equation and was solved using the explicit 
method described previously with a 3 x 3 window.  

The effectiveness of noise removal on image quality was 
measured quantitatively using different quality measures and 
was measured qualitatively using visual judgments of the 2D 
maps for Canny edge detection, the gradient, the scatterer 
density and using the diffused images. Tables II and Figs. 12-
14 clearly illustrate the ability of the SDWNEED diffusion 
filter to reduce noise while preserving image features. The 
values in Tables II show that the filter improved image quality 
and increased edge segmentation in every case, most notably 
in the case of the phantom image. Clearly, segmenting the 
noisy images in Figs. 9(b), 10(b), and 11(b) would be no easy 
task. However, after applying the proposed method, image 
features become visible in the 2D Canny edge maps, allowing 
more accurate segmentation. 

TABLE  II 
EFFECT OF SDWNLD ON SNR AND PSNR FOR SDWNEED (λ2 = 1). 

Image SNR PSNR 
Face before denoising 2.784 19.406 

Face after denoising 7.062 24.180 
Heart before denoising 4.926 18.726 
Heart after denoising 8.611 22.410 
Phantom before denoising -2.818 20.635 
Phantom after denoising 12.75 36.290 

 
B.4 Effect of scatterer density in weighting SDWNEED 
 We compare the effectiveness of the proposed SDWNEED 
with traditional EED. With scatterer density weighting, we 
modify λ1 by: 

)
)(

1/(1),,( 2

2

1 K
U

tyxC σα
λ

∇
+==  (43) 

The parameters for the diffusion were chosen as σ = 1, τ = 
0.2, K = 0.01, T = 9, using the Perona-Malek 1 equation and 
was solved using the explicit method described previously 
with a 3 x 3 window. Table III and Figs. 27-28 show the 
improvement in image and segmentation quality obtained both 
quantitatively and visually with scatterer density weighting. 
From this we can conclude that weighting with the scatterer 
density is preferable to using the gradient only. It should be 
noted that the better quantitative performance after inclusion 
of the scatterer density in the diffusivity equation is expected. 
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Using only one measure of the image features, the gradient in 
this case, is unwise because the gradient will contain noisy 
information, causing inaccurate edge preservation and 
geometric distortion. By including physical image 
characteristics, such as scatterer density, the process becomes 
more robust and results in better feature enhancement. 
 

TABLE  III 
SNR, PSNR, FOM, γ, AND αavg FOR TWO CHOICES OF DIFFUSIVITY 

PARAMETERS FOR PHANTOM CONTRAST IMAGE FOR SDWNEED (λ2 = 1). 

Weighting SNRref PSNRref FOM γ αov 

 2.959 26.53 0.2092 5.544 0.1532 
 4.307 27.85 0.3242 9.028 0.1329 

 
B.5 Evolution of SDWNEED for large number of iterations 
 We compare the performance of traditional edge enhancing 
diffusion to SDWNEED for a large number of iterations (150). 
Fig. 15 shows that SDWNEED performs the equivalent 
operation as traditional anisotropic diffusion in fewer 
iterations. From visual inspection it is apparent that with SDW 
diffusion, the ideal stopping point is T=9 (45 iterations). Here 
we reach an image displaying excellent speckle reduction 
without too much diffusion along the edges (PSNR = 27.85 
dB, FOM = 0.3242). Examining the graphs of PSNR and FOM 
in Fig. 15 we see that it takes 116 iterations without SDW to 
reach the equivalent image quality and 114 iterations to reach 
approximately identical edge segmentation quality. 
 
B.6 SDWNEED automatic stopping criteria evaluation 
 Fig. 16 shows the value of δ for several iterations of 
SDWNEED. The stopping criteria, δ < 0.02 is reached at 
iteration 46, which can be seen in Fig. 16. The image quality 
indicates much speckle reduction, as well as better edge 
preservations, with PSNRref = 27.86 and FOM = 0.3318. Also, 
from the graph we see that the stopping criteria is reached with 
fewer iterations with SDW (46 iterations with SDW compared 
to 74 without SDW) which indicates that SDWNEED is able 
to perform much faster than traditional EED. 
 
