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Abstract—This paper presents a generalized form of the 

mechanistic deconvolution technique (GMD) to modeling image 

sensors applicable in various pan–tilt planes of view. The 

mechanistic deconvolution technique (UMD) is modified with the 

given angles of a pan–tilt plane of view to formulate constraint 

parameters and characterize distortion effects, and thereby, determine 

the corrected image data. This, as a result, does not require 

experimental setup or calibration. Due to the mechanistic nature of 

the sensor model, the necessity for the sensor image plane to be 

orthogonal to its z-axis is eliminated, and it reduces the dependency 

on image data. An experiment was constructed to evaluate the 

accuracy of a model created by GMD and its insensitivity to changes 

in sensor properties and in pan and tilt angles. This was compared 

with a pre-calibrated model and a model created by UMD using two 

sensors with different specifications. It achieved similar accuracy 

with one-seventh the number of iterations and attained lower mean 

error by a factor of 2.4 when compared to the pre-calibrated and 

UMD model respectively. The model has also shown itself to be 

robust and, in comparison to pre-calibrated and UMD model, 

improved the accuracy significantly.  

 

Keywords—Image sensor modeling, mechanistic deconvolution, 

calibration, lens distortion.  

I. INTRODUCTION 

ENS distortion inherent in off-the-shelf image sensors 

creates inaccuracy in their obtained information. 

Consequently, corrective sensor modeling—also known as 

calibration—is an important process for applications that 

require accurate geometric measurements [1]. The process has 

long been an important factor in photogrammetry and 

computer vision, and more recently, in the area of robotics and 

automation [2]. 

Conventionally, the correcting sensor model was derived by 

techniques that invoke an analytical closed-form solution with 

a set of linear equations formulated based on a distortion-free 

camera model. Since these computationally inexpensive 

techniques do not take distortion into account and yield 

inaccurate results [3], [5], they require combining the linear 

equations with a nonlinear set. Note that effective existing 

 
 

S. H. Lim is with the University of New South Wales, NSW, 2052 

Australia (corresponding author to provide phone: 61-2-93854125; e-mail: 

shen.lim@ student.unsw.edu.au).  

T. Furukawa, was with University of New South Wales, NSW, 2052 

Australia. He is now with Virginia Polytechnic Institute and State University, 

Blacksburg, VA 24061-0238 USA (e-mail: tomonari@vt.edu). 

 

optimization technique, such as Gauss–Newton and Newton–

Raphson are applied in these techniques [3], [4]. Convergence, 

however, requires that the initial estimate be sufficiently near 

for accurate calibration equations to be attained and is 

computationally expensive. The disadvantages in these 

classical techniques have motivated researchers to develop 

new techniques, which may be categorized into two groups: 

the two-step method [3], [5]–[9], and self-calibration [10]–

[12]. 

The two-step method was proposed by Tsai [3], where a 

closed-form solution is first derived using radial alignment 

constraints to estimate the extrinsic parameters and effective 

focal length. An optimization technique, with the estimated 

parameters as initial estimate, is then applied to compute 

nonlinear solution, and thereby retrieves the radial distortion 

parameters and the corrected effective focal length. This 

technique reduces the number of required iterations 

considerably. The accuracy of this method was improved by 

Weng et al. [5] by including tangential distortion. In an 

attempt to reduce the number of iterations, a number of other 

groups have also proposed techniques that create analytical 

closed-form solution to obtain radial distortion parameters [6]–

[8]. Park and Hong [9] simplified Tsai’s technique by applying 

look-up-table (LUT) techniques such that it is applicable for 

real-time applications. 

A different type of calibration technique, namely self-

calibration, was developed by Maybank et al. [10] where the 

intrinsic parameters are assumed to be constant in order to 

reduce the computational expense. This technique, in contrast 

to the two-step method, does not also require a calibration 

setup which includes a calibration object with known 3D 

geometrical features. Despite having higher flexibility, the 

self-calibration requires at least three different orientations and 

achieves lower accuracy. This has been modified and extended 

to include different constraints, mainly camera motion and 

scene constraints, to increase its accuracy [11]. Self-calibration 

has been fused with the two-step method by Zhang [12], and 

was able to reduce the number of orientations whilst having 

better robustness, as compared to the self-calibration.  

