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Abstract—This paper presents the vibrations suppression of a
thermoelastic beam subject to sudden heat input by a single piezo-
electric actuator. An optimization problem is formulated as the
minimization of a quadratic functional in terms of displacement
and velocity at a given time and with the least control effort. The
solution method is based on a combination of modal expansion
and variational approaches. The modal expansion approach is used
to convert the optimal control of distributed parameter system into
the optimal control of lumped parameter system. By utilizing the
variational approach, an explicit optimal control law is derived and
the determination of the corresponding displacement and velocity is
reduced to solving a set of ordinary differential equations.

Keywords—Modal expansion approach, optimal control, ther-
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I. INTRODUCTION

ANY vibration suppressions are required to function
across a variety of different temperatures, yet most
ignores the effects of temperature changes on structures [1].
Indeed, if the temperature varies rapidly, vibration may occur,
which can affect the dynamics and stability of the structures.
Therefore, thermally induced vibration is an important concern
for the design of theses structures. Active structural control
provides an effective means of damping the vibrations of the
structure subject to dynamic loads and external disturbances.
The change in temperature experienced by a spacecraft
emerging from a shadow entering the sunlight is an example
of a dynamic load experienced by a structure. The sudden
exposure to heat leads to thermal vibrations, which need to
be damped. Active control employed by dynamic actuators
will lead to the desired damping to improve the safety and
performance of the structure.

Active vibrations of control of structural elements subject to
mechanical dynamic loads has been studied extensively, see for
example [2], [3], [4]. In comparison to the vibration control of
structures under mechanical loads, there have been few studies
on structures subject to thermally induced vibrations, see for
example [5]-[7].

The present study is aimed at solving the optimal control
problem for an elastic beam undergoing thermally induced
vibrations due to a time dependent heat input. The control
objective is the suppression of vibrations and this is expressed
by minimizing a performance index given in terms of dis-
placement and velocity at a finite time. The vibrations are
suppressed by piezoelectric actuator. The physical problem
corresponds to the suppression of vibrations of a structure
suddenly entering into the daylight zone.

M. Abukhaled is with the Department of Mathematics and Statis-
tics, American University of Sharjah, United Arab Emirates (e-mail:
mabukhaled @aus.edu).

1. Sadek is with the Department of Mathematics and Statistics, American
University of Sharjah, United Arab Emirates (email: sadek @aus.edu).

The solution method is based on a combination of modal
expansion and variational approaches. The modal expansion
approach is used to convert the optimal control of distributed
parameter system (DPS) into the optimal control of lumped
parameter system (LPS). By utilizing the variational approach,
an explicit optimal control law is derived and the determination
of the corresponding displacement and velocity is reduced to
solving a set of ordinary differential equations.

II. OPTIMAL CONTROL PROBLEM

The equation governing the motion of the nondimensional
beam [5] (see Figure 1) is given by

B*Wyprw + Wy = cov(t)dd—;2 [H(x —2z2) — H(x — x1)],
zeQ=(0,1).
)]

where w(z, t) represents the transverse displacement of the
point (z,t), v(t) is the applied voltage to the piezoelectic
patch, ¢y represents the mechanical-electrical coupling coeffi-
cient between the actuator and the beam, H(.) represents the
unit heaviside function, (x1,x2) is the lower-left and upper-
right coordinates of the actuator, and B is given in [5].
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Fig. 1 A smart beam with actuators under the
influence of thermal disturbances.

The boundary conditions are

w(0,t) =w(l,t) =0

2
wzx(o>t) = wmm(lvt) = _mT(t) @
and the initial conditions
w(z,0) = w(z,0) =0 3)
in which mq(¢) is the thermal moment given by [5]
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Let the admissible control set be

A = {v(t) u(t) € L2 (Qt)}
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where ; = (0,ts) in which ¢y is a prescribed termmal tlme No: 3’1"%6 solution of system (13)-(14) is given by

Consider the performance index given by

Jl(t)] = / [ (@, ) + pawd(a, )] d

Q

+ / 130 (£ dt. ®)
Qy

where 11,149, and s are nonnegative weighting constants
satisfying pq + puy > 0 and ps > 0. The last integral on
the right hand side of (5) is penalty term on control energy.
The optimal control problem is now stated as follows:
Determine the optimal control function v*(t) € A ; so
that

JR*(®)] = min Jo(t)] ©)

v(t)EAu

and subject to equations (1)-(3).

III. CONTROL PROBLEM IN MODAL SPACE

First, we consider the transformation
1 2
w=u-— §mT(t)(9& — ) (7

the partial differential equation (1) becomes

1
B ugppn + uy = ir'hT(t)(xQ —x) + cov(t)a(z, z1,22) (8)

where a(x,x1,22) = H(x — x2) — H(z — x1). The new
homogeneous boundary conditions are

Uz (0,) = Uz (1,8) =0
and the new initial conditions are

u(z,0) =0 (10)

uy(x,0) = 21 (07) (22 — )
where 7 (07) = 16m>0mT(0+).

