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Abstract—The similarity comparison of RNA secondary 

structures is important in studying the functions of RNAs. In recent 
years, most existing tools represent the secondary structures by 
tree-based presentation and calculate the similarity by tree alignment 
distance. Different to previous approaches, we propose a new method 
based on maximum clique detection algorithm to extract the maximum 
common structural elements in compared RNA secondary structures. 
A new graph-based similarity measurement and maximum common 
subgraph detection procedures for comparing purely RNA secondary 
structures is introduced. Given two RNA secondary structures, the 
proposed algorithm consists of a process to determine the score of the 
structural similarity, followed by comparing vertices labelling, the 
labelled edges and the exact degree of each vertex. The proposed 
algorithm also consists of a process to extract the common structural 
elements between compared secondary structures based on a proposed 
maximum clique detection of the problem. This graph-based model 
also can work with NC-IUB code to perform the pattern-based 
searching. Therefore, it can be used to identify functional RNA motifs 
from database or to extract common substructures between complex 
RNA secondary structures. We have proved the performance of this 
proposed algorithm by experimental results. It provides a new idea of 
comparing RNA secondary structures. This tool is helpful to those 
who are interested in structural bioinformatics. 
 

Keywords—Clique detection, labeled vertices, RNA secondary 
structures, subgraph, similarity.  

I. INTRODUCTION 
OMPARING the similarities of RNA secondary structures 
is one of the challenging tasks in molecular biology. 

Similar structures often imply similar functions. If there is a 
newly discovered RNA, a suggestion of its function can be 
obtained by comparing its similarity to known RNA structures 
by finding the relatively common structures of known RNAs 
and by measuring the overall similarities among the whole 
RNA secondary structures. It is known that if there is an 
amount of RNA conserved on the primary sequence level when 
performing a primary sequence alignment, it may have a similar 
function, and may fold conserved secondary structural regions 
among these sequences. However, functional RNA families, 
such as tRNA and rRNA, are highly conserved on secondary 
structures but little on primary sequences. Therefore, it is useful 
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to compare RNA secondary structures directly without 
accomplishing primary sequence alignment. We propose a 
graph-based approach for purely comparing RNA secondary 
structures, which not only calculates the similarity scores 
between compared RNA secondary structures, but also detects 
the maximum common secondary structures on the basis of 
maximum clique detection; that is, the detection of the 
maximum common subgraph between two graphs after 
transforming secondary structures into simple graphs. 

Most existing studies, such as [1][2][3][4][5][6], they 
transform the RNA secondary structures into node-labeled, 
tree-like structures based on the assumption that any base exists 
at most in one such pair and the edges of the bonded pairs are 
non-crossing. Some tools, such as Vienna’s RNAdistance [7], 
use a tree-liked model to represent RNA secondary structures 
and compare these structures on the basis of edit distance. The 
Vienna’s RNAforester tool [7], as its name suggests, extends 
the tree-like model to a forest-like model, which significantly 
improves time complexities. Another RNA secondary structure 
searching algorithm provided by Macke et al. [8] is based on 
the motif definition of unique structural and functional 
properties. They develop a program that can describe the RNA 
structural motifs and then search any nucleotide sequence 
databases. 

In this approach, based on detecting the largest clique of the 
maximum common subgraph problem is presented, it can be 
used in similar structural elements extracting applications 
where secondary structures are presented as simple graphs so 
that the nucleotides correspond to labeled vertices and the 
helixes correspond to labeled edges. In addition, we also 
develop a measurement method that provides scores to indicate 
the similarity of the structures compared. In other words, this 
proposed algorithm is composed of two major sections. The 
first provides the similarity score of the secondary structures 
compared, and the second finds the maximum common 
subgraph of two graphs that are transformed by the RNA 
secondary structures. Contrasting this proposed algorithm with 
previous related research, there are three major contributions. 
The first one is that, in the similarity measurement section, we 
consider not only the diverse number of vertices and edges 
represented in the two compared graphs, but also take account 
of vertices and edge labelling, which furnish more 
discriminating similarity scores. The second major contribution 
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is the detection of the largest cliques from the compatibility 
graph to obtain the maximum common subgraph, which is 
constructed from two compared simple graphs. The third 
contribution is the proposed algorithm can work with the 
NC-IUB code (the nucleotide abbreviations recommended by 
the Nomenclature Committee of the International Union of 
Biochemistry), and search for similar structural elements 
between compared structures. 