These techniques have a common approach in that the 

image sensor is evaluated with a known image. The models 

derived by these techniques have shown to reproduce 

parameters of image sensors successfully, negating the need to 

manually obtain the sensor’s mechanical and electrical 

properties. Nevertheless, these properties may also derive the 
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sensor model successfully and reduce the dependency on the 

image quality, and, acts as an alternative solution to 

calibration. A mechanistic deconvolution technique (UMD) 

has been proposed by the authors [13], and it utilizes the 

sensor’s mechanical and electrical properties to model the 

image sensor. This technique does not require calibration, and 

hence, is not evaluated with a known image. The technique, 

however, requires the image plane to be orthogonal to its z-

axis which limits its applicability.  

This paper presents a generalized mechanistic deconvolutive 

image sensor model (GMD) for application in an arbitrary 

pan–tilt plane of view. In this approach, the UMD technique is 

modified with the given pan and tilt angles of a sensor plane of 

view to formulate the constraint parameters and characterize 

the distortion effects. The constraint parameters and distortion 

effects are then used to obtain the corrected image data. This 

approach eliminates the requirement for the image plane to be 

orthogonal to its z-axis while maintaining the advantage of 

UMD; that is removing the requirement of experimental 

evaluation of image sensors while remaining robust to changes 

in their properties.  

The paper is organized as follows. Section II reviews the 

general formulation of existing problem and techniques, 

including UMD technique. The generalized form of the 

mechanistic deconvolutive model is presented in Section III. 

This is followed by numerical examples in Section IV, 

including experimental setup and procedure. Finally, Section 

V presents the conclusion of this paper.   

II. CONVENTIONAL SENSOR MODELS AND MECHANISTIC 

DECONVOLUTION 

A. Conventional Sensor Models 

The objective of sensor modeling is to identify as many 

possible parameters of the sensor, to create the model in an 

attempt to correct image data. This sub-section describes the 

general approach of the conventional sensor models, which 

includes formulation of the pinhole camera model and the 

distortion model.  

1) Pinhole Camera Model 

The pinhole camera model, which is the ideal form of image 

sensor model, is based on a set of linear transformation 

equations. The position of the image plane coordinate system, 

[ ]
T

, ,1u u v=x  is obtained using its z-component, and the 

position with respect to the camera 3D coordinate system 

[ ]
T

, ,c c c cx y z=x  by 

u c=x Ax , (1) 

where A is a matrix that consists of intrinsic parameters. The 

matrix A is formulated as 

0

0

0

0 with 

0 0 1

x x
u

y

y
v

ff u f
p

f v
f

f
p

    =      =        =     

A  (2) 

based on the assumption that the image plane axes are parallel 

to the world coordinate system, and as shown in A, the 

intrinsic parameters are the focal length f, principal point 

coordinates [ ]0 0,u v  and pixel size [ ]
T

,s u vp p=p . The 

position cx is generated based on the position of an object with 

respect to the world coordinate system [ ]
T

, ,w w w wx y z=x  

using 

c w= +x Rx t  (3) 

where R is the rotational matrix and t is the translational 

vector. The parameters R and t are known as the extrinsic 

parameters. 

2) Distortion Model 

The radial and tangential distortion effects inherent in image 

sensors are characterized by the distortion model. The position 

ux , also known as undistorted coordinates, is then determined 

by the given distorted coordinates, [ ]
T

,d d du v=x , such as 

follows: 

( )2

1

1 1
i

u i d dK r
 = + − +   
∑x x g , (4) 

where 1:iK are the radial distortion factors, and, g and dr  are 

given by 

( )

( )

2 2
1 2

2 2

2 1

2 2

2 2

d d d d

d d d d

P r u P u v

P r u Pu v

 + + 
=  
 + +
 

g  and  (5) 

2 2
d d dr u v= +  (6) 

where 1 2andP P are the tangential distortion factors. It is noted 

that the image data is highly affected by radial distortion.  