C. Scatterer density weighted nonlinear coherence enhancing 
diffusion (SDWNCED) 
 In this model of SDWNCED, we used the tensor based 
formulation described in Eqs. (23)-(34), to test and evaluate 
the SDWNCED performance compared to the traditional CED 
when incorporating scatterer density into the diffusivity 
function.  
 
C.1 Results of SDWNCED for contrast detail image 
 Figs. 17-18 shows the progressions of the diffused images 
and their Canny edge maps for 45 iterations of τ = 0.2 at 
intervals corresponding to T = 1, 3, 6 and 9 (5, 15, 30 and 45 
iterations). Fig. 18 shows the corresponding Canny edge maps. 
From the figures we see that, visually, the images become 
clearer in the region around T = 6 – 9. Also, the Canny edge 
maps, which begin as vague and meaningless in the first 
iteration, start to show meaningful edge features as the 
diffusion process progresses. The circular patterns of the 
phantom images begin to appear clearly around T = 6. Notice 

that by visual inspection alone, the Canny edge maps at T = 6 
and 9 in Fig. 18 is much closer to the Canny edge map for the 
reference image than the beginning map. Quantitatively 
speaking, the FOM progresses from 0.1769 at T = 1, to 
0.2087, 0.2475, and finally to 0.3177, indicating the overall 
increase in segmentation quality with the evolution of the 
filtering process. Fig. 19 shows the gradient and scatterer 
density maps at T = 1 and T = 9. With the evolution of the 
process in time, we see the gradient and scatterer density maps 
progress from vague to clearly showing image features. The 
overall scatter density (αavg) progressively decreases from 
0.3231 (T = 0), 0.2541, 0.1861, 0.1489, 0.1317 (T = 1, 3, 6, 
and 9).  The values of γ were 4.336, 4.495, 5.579, 6.812, 8.851 
(T = 0,1,3,6 and 9). These values illustrate the increase in 
overall image and segmentation quality with time.  
 
C.2 Choice of conductance parameter, K, on SDWNEED 
 To determine the ideal value for the conductance parameter, 
K, experiment in section B.2 was repeated and it was found 
that K = 0.01 also display the ideal combination of noise 
reduction and feature preservation. Figs. 23-24 show the 
resulted images. 
C.3 SDWNCED in removing noise and enhancing coherency  
 The noise removal and edge preservation performance of 
SDWNCED was measured by using the same test images as 
used in the edge enhancing case. The diffusion parameters 
used to test the effectiveness of our method were, σ = 1, τ = 
0.2, K = 0.01, T = 3, k = 0.0001 using the Perona-Malek 1 
equation and was solved using the explicit method described 
previously with a 3 x 3 window. Table IV and Figs. 20-22 
clearly illustrate the ability of the SDWNCED filter to reduce 
noise while preserving image features.  

 
TABLE  IV 

EFFECT OF SDWNLD ON SNR AND PSNR FOR THE SDWNCED. 
Image SNRref PSNRref 

Face before denoising 2.784 19.406 

Face after denoising 6.641 23.758 

Heart before denoising 4.926 18.726 

Heart after denoising 8.209 22.008 
Phantom before denoising -2.818 20.635 
Phantom after denoising 11.970 35.423 

 
The values in Table IV show that the filter improved image 
quality and increased edge segmentation in every case, most 
notably in the case of the phantom image. Again, accurately 
segmenting the noisy images in Figs. 9(b), 10(b), and 11(b) 
would be no easy task. After applying the proposed method, 
image features become visible in the 2D Canny edge maps, 
allowing more accurate segmentation. 
 