II. METHODS 
A. Data Sets 
A human UTR structure database was constructed as 

follows. We download human RefSeq mRNA sequences 
(January 2007 version) from NCBI [9]. Each RefSeq sequence 
is processed to extract the 5’UTR and 3’UTR sequences, and a 
50nt sliding window is moved along the input sequence with a 
step length of 10nt. The RNAFold program generates 
secondary structures and the lowest free energy is kept for each 
folding sequence. To test the performance of the proposed 
algorithm on complex secondary structures, we also download 
the 5S ribosomal RNA (5S rRNA) family sequences (X02979 
and X07545), U12 minor spliceosomal RNA sequences for 
human (L43846.1) and mouse (L43843.1), and let-7 precursor 
microRNA sequences for C.elegans and human from the 
RFAM database. 

B. Definitions 
A graph G consists of a set of vertices V(G) and a set of edges 

E(G). In a simple graph, two of the vertices in G are linked if 
there exists an edge (vi, vj)∈E(G) connecting the vertices vi and 
vj in graph G such that vi∈V(G) and vj∈V(G). The number of 
vertices will be denoted by ⎜V(G)⎜, and the set of vertices 
adjacent to a vertex vi is referred to as the neighbors of vi, N(vi). 
The degree of a vertex vi is the number of edges with which it is 
incident, symbolized by d(vi). Two graphs, G1 and G2, are said 
to be isomorphic (G1 ≅ G2) if a one-to-one transformation of V1 
onto V2 effects a one-to-one transformation of E1 onto E2. A 
subgraph G´ of a graph G is a graph whose set of vertices and 
set of edges satisfy the relations: V(G´)⊆V(G) and E(G´) 
⊆E(G), and if G´ is a subgraph of G, then G is said to be a 
supergraph of G´. The line graph L(G) of an undirected graph G 
is a graph such that each vertex in L(G) indicates an edge in G 
and any pairs of vertices of L(G) are adjacent if and only if their 
corresponding edges share a common endpoint in G. 

C. The Measurement of Structural Similarity 
Before the similarity of RNA secondary structures can be 

measured, we transform the combinations of parentheses and 
dots that RNAFold output into a simple graph, which is 
demonstrated in Figs. 1(a), 1(b) and 1(c). The proposed 
similarity measure procedure is based on the divergence of the 
vertices and edges displayed in G1 and G2. The degree sequence 
of a graph is the list of vertex degrees, usually written in 
non-increasing order. The vertices in each graph are separated 
into four partitions by the nucleotide types, and we sort these 
vertices according to the degrees by descending order, which 

means we have the degree sequence of every partition for the 
compared graphs G1 and G2. Let P1

i and P2
i as given in (1) and 

(2) denote the sequences of sorted vertices in partition i in 
graphs G1 and G2, respectively. 

{ }ivLabelGVvpi =∈= )(:)( 1
1                              (1) 

{ }ivLabelGVvpi =∈= )(:)( 2
2                                (2) 

where i indicates the number of partitions, and the Label 
denotes the distinct types of nucleotides. Therefore, the vertex 
similarity between a pair of graphs can be given as follows: 
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Instead of only considering the degree of each vertex in 
partitions, we also contemplate the nucleotide types of adjacent 
vertices. In other words, an accumulation is increased to a pair 
of compared vertices in G1 and G2, by who’s each edge incident 
to the neighbour vertex with the same content of nucleotides, 
which is denoted as the function ),( 21