3) General Conventional Models Approach 

The techniques that derive the conventional sensor models 

initially invoke an analytical closed-form solution with the 

given target geometrical features, alignment constraints and 

formulations based on the pinhole camera model. The closed-

form solution generates the extrinsic parameters and the focal 

length. These then combine the formulations based on the 

pinhole camera model with the nonlinear equations of the 

distortion model to generate nonlinear solution that estimates 

the final intrinsic and extrinsic parameters. In computing the 

nonlinear solution, the techniques apply optimization 

technique with the parameters obtained from the closed-form 

solution as the initial parameters.  

B. Mechanistic Deconvolution (UMD) 

In mechanistic deconvolution technique, the image sensor is 

modeled using its mechanical and electrical properties, instead 

of characteristics of a known image [13]. The undistorted 

coordinates ux are given by  

( )f , , ,u d p df=x c x δ  (7) 

where df is the effective focal length, cp contains the 

constraint parameters of the sensor and δ  is the lens distortion 

factor offered by the sensor mechanical and electrical 

properties. The df  is determined by the lens system 

approximated by a thick lens, as  
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( ) ( )( )
1 2

2 1 11 1

f
d

nr r
f w

n nr n r t n
= +

− − + −
 (8) 

with the refractive index n, the radii curvature closest and 

farthest from the light source 1 2 and r r , the lens thickness t and 
f

w as the combination of uncertainties from 1r , 2r  and t. The 

constraint parameters cp, as required by (7), include the feature 

resolution constraint parameter ( )1 2 min
−b b , the field of view 

constraint parameter ( )1 2 max
−b b  and the depth of field 

constraint parameter 
dh . 

The ( )1 2 min
−b b  shows the permissible smallest size of a 

scene feature by 

( )1 2 min
0s

d

l

f
b b p− − ≥ , (9) 

using the given distance between the scene feature and sensor 

l. The points [ ]
T

1 1 1,u v=b  and [ ]
T

2 2 2,u v=b  are the reference 

points that define the size vector of the scene feature. On the 

other hand, the ( )1 2 max
−b b  constrains the allowable largest 

size of a scene feature and is controlled by the sensor chip size 

[ ]
T

a u vs s=s , such as follows: 

( )1 2 max
0a

d

l

f
s b b− − ≥  (10) 

The final constraint parameter 
dh  controls the depth of field 

range fD , which is the region where a known image is 

considered in focus. The fD  is defined by  

f f fD D D+ −= −  (11) 

where  and f fD D+ −  are the far and near limits of depth of 

field respectively, and are formulated as 

 , and 

;
.

;

d
f

d

d
d

df

d

h l
D

h l

h l
l h

h lD

l h

−

+

=
+


< −= 

∞ >

 (12) 

Here, 
dh  is also known as the hyperfocal distance and is given 

by  

1000
2

h

d a

q
h d v= + , (13) 

where ad is the diameter aperture size, q is the linear constant 

introduced from the relationship between image brightness and 

ad  and h
v  is the uncertainties due to ad . 

Instead of using the radial and tangential distortion factor in 

the distortion model, the lens distortion factor [ ]
T

,u v=δ δ δ  is 

determined by 

1 tan ; :d
i a d i

f
m f i u v

l
δ β

  
= + − =  

  
 (14) 

using the sensor lens properties. The am  is the aperture stop 

position offset from the principal plane of the approximated 

lens system and  and u vβ β  are the refracted angles of the ray 

based on am  in u-axis and v-axis respectively. Equation (14) is 

obtained from the differences of the image position 

coordinates based on the sensor approximated lens system and 

the principal plane, as derived by 

tan tan ; :i a i d im f i u vδ γ β= − = , and (15) 

tan tan ; :a
i i

l m
i u v

l
γ β

−
= = . (16) 

The angles  and u vγ γ  are the refracted angles of the ray based 

on the position of the principal plane in u-axis and v-axis. 

III. GENERALIZED MECHANISTIC DECONVOLUTIVE MODEL 

Using mechanistic deconvolution technique as a basis, the 

proposed approach derives a model that is applicable in 

various pan and tilt angles of the plane of view,  and u vθ θ . The 

model is presented in this section, which includes the 

formulation of the undistorted coordinates based on the 

reformulation of the constraint parameters and re-

characterization of the distortion effects.  