C.4 Effect of scatterer density in weighting SDWNCED 
 We compare the effectiveness of the proposed SDWNCED 
with traditional CED. For this case, c2 is modified to include 
the scatterer density: 

)(),,(2 uCtyxCc ∇== α  (44) 
Also, c1 remains as described by Eq. (26). The parameters for 
the diffusion were chosen as σ = 1, τ = 0.2, K = 0.01, T = 9, k 

σU∇
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= 0.0001 using the Perona-Malek 1 equation and was solved 
using the explicit method described previously with a 3 x 3 
window. Table V and Figs. 27-28 show the improvement in 
image and segmentation quality obtained both quantitatively 
and visually with scatterer density weighting. From this we 
can conclude that weighting with the scatterer density is 
preferable to using the gradient only in the formulation of c2. 
Also we see from Figs. 27-28 that both the gradient only and 
SDW method are preferable to using c2 = 0.01. 
 

TABLE  V 
SNR, PSNR, FOM, γ, AND αavg OF THE DIFFUSED IMAGES FOR THREE CHOICES 

OF DIFFUSIVITY PARAMETERS WEIGHTING  IN  SDWNCED. 
Weighting SNRref PSNRref FOM γ αov 

 3.52 27.06 0.2037 5.512 0.1482 

 4.316 27.86 0.3177 8.851 0.1317 

c2 =0.01 2.611 26.15 0.1646 4.304 0.2062 

 
C.5 Evolution of SDWNCED for large number of iterations 
 We compare the performance of traditional coherence 
enhancing diffusion to this case of SDWNCED for a large 
number of iterations (150). Fig. 25 shows that SDW diffusion 
performs the equivalent operation as traditional anisotropic 
diffusion in fewer iterations. From visual inspection it is 
apparent that with SDW diffusion, the ideal stopping point is 
T=9 (or after 45 iterations). Here we reach the best image 
quality, displaying much speckle reduction without too much 
diffusion along the edges (PSNR = 27.86 dB, FOM = 0.3177). 
Examining the graphs of PSNR and FOM in Fig. 25 we see 
that it takes over 150 iterations using the traditional filtering 
method to reach the equivalent image quality and 147 
iterations to reach approximately identical edge segmentation 
quality.  
 
C.6 SDWNCED Automatic stopping criteria evaluation 
 Fig. 26 shows the value of δ for 150 iterations of 
SDWNCED. The stopping criteria, δ < 0.02 is reached at 
iteration 46, which can be seen in Fig. 26. The image quality 
displays an excellent balance of speckle reduction and feature 
preservation with PSNRref = 27.87 and FOM = 0.3251. Also, 
from the graph we see that the stopping criteria is reached with 
fewer iterations with SDW (46 iterations w/ SDW compared to 
64) which indicates that SDWNCED is able to perform much 
faster that traditional CED. 
 
D. Comparison between SDWNEED, SDWNCED, and some 
other speckle reduction methods 
 The performance of the two methods proposed in this 
section was compared to the performance of some other 
diffusion methods such as NCD, SRAD (at time step τ=0.2 
and for 45, 100, and 150 iterations), AWMF, WS, WSCE, and 
SDWND. Both SDWNEED (using λ2 = 1 and λ2 = C(x,y,t)/5 
cases) and SDWNCED were performed using K = 0.01 and 
stopped using the stopping criteria mentioned earlier. The 
value for γ obtained using these new methods was also much 
higher, indicating the better overall image and segmentation 
quality obtained using SDWNEED and SDWNCED. Table VI 

shows the values for the SNR, PSNR, FOM and γ obtained 
using the various methods (using PSNR with respect to 
original image at T = 0 and FOM with respect to Canny 
reference image).  

Qualitatively, the resulting images, their Canny edge maps, 
and scatterer density maps are compared in Figs. 29-31. From 
Fig. 29, it can be seen that the SDWNEED and SDWNCED 
methods achieved excellent speckle reduction while 
preserving image features. This result is reinforced  in Fig. 30, 
where it can be seen from the Canny edge maps that the 
methods presented achieved preservation of image features 
observed in having the best circular edge structures of the 
phantom image compared to other methods thus better 
preserving the underlying anatomical structures. 

