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Segmentation of Cardiac Images by the Force Field

Driven Speed Term
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Abstract—The class of geometric deformable models, so-called
level sets, has brought tremendous impact to medical imagery. In
this paper we present yet another application of level sets to medical
imaging. The method we give here will in a way modify the speed
term in the standard level sets equation of motion. To do so we
build a potential based on the distance and the gradient of the
image we study. In turn the potential gives rise to the force field:
~FF (x, y) =

∑

∀(p,q)∈I

((x, y) − (p, q)) |∇I(p,q)|

|(x,y)−(p,q)|2
. The direction

and intensity of the force field at each point will determine the
direction of the contour’s evolution. The images we used to test
our method were produced by the Univesité de Sherbrooke’s PET
scanners.
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I. INTRODUCTION

IN the past decades, image segmentation has played an

important role in medical imaging. Segmented images are

now used routinely in a huge number of different applications,

such as the quantification of tissue volumes [7], diagnosis [8],

localization of pathology [9], study of anatomical structure

[10], [11], treatment planning [12], partial volume correction

of functional imaging data [13], and computer-integrated

surgery [14]. However, image segmentation remains a chal-

lenging task, mostly due to the unpredictability of object

shapes and also the inconsistency in image quality. Also, medi-

cal images are often corrupted by noise and sampling artifacts,

which can make the classical segmentation techniques such as

edge detection and thresholding almost useless. Consequently,

when using these techniques one usually must apply some

kind of post processing step in order to discart unsound object

boundaries in the obtained segmentation results.

In order to deal with those difficulties, deformable models

have been widely studied and broadly used in medical image

segmentation, with generally satisfying results. Deformable

models are curves or surfaces defined within an image domain

that can move under the influence of internal forces and

external forces. Internal forces are defined within the curve

or surface itself, and can be computed from the image. The
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internal forces are designed to keep the model smooth during

deformation. The external forces are defined to move the

model toward an object boundary or other desired features

within an image.

In particular, the class of geometric deformable mod-

els(GDM) introduced in [1], [2], [3] are deforming contours

(curves and surfaces) represented implicitly as level sets of

some higher dimensional scalar function. This level sets rep-

resentation allows these models to have numerous advantages

such as providing efficient computational schemes, automati-

cally handling topology changes of the evolving contours and

simple implementation. These numerous advantages can be

used profitably to provide a very efficient framework for image

segmentation, edge detection, shape modeling, visual tracking

etc.

Using the classical level sets implementation of the geodesic

deformable model it would be challenging to segment a

cardiac image. The reason is because if only one contour is

initialized the interior or the exterior of the heart would not

be detected. On the other hand if two contours are initialized

(one inside and one outside of the heart) the constant speed

term c would force the contours to expend or shrink making

it impossible to detect the compleat boundary. In order to

benefit from all the advantages that come with the geodesic

deformable model and yet be able to properly segment the car-

diac image we develop a new method, based on the geodesic

deformable models, for segmentation of medical images in

particular, the PET images of a mouse’s heart. We develop a

force field that will influence the speed term in the evolution

equation. The evolving curve will act as if placed in a potential

that is proportional to gradient and inversely proportional to

the distance. This framework will allow the curve to move

forward and backward depending on the force field.

For cardiac images it is important to have a segmentation

method in order to be be able to make an accurate diagnostic.

For example the volume of the blood that is being pumped can

be well approximated if the segmentation is done properly. The

segmentation also allows us to measure the muscle thickness

at various places.

This paper is organized as follows. In Section II, we briefly

introduce the geometric and geodesic deformable models. In

section III we discuss the the creation of the force field that

will later govern the evolution of the evolving contour. In

Section IV, we explain how the constant speed term c can

be modified to accommodate our need for the contour to be

free to shrink and to expend. Some experimental results are

also presented. A brief conclusion is given in Section VI.
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II. GEOMETRIC DEFORMABLE MODELS

Geometric models for active contours have brought tremen-

dous impact to classical problems in imagery such as pro-

viding ways to devise efficient computational algorithms for

automatic segmentation. This is achieved by using the level

set methods, which allow handling automatic changes in

topology while providing a framework for very fast numerical

schemes.These models are based on the theory of curve evo-

lution and geometric flows. The curve/surface is propagating

(deforming) by an implicit velocity that contains two terms,

one related to the regularity of the deforming shape and the

other attracting it to the boundary. The model is given by

a geometric flow(PDE), based on mean curvature motion,

therefore it’s completely intrinsic. When implemented using

the level set based numerical algorithm, the model handles

topology changes automatically.