A. Formulation of Undistorted Coordinates for Given Pan 

and Tilt Angles 

By introducing the given angles of the plane of view 

 and u vθ θ , the undistorted coordinates ux  are generated by  

( )
2

u d= +x x I δθ , (17) 

where δ
θ  is the modified lens distortion factor, and are 

constrained as follows: 

( ) ( )1 2 1 2min max

θ θ

u− ≤ ≤ −b b x b b  (18) 

with ( )1 2 min

θ
−b b  representing the modified feature resolution 

constraint parameter and ( )1 2 max

θ
−b b  representing the 

modified field of view constraint parameter. In this approach, 

the angles  and u vθ θ  are bound by 

; :
2 2i i i i u vπ πφ θ φ− ≤ ≤ − = , (19) 

where  and u vφ φ  are the halves of the sensor view angles in 

the u and v directions respectively, and can be written as 

( )tan
2

tan ; :

d
i

i

s

p
i u v

θ

φ = =
p

 (20) 

using the pixel size [ ]
T

,s u vp p=p  and the sensor view angle 

dθ . The effective focal length df  and the depth of field 

constraint parameter 
dh  previously defined by (8) and (13) are 

not affected by  and u vθ θ , and hence are not modified in this 

approach. The formulations for the lens distortion factor δ
θ  

and the modified constraint parameters ( )1 2 min

θ
−b b  and 

( )1 2 max

θ
−b b  are presented in the following sub-sections. 

B. Derivation of Modified Constraint Parameters 

The angles  and u vθ θ  affect the interpretation of the size of 

a scene feature in the plane of view ( )1 2

θ
−b b , derived from 

the sensor image plane, in correspondence to the area covered 

by the regions, namely region I and II. Fig. 1 illustrates the 

area of regions due to the effects of  and u vθ θ  independently. 

As shown in Fig. 1, region I and II are determined using the v-

axis for the uθ  case and the u-axis for vθ . It is noted that both 
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axes intercept at principal coordinates of the plane of view 

[ ]0 0,x y . The size of a scene feature in region I ( )1 2I

θ
−b b  and 

in region II ( )1 2II

θ
−b b  are given by  

( )
( )

( )
1 2

1 2

cos
; :

cos

i i

iI
i i

e
e i u v

θ φ

θ φ

− ⋅
− ⋅ = =

+

b b
b b  and (21) 

( )
( )

( )
1 2

1 2

cos
; :

cos

i i

iII
i i

e
e i u v

θ φ

φ θ

− ⋅
− ⋅ = =

−

b b
b b , (22) 

where ( )1 2−b b  represents the size in the plane of view 

orthogonal to the sensor z-axis.  

 

 

Fig. 1 Definition of region I and II in the plane of view based on the 

pan and tilt angles independently 

 

Due to the effects of  and u vθ θ , the feature resolution 

constraint parameter ( )1 2 min
−b b  previously defined in (9),  

which allows the smallest permissible size of a scene feature, 

is required to be reformulated. The modified feature resolution 

constraint parameter ( )1 2 min

θ
−b b  is offered by 

( ) ( ) ( )1 2 1 2 1 2min min minI II

θ θ θ
− = − > −b b b b b b  (23) 

with ( )1 2 minI

θ
−b b  and ( )1 2 minII

θ
−b b  representing the 

minimum size of the scene feature corresponding to region I 

and II respectively. The parameters ( )1 2 minI

θ
−b b  and 

( )1 2 minII

θ
−b b  are formulated as 

( )
( )

( )
1 2 min

1 2 min

cos
; :

cos

i i

iI
i i

e
e i u v

θ φ

θ φ

− ⋅
− ⋅ = =

+

b b
b b  and (24) 

( )
( )

( )
1 2 min

1 2 min

cos
; :

cos

i i

iII
i i

e
e i u v

θ φ

φ θ

− ⋅
− ⋅ = =

−

b b
b b . (25) 

The general formulation of ( )1 2 min

θ
−b b  from the sensor’s 

mechanical and electrical properties, using (23) and (9), then 

becomes  

( )
( )

1 2 min

cos
0; :

cos

c i
i i

d i i

l
e p i u v

f

θ φ

φ θ
− ⋅ − ≥ =

+
b b , (26) 

where cl  is the given distance between [ ]0 0,x y  and sensor, 

instead of the given distance l introduced by (9). 