 
 TABLE  VI 

COMPARISON OF SNR, PSNR, FOM AND γ FOR DIFFUSED IMAGES WITH 
SDWNEED, SDWNCED, SDWND, NCD, SRAD,  AWMF, WS, AND WSCE 

METHODS. 
Method SNR PSNR FOM γ 

SDWNEED  
(λ2 = C(x,y,t)/5) 

3.587 23.85 0.311 7.417 

SDWNEED  
(λ2 = 1) 

3.567 23.831 0.332 7.911 

SDWNCED 3.517 23.781 0.325 7.728 
SDWND 4.379 24.646 0.216 5.323 
NCD 3.618 23.885 0.200 4.777 
SRAD-45 2.790 23.057 0.199 4.588 
SRAD-100 2.031 22.298 0.252 5.619 
SRAD-150 1.800 22.067 0.294 6.487 
AWMF 3.712 23.979 0.184 4.412 
WS 4.127 24.393 0.171 4.171 
WSCE 3.150 23.468 0.177 4.153 

 
TABLE  VII 

COMPARISON OF SNRαref AND PSNRαref FOR SCATTERER DENSITY IMAGES IN 
FIG. 31 WITH SDWNEED, SDWNCED, SDWND, NCD, AWMF, WS, AND 

WSCE METHODS. 
Method SNRαref  PSNRαref  

Before denoising -17.497 9.222 
SDWNEED (λ2 = C(x,y,t)/5) -10.760 15.959 
SDWNEED(λ2 = 1) -10.890 15.824 
SDWNCED -10.825 15.890 
SDWND -11.800 14.973 
NCD -11.820 14.899 
SRAD-45 -13.749 11.801 
SRAD-100 -12.242 13.309 
SRAD-150 -11.474 14.077 
AWMF -13.578 13.141 
WS -14.321 12.399 
WSCE -16.495 10.224 

  
 Table VII show the SNR and PSNR calculated with the 
reference scatterer density map of Fig. 2.e. Fig. 31 show the 
scatterer density map with different compared method. Fig. 31 
and Table VII show quantitatively how the scatterer density as 
a physical parameter is much preserved when we weight the 
anisotropic diffusion with the scatterer density in terms of SNR 
and PSNR.  As shown in Table VII, the highest four values for 
the scatterer density PSNR are for the three anisotropic 
methods discussed and shown in the last row of Fig. 29, and 
the isotropic method discussed in [27] which used the scatterer 
density weighting method in isotropic diffusion. 
 In summary, both SDWNEED and SDWNCED methods 
perform better over the NCD, SRAD, AWMF, WS, WSCE, 
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and SDWND methods in reducing speckle and preserving 
image features such as edges of the geometrical circular 
structures and scatterer density distribution over the whole 
image. The improvements can be seen both quantitatively 
(Tables VI-VII) and qualitatively (Figs. 29-31). When 
compared with each other, SDWNCED and SDWNEED for 
corresponding SNR, PSNR, FOM and γ values, there was little 
discernible difference between these measures and the 
resultant images. Figs. 29-30 show that SDWNCED perform 
slightly better than SDWNEED in terms of the circularity of 
the diffused circle. This slight advantage of SDWNCED over 
SDWNEED is because SDWNCED combines speckle 
reduction, edge preservation, scatterer density preservation in 
addition to coherence enhancement of geometrical structures 
as in the case of the phantom circles. 
 