The performance index becomes

Jl(t)] = / [ (@ ) + g3z, 1)]

Q

+ /ugqﬂ(t)dt

Q4

(an

The distributed parameter system (8) can be transformed
into a modal lumped parameter problem by using the expan-

sion
Z zn(t

n=1

) sin(nma) (12)

Using expansion (12), it can be shown that z,(t) satisfies

2,(8) + (nrB)* 2, (2) = 2mp(t) SEEEDY

(nm)3 (13)
+2cov(t)m [cos(mxe) — cos(mxy)]
with initial conditions
2,(0) =0
14(=1)™) (14)

2(0) = 21 (0) S

(nm)?

2n(t) = 2(= 1+( 1)")MT(0 )5111()\ 1)
ﬁu/sm)\ (t—71)mr(t) dr

+2>\ﬂl [cos(mz) — cos(may)] /Sin A (t = T)o(7) dr

0
s)

In a simpler form, the solution (15) can be expressed in the
form
2, (t) = 2"(1)

+ 2P (t) (16)

where
t
2(8) = Ay sin(Ant) + By / sin A (¢ — Ty (t) dr,

0
t

e / sin A (¢ — T)o(r) dr,

0

(7
in which
201 (D)) (0)
n — 3 )
LTy
2(— _1\n
- 18
Bn (nm)3\, (18)
2mey
C, = ) [cos(mxa) — cos(mxy)] .

n

By expansion (12), the performance index (11) becomes

N 2
Wil = Y {mz )+ 2 (Go2al0)) }

n=1

+ / v (t)dt.

Q

19

IV. CONTROL CHARACTERIZATION

The optimal control v*(t) € Aaq is determined such that
Jn[v(t)] is minimum subject to the constraints of the modal
equations of motions (13)-(14). We now proceed by taking
the first variation of Jx with respect to v(t). The necessary
condition for the control v(t) to be optimal is that 0, Jy [v] =
0, thus

N
v [v] = Z (2p12n(tp) 0zn(ty) + 20020 (ty) 62n(ty)]
n=1
2 / o(t) So(t)dt =0
Q
(20)
This implies that
2py [z (tp) + 25 (tg)] sinAn(ty —7)
+2p14 [z (tr) + 2E(ts)] cosAp(ty —7) ©2))

+2u5v(1) = 0.

Thus the minimization of Jy leads to a degenerate system
of integral equations (21) that can be solved for v(¢) in a closed
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form. The system of integral equations can be transf(\)/r?rll'esd
into a system of linear algebraic equations of its twice size
by multiplying equation (21) first by sin A, (¢t — 7) and then
by cos A, (t — 7) and integrating over the time domain €, to
obtain the following linear algebraic equations

2py [2h(t) + Crz] ss +2uy [20(tf) + Cudny] cs

+2pu3z =0 (22)
and
2py [25(t5) + Crzx] es 4 2y [22(t5) + Crudny] cc 23)
+2p3y =0
where
tr
T = /sin)\n(t —7) (1) dr,
i
y= /cos An(t —7) v(T) dr,
0
tr
88 = /sin2 An(t —7) dT,
5
cs = /sin An(t —T) cos A\p(t —7) dr,
i
cc= /c052 Ap(t—7) dT.
0
Equations (22)-(23) can be written in the form
dinz+dizy = €1 o4
d21T + d2oy = €2
where
din = 2u,Cy, 55+ 2p;,
dia = 2uCh Ay cs,
da1 = 2u,C, cs,
daa = 2p,Cp A, cc+ 2,
el = —2uz(ty) 85— 22 (L5) s,
ea = —2uzl(ts) s —2uy2l(ty) ce.

Solving the linear system (24) for x and y, we obtain

_ dare; —dnes
V= da1dio — dy1dan
v dazer — dizes

do1di2 — dy1da

Now an optimal control v*(¢) is determined from (21) and
is given by

v (t) = —1 [ 21 [[Zﬁ(tf) + Cpa] sin A, (ty — 7)

s | +209 [22(tr) + Crdny] cos Ay (ty — 7)
(25)
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V. CONCLUSION

A simply supported beam with a piezoelectric actuator
subject to a thermal disturbance has been presented. The
piezoelectric actuator is implemented to actively suppress the
motion caused by thermal disturbances. The basic problem
of interest is to minimize a quadratic functional in terms of
displacement and velocity within a prescribed time and with
the least control effort. The solution of the problem is obtained
by means of eigenfunction expansion and variational approach.
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