The geometric model proposed by Caselles et al [1] is based

on the mean curvature motion equation which describes the

propagation of the level set function following the normal

direction with speed depending on the mean curvature. Let u

be a level set function u : R2
× [0,+∞) → R and curve C is

a level set of u, such that C = {x ∈ R2 : u(x, t) = r}, r ∈ R.

The geometric model is defined as follows:

∂u

∂t
= g (I) (c + k) | ∇u |= F1 | ∇u | (1)

u(x, 0) = u0(x) (2)

where u0 is the initialized curve. A similar formulation

called the geodesic model gives:

∂u

∂t
=

(

g(I)(c + k) −∇g · ~N
)

| ∇u |= F2 | ∇u | (3)

where g(I) is the stopping function,

g(I) =
1

1+ | ∇Î |2

which will stop the propagation when the evolving front

reaches the desired position, the boundary detected. Î is a

convolved image that ensures the motion of C is less affected

by the noise in the image. k is the mean curvature. And ~N is

computed on the evolving front. For the added constant term

c, we can think cg(I) | ∇u | as an extra speed in the geodesic

problem to increase the speed of the convergence. The gradient

term | ∇u | controls what happens at the interior and exterior

of the interface. ∇g ·∇u denotes the projection of an attractive

force vector on the normal to the moving interface. This term

allows to accurately track boundaries with high variation in

their gradient, including boundaries with small gaps.

There are many algorithms for numerical implementation of

GDM using level sets. Narrow band method and fast marching

method are two simple, computationally fast and widely used

algorithms. Instead of computing the evolution of all the level

sets, which means all the grid points, narrow band method just

updates a small set of points in the neighborhood of the zero

level set for each iteration.

Fig. 1. Points of reference.

III. FORCE FIELD

If the classical level sets implementation of the geodesic

deformable model is used to segment a cardiac image it would

be a challenge for at least two reason. The first reason is

that if only one contour is initialized in the interior or in

the exterior of the heart only partial boundaries would be

detected. If the contour was to be initialized in the regions

representing the heart’s muscle the contour would easily leek

producing incorrect boundaries. The second reason is that if

two contours are initialized (one inside and one outside of the

heart) the constant speed term c would force the contours to

expend only or shrink only, making it impossible to detect

the compleat boundary. With the desire to benefit from all

the advantages that come with the geodesic deformable model

and yet be able to properly segment the cardiac image we

develop a new method, based on the geodesic deformable

models, for segmentation of medical images, in particular the

PET images of a mouse’s heart. We develop a force field

that will influence the speed term in the evolution equation.

The evolving curve will act as if placed in a potential that

is proportional to gradient and inversely proportional to the

distance. This framework will allow the curve to move forward

and backward depending on the force field.

Before we start the segmentation the user is asked to create

about five points of reference. Those points should be placed

inside the heart muscle as illustrated in the figure 1.

After the points of reference were acquired we proceed

to estimation of the curve that will later be responsible for

the existence of the force field. What is important is that

this curve passes through all the points of reference and that

it always stays in the heart muscle which is represented by

the bright regions. There are numerous ways of creating such

curve using the image information and also the knowledge of

what a mouse’s heart, for example, looks like. One possible

instance of such a curve is shown in the figure 2.

From the image in the figure 2 we create the image in the

figure 3.

To calculate the force field we use the image shown in the

figure 3 and the following equation:
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Fig. 2. Force field curve step I.

Fig. 3. Force field curve step II.

~FF (x, y) =
∑

∀(p,q)∈I

((x, y) − (p, q))
|∇I (p, q) |

|(x, y) − (p, q)|
2

(4)

The force field created here is very similar to the one created

by gravitational potential. In the case of gravity, the points in

space that contain some matter (have some mass) will be the

only ones that exert the force. Similarity, only the pixels that

have non-zero gradient will exert the force. So the evolving

contour acts as a ”massless” string attracted by the pixels with

high gradient.

IV. ADAPTING THE GEODESIC DEFORMABLE MODEL

In both geometric and geodesic deformable models the

constant c is responsible for the direction of the evolution

and the speed of the evolution of the evolving front. In this

section we develop a way to calculate c that depends on the

information provided to us by the image we are working on.

In order if the contour should expend or contract, that if the

constant c should be positive or negative, we consider the dot

product between the normal vector to the evolving front and

the force field vector at the same point. As illustrated in the

figure 4

Fig. 4. The normal N and the force field vector FF.