VIII. DISCUSSION AND CONCLUSIONS 
 

This work proposes new enhancement methods to the 
traditional tensor based formulations of EED and CED which 
effectively reduce speckle while preserving important image 
features as the edges, coherent structures, and scatterers 
density distribution that correspond to the underlying 
anatomical structure. Also suggested is a new index for 
establishing the overall image and segmentation quality (γ), 
which is the product of the FOM and the PSNR. For each 
method, the extent to which the method reduced speckle noise 
was examined using an ultrasound phantom image. 
SDWNEED and SDWNCED cases performed well, showing 
improvements in image and segmentation quality. Second, an 
optimal choice for the conductance parameter, K, was tuned to 
balance noise reduction with feature preservation. To test 
speckle reduction and features preservation, each filtering 
method was then used to process various ultrasound images 
with added Gaussian noise. Both filters showed improvements 
in image quality in all cases. Third, the effect of scatterer 
density weighting was compared with the conventional case 
for each filter. SDW showed improvements in image and 
segmentation quality over the traditional method that uses only 
gradient information. Fourth, the effect of SDW was examined 
for a large number of iterations, in this case 150. Both 
SDWNEED and SDWNCED methods showed an 
improvement over traditional methods in speed, requiring less 
iteration to obtain images of similar quality. 
 These experiments confirm that the introduction of scatterer 
density into the cases of EED and CED increase the 
performance of these filters in both noise reduction and feature 
preservation. The proposed methods could succeed to balance 
between speckle suppression and features preservation (edges, 
coherence, and scatterer density distribution) as it is clear that 
the resulted diffused images are preserving the underlying 
structures in terms of edges, coherence, and scatterer density 
distribution. To summarize, the proposed filters are speckle 
reducing, scatterer density weighted edge and coherence 
enhancing filters. These methods are ideal for preprocessing of 
ultrasound images for automatic segmentation, as in the 
accurate preservation of image features which anatomically 
correspond to the underlying structures and thus allow for 
more accurate segmentation.  The NCD and SRAD limitation 

or none being able to retain subtle features due to regarding the 
size of speckle that may occupy more than the size of a pixel was 
overcame in our formulation by taking HxW window to calculate 
scattered density along local larger windows in the image.   
 In summary, the proposed SDWNEED and SDWNCED 
methods performed better over the NCD, SRAD, AWMF, 
WS, WSCE, and SDWND methods in reducing speckle and 
preserving overall image features such as edges of the 
geometrical circular structures and scatterer density 
distribution over the whole image. 
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Fig. 1 The standard discretization for the 3x3 stencil, A. 
 

 
(a) 

 
(b) (c) 

 
(d) 

 
(e) (f) 

Fig. 2 Contrast detail phantom of resolution 256x128 (a), its Canny edge map (b), its scatterer density map (c), Reference contrast detail 
phantom (d), its Canny edge map (e), and its scatterer density map (f). 

 

  
 

 
 

 
 

Fig. 3 Diffused images for edge enhancing diffusion  (λ2 = 1) at time steps 1, 3, 6, and 9. 
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Fig. 4 Canny edge maps for Fig.3. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5 Gradient maps (a,b) and scatterer density map (c,d) at time steps 1 and 9 for SDWNEED case (λ2 = 1). 
 

   

   
Fig. 6 Diffused images after 5 discrete time steps for K= 0.001, 0.01, 0.05, 0.1, 0.5 and 1 for SDWNEED case (λ2 = 1). 
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Fig. 7 Canny edge maps for Fig. 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                  (a)                                                                                                 (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                (c)                                                                                                   (d) 
Fig. 8 PSNR (a), FOM (b), γ (c), and αavg (d)  of  SDWNEED case (λ2 = 1) for diffusivity functions with and without scatterer density. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

23.5

24

24.5

25

25.5

26

26.5

27

27.5

28

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

K

PS
N

R
 (d

B
)

w / SDW (original)

w / SDW (reference)

0

2

4

6

8

10

12

14

16

18

20

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

K

O
ve

ra
ll 

Q
ua

lit
y 

In
de

x 
( γ)

w / SDW (original)

w / SDW (reference)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

K

FO
M

w / SDW (original)

w / SDW (reference)

0

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

K

Sc
at

te
re

r D
en

si
ty

 ( α
av

g)

w / SDW



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:1, No:5, 2007

265

 

 

 
 
 
 
 
 
 
 
 
 
 
 

(a)                     (b) 

 

 

 

 

 

 

(c)                    (d) 
Fig. 9 Fetal face original image (a), corresponding image with additive Gaussian noise of standard deviation of 20 (b), original Canny edge 

map (c), Gaussian noisy Canny edge map (d). 
 