Similarly, the field of view constraint parameter 

( )1 2 max
−b b  that allows the largest permissible size of a scene 

feature, as previously defined in (10), is also required to be 

reevaluated. The modified field of view constraint parameter 

( )1 2 max

θ
−b b  is formulated as 

( ) ( ) ( )1 2 1 2 1 2max max maxI II

θ θ θ
− = − + −b b b b b b   (27) 

where ( )1 2 maxI

θ
−b b  and ( )1 2 maxII

θ
−b b  are the maximum 

possible size of the scene feature for region I and II 

respectively, and these are given by 

( )
( )

( )

1 2 max

1 2 max

cos
; :

cos

i i

iI
i i

e
e i u v

θ
φ

θ φ

− ⋅
− ⋅ = =

+

b b
b b  and (28) 

( )
( )

( )

1 2 max

1 2 max

cos
; :

cos

i i

iII
i i

e
e i u v

θ
φ

φ θ

− ⋅
− ⋅ = =

−

b b
b b . (29) 

Using (27) and (10), the ( )1 2 max

θ
−b b  can be expressed in the 

general form 

( )
( )

2

1 2 max2 2

cos cos
0; :

cos sin

c i i
i i

d i i

l
s e i u v

f

θφ θ

φ θ
− − ⋅ ≥ =

−
b b  (30) 

where [ ]
T

,a u vs s=s  is the sensor chip size.  

The final constraint parameter, which is the depth of field 

dh , is not affected by  and u vθ θ . The depth of field range fD , 

however, is affected by  and u vθ θ  and defined by  

f f fD D Dθ θ+ −= −  (31) 

where  and f fD D
θ θ+ −  are the modified far and near limits of 

the depth of field respectively. The limits  and f fD D
θ θ+ −  are  

( )

( )

1 2 max

1 2 max

+ cos  and 

cos ;

;

d c
f u u

d c

d c
u u c d

d cf

c d

h l
D e

h l

h l
e l h

h lD

l h

b b

b b

θ

θ

θ

θ

−

+

= − ⋅
+


− − ⋅ < −= 

 ∞ >

 (32) 

for the pan angle uθ , and 

 

( )

( )

1 2 max

1 2 max

+ cos  and 

cos ;

;

d c
f u v

d c

d c
u v c d

d cf

c d

h l
D e

h l

h l
e l h

h lD

l h

b b

b b

θ

θ

θ

θ

−

+

= − ⋅
+


− − ⋅ < −= 

 ∞ >

 (33) 

for the tilt angle vθ , where cl  is previously defined as the 

given distance between the plane of view principal point 

coordinates and sensor. 

C. Characterization of Distortion Effects  

The distortion effects of the sensor, similar to the constraint 

parameters, are affected by  and u vθ θ . Due to the complexity 

of the pan–tilt plane of view,  and u vγ γ  previously defined in 

(16) are not able to be determined, and this results in 

inapplicability of the derivation of the lens distortion factor 

[ ]
T

,u v=δ δ δ  using (15). The proposed approach modifies the 

distortion model in the mechanistic deconvolution technique, 

and defines the modified lens distortion factor, 
T

,u v

θ θ θδ δ =  δ as 

( )tan ; :
2

i
i df i u v

θ
θ β
δ = =  (34) 

where  and u v

θ θβ β  are the modified refracted angles of the ray 

based on the position of aperture stop offset in the u-axis and 
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v-axis respectively. The angles  and u v

θ θβ β  are generated by   

( )
tan ; :

tan

c

i

d c a i a i

l
i u v

f l m y m

θβ
φ

= =
− −

y
 (35) 

with the position [ ]
T

,u vy y=y  representing the position in the 

image plane, in comparison to the image plane principal point 

coordinates [ ]0 0,u v ,  and u vφ φ , as given by (20).  