iiN ppf , where 1
ip  and 2

ip  
represent the partitions in the compared graphs, as described 
above. 
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Note that the term on the right of Eq. (4) is divided by two since 
each edge in this formulation is counted twice, and the Content 
described in Eq. (6) denotes the contents (A, U, C or G) of 
nucleotides. If the content of nucleotide of 1

jqv is equal to 2
jqv , 

the result of ),( 21
jqjqC vvσ will be 1. Moreover, we also consider 

three kinds of distinct edge types, L, N, and S, represented as 
edges in the loop, in the pairing, and in the stem, respectively. 
As a result, the type of incident edges of each vertex in a pair of 
compared graphs is denoted as e1

j and e2
j for G1 and G2, 

respectively. The function, ),( 21
iiT ppf , is defined to be a linear 

assignment of consistent edge types associated with each pair 
of vertices in the sequence 1

ip and 2
ip such that each vertex in 

1
ip  is compared to each vertex in 2

ip . The Type shown in Eq. 
(11) indicates the types of edges, and if the edge type of 1

jqe is 

equal to 2
jqe , then the value of ),( 21

jqjqT eeσ will be 1. 
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With ),( 21 GGNζ and ),( 21 GGTζ being calculated as 
previously discussed, the edge similarity between two given 
graphs can be given as follows: 

),(),(),( 212121 GGGGGGS TNE ζβζα ⋅+⋅=                 (12) 

where the parameters α and β indicate the significance of 
),( 21 GGNζ and ),( 21 GGTζ . Since the resemblance to the 

vertex and edge of the two compared graphs are estimated, a 
similarity measure between a pair of graphs can be given as 
follows: 
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D. Encode the Graphs 
The RNA secondary structure may consist of double-straned 

pairings, bulges (i.e. unpaired sequences within stems), 
terminal loops, internal loops, multiloops and so on. Since the 
stability of the stem is determined by its length and the number 
of mismatches or bulges it contains, we encode the 
double-stranded pairings as “P” to emphasize the steadiness of 
the stem structure. If there are unpaired sequences within the 
stem, the contents of nucleotides are preserved to accentuate 
the “differences” between the compared structures. Moreover, 
the nucleotides appeared in internal loop substructure, we 
encode them by label “L”. For searching IRE patterns in UTRs, 
the proposed algorithm is designed to work with NC-IUB code 
to symbolize the loop pattern, CAGWGH. We demonstrated 
the NC-IUB encoded IRE graph examples in Fig. 1(d). 

E. Transform the Simple Graphs into Line Graphs 
Before detecting the maximum common subgraph between 

two graphs, the proposed algorithm transforms them into line 
graphs. The line graph of a graph G, written L(G), is the graph 
whose vertices are the edges of G, with ef ∈E(L(G)) when e = 
uv and f = vw in G. 

F. Construct the Compatibility Graph 
The second part of this proposed algorithm is to detect the 

maximum common subgraph between two compared graphs. 
The maximum common subgraph problem can be reduced to 
determin the maximum clique in the compatibility graph [10]. 
The compatibility graph of two labeled graphs G1 and G2 is 
defined on the vertex set V(G1) × V(G2) with two vertices ui 
∈V(G1) and uj ∈V(G2) having respective adjacent  vertices 
vi∈V(G1) and vj ∈V(G2), whenever 
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However, an increasing number of vertices in compatibility 
graph will dramatically increase the number of edges that are 
detected in the maximum clique later. The compatibility graphs 
are sparse, most vertices are not adjacent to the other vertices in 
the original graph, nevertheless, the condition of 

)(),()(),( 21 GEvuandGEvu jjii ∉∉  in the compatibility graph 
will dominate, and the compatibility graph will be dense as well 
as large. As a result, Raymond et al. [11] has extended the 
definition of the compatibility graph to apply the compatibility 
graph to the problem of the MCS (Maximum Common 
Subgraph) of two chemical graphs. Since the major purpose of 
this proposed algorithm is to detect the MCS of two RNA 
secondary structures, we also have to extend the definition of 
the compatibility graph. Note that each vertex corresponds to a 
labelled nucleotide type in the original RNA secondary 
structure graphs, denoted as )(C 1

jvontent , where Content 
indicates the type of nucleotide. As Eq. (6) shown, each vertex 
in two compared graphs is considered when constructing the 
compatibility graph. The symbol ijw  indicates a vertex in a 
compatibility graph while the content of the vertex ui in L(G1) is 
equal to that of the vertex vi in L(G2). As a result, the connection 
between two vertices in compatibility graph exists if both the 
Eqs. (14) and (15) are true. 