 

 

 

 

 

 

(a)                 (b) 

 

 

 

 

 

 

 

(c)                       (d)  

Fig. 10  Heart original image (a), its corresponding image with additive Gaussian noise of standard deviation of 20 (b), original Canny edge 
map (c), Gaussian noisy Canny edge map (d). 



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:1, No:5, 2007

266

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 11 Phantom reference original image (a), its corresponding image with additive Gaussian noise of standard deviation of 20 (b), original  
reference Canny edge map (c), Gaussian noisy Canny edge map (d), normalized noisy gradient map (e),  

normalized noisy scatterer density map (f). 
 

  
Fig. 12 Diffused fetal face image and Canny edge map for SDWNEED (λ2 = 1). 

 

  
Fig. 13 Diffused heart image and Canny edge map for SDWNEED (λ2 = 1) 
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Fig. 14 Diffused reference phantom image (a), Canny edge map (b), normalized gradient map (c), and scatterer density  
(d) for SDWNEED (λ2 = 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                (a)                                                                                                   (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                               (c)                                                                                                        (d) 
Fig. 15 PSNR (a), FOM (b), γ (c), and αavg (d) for 150 iterations for SDWNEED case (λ2 = 1) for diffusivity functions with and without 

scatterer density. 
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Fig. 16 Stopping function for 150 iterations for SDWNEED (λ2 = 1) for diffusivity functions with and without scatterer density. 

 

  
 

 
 

 
 

Fig. 17 Diffused image for SDWNCED at time steps 1, 3, 6 and 9. 
 

  
 

 
 

 
 

Fig. 18 Canny edge maps corresponding to Fig. 17. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 19 Gradient maps (a,b) and Scatterer Density maps (c,d) at time steps 1 and 9 for SDWNCED. 
 

  
Fig. 20 Diffused fetal face image and Canny edge map for the SDWNCED. 

 

  
Fig. 21 Diffused heart image and Canny edge map for SDWNCED. 
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Fig. 22 Diffused reference phantom image (a), Canny edge map (b), normalized gradient map (c), and scatterer density (d) for SDWNCED. 
 

  

 
Fig. 23 Diffused images for K= 0.001, 0.01, 0.05, 0.1, 0.5, and 1.0 for SDWNCED. 

 

   

   
Fig. 24 Canny edge maps for Fig. 23. 
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                                                                  (a)                                                                                                     (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                   (c)                                                                                                     (d) 
Fig. 25 PSNR (a), FOM (b), γ (c), and αavg (d) for 150 iterations for the SDWNCED cases (c2 = C(x,y,t) and c2 = 0.01). 
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Fig. 26 Stopping function for 150 iterations for SDWNCED cases (c2 = C(x,y,t) and c2 = 0.01). 
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Fig. 27 First row: Original phantom image, reference image, diffused image using Gaussian filter (σ=1). Second row: Diffused images using 

EED and CED with no scatterer density weighting, NCED (c2 = 0.01). Third row: Image using SDWNEED (λ2 = C(x,y,t)/5), SDWNEED (λ2 = 
1), SDWNCED (c2 = C(x,y,t)). 

 

 

 

  
Fig. 28 Canny edge maps corresponding to Fig. 27. 
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Fig. 29 Original image, processed images with NCD, AWMF, WS, WSCE, SDWND, SRAD-45, SRAD-100, SRAD-150, SDWNEED (λ2 = 

C(x,y,t)/5),  SDWNEED (λ2 = 1), and SDWNCED using proposed stopping function. 
 

   

   

   

   
Fig. 30 Canny edge maps corresponding to Fig. 29. 
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Fig. 31 Scatterer density maps corresponding to Fig. 29. 