Therefore, we define c which will no longer be a constant

as:

c( ~FF (x, y)) =

{

c if ~N · ~FF ≥ 0

−c if ~N · ~FF ≤ 0
(5)

So now c can be moving the contour in either direction,

forward or backward.

The new equation of motion is now:

∂u

∂t
= g (I)

(

c( ~FF (x, y)) + k
)

| ∇u | (6)

for the geometric model and

∂u

∂t
=

(

g(I)(c( ~FF (x, y)) + k) −∇g · ~N
)

| ∇u | (7)

for the geodesic model, where c( ~FF (x, y)) is calculated

using the equation 5 and the equation 4

V. EXPERIMENTAL RESULTS

In this section, we show a few results that were obtained

this new modified deformable model.

The following image is an image of a mouse’s heart.

We initialize two contours. The first one is placed in the

middle of the force field curve shown in the figure 3 and it

should be as small as possible. The second one is a circle with

center in the middle of the force field curve and its size should

be big enough to encompass most of the pixels representing

some radioactivity. The initialization is shown it the figure 6.

The evolution of our deformable model is shown in the

figure 7.

VI. SUMMARY AND CONCLUSIONS

In this paper we have presented a new method for seg-

menting a particular class of medical images. The method

is based on geometric and geodesic deformable model. The

modification we made to the speed term allows the evolving

contour to move in the direction normal to itself and also in the

direction of its negative normal depending on the direction of

the force field. The method was tested using the PET scanner

images.
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Fig. 5. Mouse’s heart.

Fig. 6. Mouse’s heart: Contours initialization.
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[2] V. Caselles, F. Catté, T. Coll, and F. Dibos, A geometric model for active

contours in image processing, Numer. Math., vol. 66, pp. 1–31, 1993.

[3] R. Malladi, J.A. Sethian, and B.C. Vemuri, Shape Modeling with Front

Propagation: A Level Set Approach, IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 17, pp. 158-175, 1995.

[4] J. Sethian. Level Sets Methods and Fast Marching Methods. Cambridge
University Press, 1999.

[5] S. Osher och R. Fedkiw. Level Set Methods and Dynamic Implicit

Surfaces. Springer-Verlag, 2002.

[6] A. Rosenfeld and A.C. Kak, Digital Picture Processing(New York:
Academic Press, 1982).

[7] S. M. Larie and S. S. Abukmeil, Brain abnormality in schizophrenia:

a systematic and quantitative review of volumetric magnetic resonance

imaging studies, J. Psych., vol. 172, pp. 110-120, 1998.

[8] P. Taylor, Invited review: computer aids for decision-making in diagnostic

radiology -a literature review, Brit. J. Radiol., vol. 68, pp. 945-957, 1995.

[9] A. P. Zijdenbos and B. M. Dawant, Brain segmentation and white

matter lesion detection in MR images, Critical Reviews in Biomedical
Engineering, vol. 22, pp. 401-465, 1994.

Fig. 7. Evolution of the contour at different iterations.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:5, 2008

327

[10] A. J. Worth, N. Makris, V. S. Caviness, and D. N. Kennedy, Neu-

roanatomical segmentation in MRI: technological objectives, Int’l J. Patt.
Recog. Artificial Intell., vol. 11, pp. 1161-1187, 1997.

[11] C. A. Davatzikos and J. L. Prince, An active contour model for mapping

the cortex, IEEE Trans. Med. Imag., vol. 14, pp. 65-80, 1995.
[12] V. S. Khoo, D. P. Dearnaley, D. J. Finnigan, A. Padhani, S. F. Tanner,

and M. O. Leach, Magnetic resonance imaging (MRI): considerations

and applications in radiotheraphy treatment planning, Radiother. Oncol.,
vol. 42, pp. 1-15, 1997.

[13] H. W. Muller-Gartner, J. M. Links, J. L. Prince, R. N. Bryan, E.
McVeigh, J. P. Leal, C. Davatzikos, and J. J. Frost, Measurement of

radiotracer concentration in braingray matter using positron emission

tomography: MRI-based correction for partial volume effects, J. Cereb.
Blood Flow Metab., vol. 12, pp. 571-583, 1992.

[14] W. E. L. Grimson, G. J. Ettinger, T. Kapur, M. E. Leventon,W. M.Wells,
et al., Utilizingsegmented MRI data in image-guided surgery, Int’l J. Patt.
Recog. Artificial Intell., vol. 11, pp. 1367-1397, 1997.
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