1),(1),( 2121 == jjCjjC uuandvv σσ                               (15) 

When the compatibility graph is constructed, the next step is to 
find the maximum clique from the compatibility graph. 

G. Description of Proposed Maximum Clique Detection 
Procedures 

A clique is defined as a set of vertices in which every vertex 
is connected to every other vertex by an edge. The definition of 
the clique problem is that, given a graph G and an integer k, 
determine if G has a clique C of k vertices. The maximum 
clique problem is also known to be NP-complete. Our goal is to 
find a maximum clique and the size of the maximum clique. 
Once a clique is found, we only need to enumerate cliques 
better than the current best clique. The most well known and 
commonly used implicit enumerative method for the maximum 
clique problem is the branch and bound method. The key issues 
in a branch and bound algorithm for the maximum clique 
problem are: how to find the proper upper bound on the size of 
maximum clique and how to branch, which means how to break 
a problem into several small sub-problems [12]. As described 
in the previous section, we have a compatibility graph (G1 ◊ G2), 
denoted as G’12, next we sort all vertices of G’12 according to 
the degrees by increasing order, say v1, v2,…, vn, where v1 is a 
vertex with the smallest degree of the graph G’12. The clique 
detection algorithm that we use and modify is developed by 
Carraghan et al. [13], which serves as a benchmark algorithm 
for clique finding. Initially, this algorithm finds the largest 
clique C1 that contains the vertex v1. Next it finds clique C2, 
which is the largest clique in G’12 – {v1} and contains v2 and so 
on. For the purpose of reducing the search space, this clique 
detection algorithm applies heuristics and prune techniques. 
The crucial factor in the algorithm is the notion of depth. 
Considering the vertex v1, in depth 2, we select all vertices that 
are adjacent to v1. In depth 3, we then select the vertices that are 
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shown in depth 2 and are adjacent to the first vertex listed in 
depth 2. Let vdi be the vertex that is currently expanding at 
depth d and step i, and if d + (m – i) ≥ the size of current largest 
clique, then continue searching, as the possible largest clique 
would be larger or equal to the size of the current largest clique; 
otherwise, stop searching. If the procedure is at depth 1 and this 
inequality cannot hold then the procedure stops. However, a 
common feature of the sequential heuristics is that they all find 
only one maximal clique. Once a maximum clique is found, the 
search stops, however, there may be more than one maximum 
clique. To solve this problem, we preserve a set to keep all 
possible maximum cliques while performing clique finding, 
named the candidate clique set; this is the set of cliques that 
have been already detected as the largest clique so far. Initially, 
this set is empty until the first clique is found, then the 
algorithm continues to check whether any clique exists, if the 
result is yes and the size of the newly found clique is larger than 
that in candidate clique set, then all cliques in the candidate 
clique set are removed and the larger clique is stored. If the 
newly found clique is the same size as the candidate clique set, 
then store this clique in the candidate clique set. We illustrate 
this with an example paeudo-code. The main purpose of the 
candidate clique set is to preserve all possible maximum cliques, 
and then to manually choose one that conforms to the biological 
meanings. We summarize the pseudo-code of whole algorithm 
in appendix section. 