The angles  and u v

θ θβ β  produced in (35) are then utilized 

to derive the general formulation of θδ   

( )

3

1
1

4

tan tan
1

; :

jj
j c

i j
j

i u vj
d c a

d

d

n l

y
f l m

f

n f i u v

θδ
φ φ=

−

=
  +  − +      

+ =

∑
y

 (36) 

with the sensor lens properties, and using the approximated 

formulation of 2i
θβ , denoted by 

( ) ( )
3

4

1

1
tan tan tan

2 2

ji
i j i

j

n n
θ

θ θβ
β β

=

= + +∑  (37) 

where [ ]1 2 3 4, , ,n n n n  are the constant values defined from the 

third-order approximation between 2i

θβ  and i

θβ . Equation 

(36) can be simplified to obtain an alternate solution of the 

lens distortion factor [ ]
T

,u v=δ δ δ , such as follows: 

( )

3

4
1

1

; :

jj

j

i djj
j d a

n l
n f i u v

f l m
δ

−
=

= + =
−

∑
y

 (38) 

which eliminates the necessity of  and u vβ β  introduced in (14)

.  

IV. NUMERICAL EXAMPLES 

An experimental setup was constructed to evaluate the 

behavior of the generalized mechanistic deconvolutive model. 

The evaluations of the model include accuracy, robustness to 

changes in image sensor properties and in pan and tilt angles 

without recalibration. The grid pattern of 20 box X 18 box was 

used as the target in this experimental setup. Two image 

sensors with different specifications, namely Sensor 1 and 

Sensor 2, were used in the evaluation process, as shown in 

Table I. It is noted that Sensor 1 has better specifications than 

Sensor 2. The only similarity between image sensors is; the 

focus of the sensors is manually adjusted. In this experiment, 

these sensors were tilted by 20 degrees, in comparison to the 

plane of view. 

 
TABLE I 

SPECIFICATIONS OF THE IMAGE SENSORS 

Specifications Sensor 1 Sensor 2 

Pixel resolution (MPixel) 3.2 0.4 

Sensor type CCD CMOS 

Sensor size, sa (mm
2) 11.8X7.9 2.6X2.13 

Aperture stop position offset, ma 

(mm) 

0.1 0.3 

Lens thickness, t (mm) 6 4 

 

The generalized mechanistic deconvolutive model (GMD) 

was compared with a model derived by mechanistic 

deconvolution technique (UMD) described in Section II, and a 

conventional sensor model developed by a conventional 

technique illustrated in Section II. The optimization technique 

used by the conventional technique was Gauss–Newton 

method. In this example, the radii mean error was used to 

measure the accuracy of both models, when compared with the 

ideal form of the grid pattern. The robustness of the models 

was then tested based on two types of changes, which are two 

factors of sensor properties and the pan and tilt angles 

 and u vθ θ . The two factors of sensor properties are the 

aperture stop position offset from the principal plane, ma and 

lens thickness, t.  

Fig. 2 shows the number of iterations required by the 

conventional, UMD and GMD models to achieve minimal 

percentage mean error for both sensors. The UMD model 

yields mean errors of 2.2% and 8.9% for Sensor 1 and Sensor 

2. The mean errors produced by the conventional and GMD 

models, in comparison to the UMD model, are lower by a 

factor of 2.4 for Sensor 1 and 3.9 for Sensor 2, which are 

approximately 0.9% and 2.3% for Sensor 1 and Sensor 2. The 

GMD model, however, manages to obtain the mean errors 

using one-seventh and one-tenth of the iterations required by 

the conventional model for Sensor 1 and Sensor 2 respectively.  

 

E
rr
o
r 
(%
)

E
rr
o
r 
(%
)

 

Fig. 2 Accuracy evaluation of the models in corresponding to number 

of iterations for Sensor 1 and Sensor 2 

 

Fig. 3 illustrates the accuracy of the models due to 

incremental changes in sensor properties, am  and t. The UMD 

model attains consistent mean errors due to changes in am  and 

t for Sensor 1 with the average mean errors of 3.1% and 2.9% 

respectively, as illustrated in Fig. 3(a) and 3(c). Similarly, the 

GMD model generates consistent mean errors for Sensor 1 

with lower average mean errors of 1.1% and 1% for changes in 

am  and t, in comparison to the UMD model. These results 

show that UMD and GMD models are not affected by the 

changes in am  and t. The conventional model, despite having 

lower mean errors than the UMD model at the given 

specifications of Sensor 1 in Table I, is unable to achieve 

consistent mean errors due to changes in am  and t for Sensor 1 

and obtains maximum mean errors of 10.1% and 12.5% 

respectively.  

The conventional model also obtains inconsistent mean 
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errors due to changes in am  and t for Sensor 2 and the mean 

errors escalate to maximum of 20.1% for changes in am  and 

19.8% for changes in t, as shown in Fig. 3(b) and 3(d). The 

UMD model, similar to the results produced for Sensor 1, 

generates consistent mean errors due to changes in am  and t 

for Sensor 2 with the average mean errors of 9.3% and 9.8% 

respectively. The GMD model yields consistent and low mean 

errors due to changes in am  and t for Sensor 1 with the 

average mean errors of 2.4% for changes in am  and 2.7% for 

changes in t. These results show that the GMD model provides 

higher and more consistent accuracy, in comparison to the 

conventional and UMD models. 
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Fig. 3 Accuracy evaluations of the models due to incremental 

changes in aperture stop position offset, ma and lens thickness, t for 

Sensor 1 (left column) and Sensor 2 (right column) 

 

Fig. 4 shows the accuracy of the models due to incremental 

changes in  and u vθ θ  independently. It is noted that vθ  is set to 

zero during the incremental changes in uθ  and likewise. Fig. 

4(a) and 4(c) show that the conventional model achieves 

linearly increasing mean errors due to increasing changes in 

 and u vθ θ  for Sensor 1, with maximum mean errors of 2.1% 

and 2.3%. The mean errors produced by the UMD model also 

increases with the increasing changes in  and u vθ θ  for Sensor 

1, with higher maximum mean errors of 4.3% and 4.5% 

respectively. The GMD model, in comparison to the 

conventional and UMD models, attains consistent and lower 

mean errors with average mean errors of 1.3% for both 

changes in  and u vθ θ . These results show that GMD model is 

not affected by the changes in  and u vθ θ . 

Fig. 4(b) and 4(d) illustrate that the mean errors generated 

by the GMD model for Sensor 2, similar to results obtained for 

Sensor 1, are consistent with low average mean errors of 2.4% 

and 2.5% for changes in  and u vθ θ .The conventional model 

also produces consistent mean errors due to increasing changes 

in  and u vθ θ  for Sensor 2, and obtains higher average mean 

errors of 2.8% and 2.9% respectively when compared with the 

GMD model. The UMD model, on the contrary, is unable to 

attain consistent mean errors due to increasing changes in 

 and u vθ θ , and the mean errors rise to maximum of 14.9% for 

uθ  and 14.8% for vθ . Fig. 4 shows that all the models have 

similar patterns for the comparison between  and u vθ θ  for both 

sensors. 
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Fig. 4 Accuracy evaluation of the models due to incremental changes 

in pan and tilt angles, θu and θv for Sensor 1 (left column) and Sensor 

2 (right column) 

V. CONCLUSION 

A generalized mechanistic deconvolution technique to 

modeling an image sensor for an arbitrary pan–tilt plane of 

view has been presented. The model constructed by the 

proposed approach (GMD) achieved accuracy similar to the 

conventional model while considerably reducing the number of 

iterations. In contrast to the conventional model, it also 

demonstrated high robustness to changes in sensor properties. 

In addition, the GMD model proved insensitive to changes in 

pan and tilt angles, and showed an improvement in accuracy 

when compared with the unmodified mechanistic 

deconvolutive model (UMD). Thus it does not require 

recalibration if sensor parts are modified, and is applicable for 

various pan and tilt angles of the sensor plane of view. In 

conclusion, the model has capably demonstrated its capacity to 

correct for distortion without a dependence on image data. 

Continuing investigation of this approach will aim towards an 

extension to include tangential distortion, further improving 

the accuracy of corrected data. 
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