III. RESULTS 

A. Performance on Precursor microRNA Secondary 
Structures  

We perform first experiment by using Let-7 precursor 
microRNA [14][15] secondary structures. In Fig. 2, we 
demostrate the maximum common subgraphs detected by our 
proposed algorithm for the precursor microRNAs compared, 
and the blue circles shown in Figs. 2(a), 2(b), and 2(c) indicate 
the maximum common secondary structures between cel-let-7 
and human let-7a-1, let-7b, and let-7c precursor microRNAs, 
respectively. The experimental results validate our expectation 
that if the terminal loops, internal loops or bugles have different 
sizes in compared secondary structures, they will not be seen in 
the results.  As a result, with Fig. 2(a) as an example, both 
cel-let-7 and hsa-let-7a-1 structures have internal loops in 
stems, with lengths of 2nt and 4nt, respectively, and neither are 
shown in the result of the common substructures. Looking at 
Fig. 2(c), both cel-let-7 and hsa-let-7c structures have the same 
internal loops, 2nt in length and with the same contents of 
nucleotides (the nucleotide U). Hence, the proposed algorithm 
regards the internal loops as the same structures and extends the 
scope when detecting common subgraphs. This leads to an 
interesting phenomenon, if the internal loops have the same 
length but different contents of nucleotides, does the proposed 
algorithm detect these internal loops as the same structure? The 
answer is negative, as illustrated in Figs. 2(d) and 2(e), cel-let-7, 
hsa-let-7d and hsa-let-7e all have internal loops with length of 
2nt but different contents of nucleotides, and the results 
demonstrate that these internal loops are different structural 

elements. The reason for causing this experimental result is Eq. 
(15), which is the extended definition of the compatibility 
graph. Accordingly, we execute another experiment for further 
confirmation. We encode all nucleotides that appeared in the 
internal loop structural elements with symbol “L” and encode 
the nucleotides appeared in stems with symbol “P”. The 
experimental results substantiate our doubts and are indicated 
by the red circles shown in Figs. 2(d) and 2(e), which indicates 
that if the internal loops have the same length, they can be 
detected as similar structural elements by the encoding 
procedure. Additionally, it remains ambiguous that whether the 
biological meanings or functions of internal loops influence the 
binding effects of the RNA binding proteins. Therefore, we 
encode the loops with symbol “L” to make this proposed 
algorithm more flexible to extract loops with same sizes of 
length. If the biologists concern the contents of nucleotides in 
loops, this proposed algorithm also has the ability of extract the 
“exact match” structural elements without encoding procedure.  

We present the similarity scores between cel-let-7 and other 
precursor microRNAs in Fig. 2(f). We compare human let-7a-1, 
let-7b, let-7c, let-7d, and let-7e to C.elegans let-7 precursor 
microRNA, respectively. The similarity scores are calculated 
with the parameters α = 0.8 and β = 0.2, and encoding symbol 
“P” in the stem substructure and internal loop encoding by 
symbol “L” not enabled are listed in the second column of Fig. 
2(f). Notice that, the highest score in this column is 0.7099, 
which indicates the hsa-let-7c precursor is most similar to 
cel-let-7 precursor by measuring the labels of vertices (Eq. 3), 
the labels of adjacent vertices (Eqs. 4-6), and the labels of edges 
(Eqs. 7-11). That is, the proposed scoring method considers not 
only the variety of nucleotides (the lables of vertices), but also 
the diversity of double-stranded pairings (the labels of edges). 
The similarity scores listed in the last column have encoded the 
double-stranded pairings by label “P” to emphasize the 
steadiness of the double-stranded pairings, and encoded by 
label “L” in internal loops substructure. As a result, the 
similarity scores are higher than those listed in second column. 
The higest score listed in the third column is 0.9709, which 
indicates that after the encoding precedure, the more 
double-stranded pairings, the higher scores calculated by this 
proposed scoring measurement. In conclusion, we provide 
experimental evidence to prove the capability of the proposed 
algorithm in measuring similarity scores and detecting 
maximum common structures for precursor microRNAs, and in 
the next section, we use RNA secondary structures with 
multiloops to verify the accuracy of our proposed algorithm. 

B. Performance on RNA Secondary Structures with 
Multiloops  

The purpose of this experiment is to test how accurate the 
proposed algorithm is for more complex secondary structures. 
We select ribosomal 5S ribonucleic acid (5S rRNA) which has 
a length of ~120nt for detailed test because the 5S rRNA has 
more complicated secondary structural elements such as 
hairpins, internal loops, bulges, and multipl-loops. 5S rRNA is 
a component of the ribosomal subunit in both prokaryotes and 
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eukaryotes. The function of the rRNA is to provide a 
mechanism for decoding mRNA into amino acids and to 
interact with the tRNAs during translation. Fig. 3 demonstrates 
the maximum common substrucutre of two compared 5S rRNA 
secondary structures. One is Methanococcus vannielii 5S 
rRNA (accession number X02729/3000-3137 in RFAM 
database) and the other one is Desulfurococcus mobilis 5S 
rRNA (X07545.1/505-619) [16]. We use the same encoding 
procedure described in the previous section to transform the 
nucleotide labels into “L” and “P” for those located in internal 
loops and double-stranded pairings, respectively. Graphically, 
the right stem-loop substructure of Fig. 3(a) seems to have 
some resemblance to that of Fig. 3(b), nevertheless, the actual 
secondary structure is quite diverse in the length of stem and 
the end loop. That is, the proposed algorithm performs 
precisely when comparing the different size of loops. 
Specifically, as illustrated by the red marks in Fig. 3, only stems 
with the same number of double-strand pairings and the loops 
with the same sizes can be detected as similar structural 
elements. It is remained ambiguous that whether the sizes (the 
length of nucleotides) or mutations (the different contents of 
nucleotides) of multiloops influence the biological functions 
effect on complex RNA secondary structures. 

We also provide the experimental results of extracting 
maximum common structural elements between Homo sapiens 
and mouse U12 minor spliceosomal RNA secondary structures 
in Fig. 4. U12 minor spliceosomal RNA is formed from U12 
snRNA, and it works with U4atac, U5 snRNA, U11 snRNA 
and related proteins to form a spliceosome which cleaves a 
class of low-abundance pre-mRNA introns [17]. Both 
L43846.1 (Homo sapiens) and L43843.1 (mouse) sequences 
are also downloaded from RFAM database. As illustrated in 
Fig. 4, the conserved secondary structural element is marked by 
red circles, which is identified by our proposed algorithm as 
well. It is interesting that after coding the vertices by label P 
and L (for nucleotides in loops), the proposed algorithm 
regards the left three stem-loops appeared in Fig. 4(a) and 4(b) 
as common subgraph. This proposed algorithm provides a 
detailed observation of complex RNA secondary structures by 
extracting maximum common substructures on the basis of 
graph theoretical approach, which is distinct from tree-liked 
model described in previous section. 

C. The Experimental Results of Working with NC-IUB 
Code 

We use proposed algorithm to search for RNA hairpins in 
UTR regions of human mRNA sequences. This experiment is 
designed with a subject sequence containing an iron response 
element (IRE). The IRE is a hairpin (stem loop) structure 
containing about 30 nucleotides. The IRE is a highly conserved 
RNA hairpin structure, and it is the binding site of iron 
regulatory protein (IRP). IRP binding to IRE is regulated by 
cellular iron. When cells are derived of iron, IRP binds IRE. If 
IRE is located at 5'UTRs, IRP binding will inhibit translation 
initiation; otherwise, if IRE is at 3'UTRs, IRP binding will 
stabilize mRNA and prevent it from degradation [18]. Using a 
subsequence with 50 nucleotides in the 3’UTR of transferring 
receptor gene (NM_003234), which contains the IRE hairpin, 
we search for “similar” hairpin structures in the human UTR 

structure database, as described in method section. We query 
database for gene sets that contain one of the Gene Ontology 
(GO) terms “iron ion transporter activity”, “iron ion binding”, 
“iron-responsive element binding”, and “iron-sulfur cluster 
binding”, and there are 25,722 genes found. The purpose of this 
experimental design is to understand if one gene has functional 
annotations related to “iron ion”, does it have similar IRE 
structure patterns in the UTR regions of mRNAs. It is known 
that the gene TFRC (NM_003234) has been found to have nine 
stem-loop structures in the 3’UTR part, and at least five of them 
are confirmed to be related to the iron response mechanism, 
which are listed as follows: CAGUGU, CAGUGC, CAGUAU 
(CAGUGU), CAGUGA, and CAGUGU. Since we know that 
the IRE is highly conserved in the loop sequence, we can form 
the loop pattern with the NC-IUB code, represented as 
“CAGWGH”. As for the double-stranded pairings (the stem), 
mutation in this region may not be injurious to the function of 
an RNA if the mutated nucleotides still preserve the same 
secondary structure. Therefore, the nucleotides in the 
double-stranded helix part are encoded by NC-IUB code “N” 
while searching the structure database for similar IRE patterns. 
Following the folding procedures which are discussed in 
method section, we fold the UTR sequences to form the 
experimental data set. We calculate the similarity scores 
between the TFRC IRE pattern and all hairpin structures for the 
5’UTR and 3’UTR parts of the 25,722 genes. Next we filter 
those which have a similarity score below 0.6 with the 
parameters α = 0.85 and β = 0.15. Collectively, this proposed 
algorithm finds 29 hits (excluding the subject structure, 
NM_003234), among which six are known true positives. The 
list of hit structures is shown in Table I. 

IV. DISCUSSION 
The construction of a purely structural based approach for 

comparing RNA secondary structures is one of the most 
important problems in computational biology. The experiment 
of the IRE hairpin searching can be regard as a pattern-based 
detection method, that is, our proposed algorithm can work 
with NC-IUB code to search for particular hairpin patterns. 
Since this algorithm considers the labelling of vertices and 
edges while constructing the compatibility graph, if the length 
of the end loop, internal loop or double-stranded pairings is 
different between two compared structures, our proposed 
algorithm regards them as different structure and excludes them, 
and this is why our proposed algorithm is better at finding 
common shapes. As for the time complexity of the proposed 
algorithm, the compatibility graph can be recognized in time 
O(m×n) for graph L(G1) with m vertices and L(G2) with n 
vertices. The operation is essentially commutative, as the 
graphs G1 ◊ G2 and G2 ◊ G1 are isomorphic. After constructing 
the compatibility graph, the proposed clique detection 
procedures are performed. The first step in performing clique 
detection is sorting the vertices by degrees in increasing order, 
for which the Quicksort algorithm [19] is used. The average 
time complexity for sorting n items is O(nlogn), however, in the 
worst case, it takes O(n2) in time complexity. After sorting, the 
procedures of clique detecion are started. It is known that the 
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maximum clique problem is one of the first problems shown to 
be NP-complete, and is supposed to be false, unless P = NP, an 
exact algorithm is ensured to return a solution only in a time 
that increases exponentially with the number of vertices in the 
graph. As a result, the interest in this problem has moved 
toward approximation. Garey and Johnson [20] prove that if the 
maximum clique problem permits an algorithm that is a 
polynomial-time approximation, then it is able to be 
approximated within any arbitrarily factor. If this is one of the 
solutions to the complete problems, then the optimum solution 
can be approximated to arbitrarily small constant factors. 
Suppose we know the maximum clique has size ≥ γ, the clique 
detection algorithm that  we use may use γ as pruning and 
stopping criterion which is γ<−+ )( imd . If γ is close to the size 
of the actual maximum clique, the computational time can be 
reduced for graphs with high density. Turan [21] have proved 
that a graph with n vertices and m edges contains a clique of 
size ≥ n2/(n2–2m). As a result, with the density D of the graph, 
we may have DnDn +×−= )1(γ . However, the value of γ is 
helpful only if it is very close to the actual maximum clique size, 
and may be solved in polynomial time. When this proposed 
algorithm performs the converted clique finding procedures, it 
does not stop when one maximum clique has been found. In the 
contrary, it continues to search for more maximum cliques. We 
design a preserved set to keep all possible maximum cliques, 
named the candidate clique set, which is a set of cliques that 
have already detected the largest clique so far. The main 
purpose of candidate clique set is to preserve all possible 
maximum cliques, and then we choose one that confirms 
biological meanings manually. Experimentally, this proposed 
algorithm has proved its performance in extracting the 
maximum common subgraph in RNA secondary structures. 
This work presented here is intended to provide a method to 
directly perform the structural comparison of RNA secondary 
structures, and its capability to identify common substructure 
can potentially be used to predict the functions of RNA 
structural elements. 

V. CONCLUSION 
A graph-based model for comparing purely RNA secondary 

structures has been proposed based on finding the maximum 
common subgraph between the graphs being compared without 
transforming RNA secondary structures into tree graphs. It is a 
new idea of comparing RNA secondary structures without 
representing by tree-liked models but using simple graphs 
instead. Moreover, this proposed algorithm is divided two 
major parts, the calculation of similarity score and the detection 
of the maximum common secondary structures between two 
compared RNA secondary structures. In the calculation of 
similarity scores part, this algorithm considers not only the cost 
distance according to the numbers of vertices and edges 
displayed in G1 and G2, but also takes account of the labels of 

vertices and edges. In the detection of maximum common 
secondary structure part, the proposed algorithm represents 
secondary structures by simple graphs, converting them into 
line graphs, constructing a compatibility graph of two line 
graphs, and detecting the maximum clique from the 
compatibility graph to find the maximum common subgraph. 
We have proved the performance of the proposed algorithm by 
providing the experimental results of precursor microRNAs 
let-7, 5s rRNA, U12 minor spliceosomal RNA and the 
detection of IRE patterns in UTRs. While the proposed 
algorithm has been designed for use in detection of common 
RNA secondary structures, it is directly applicable to other 
graph-based similarity applications, such as protein secondary 
structures. 

It may be possible to significantly improve the performance 
of the algorithm by incorporating other clique detection 
techniques, that is, future work on the algorithm may focus on 
the calculation of similarity for protein structures, as well as its 
application to protein structure problems such as searching and 
the prediction of biological functions.  

 

 
 

Fig. 1 Examples of IRE secondary structures (a) Two examples of IRE 
patterns. Both are 29nt and folded by the RNAFold program. (b) and 

(c) illustrates the simple graphs that are transformed from RNA 
secondary structures. The gray vertices and darker edges indicate the 

maximum structure detected by our proposed algorithm. (d) 
Demonstrates the results of encoding by NC-IUB code in 

double-stranded pairings and loop sequences, which is marked as blue 
circles
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Fig. 2 Experimental results of precursor MicroRNAs secondary structures.  (a)(b)(c)(d)(e) show the maximum common subgraph (indicated by 
the blue and red color circles) between cel-let-7 and hsa-let-7a-1, hsa-let-7b, hsa-let-7c, hsa-let-7d, and has-let-7e, respectively. The red circles 
represent the results of encoding an internal loop while detecting the maximum common subgraph. After encoding the nucleotides in internal 

loop structures, the proposed algorithm is able to detect a larger maximum common subgraph, which is more suitable for the biological meanings. 
(f) Demonstrates the calculated similarity scores between cel-let-7 and hsa-let-7a-1, hsa-let-7b, hsa-let-7c, hsa-let-7d, and has-let-7e, 

respectively. In the last column of the table, the scores is calculated after encoding nucleotides by label “P” (for nucleotides appeared in 
double-stranded pairings) and “L” (for nucleotides appeared in loops) 

 

 
Fig. 3 Experimental results of 5S rRNA secondary structures. (a)(b) 

Demonstrating the 2D secondary structures for X07545 (the up 
diagram), and the red circles indicate the common sub-structures the 

same as X02729(the bottom digram) with encoding N in 
double-stranded pairings and L in an internal loop. Since there are two 
internal loops with the same size between X07545 and X02729, the 
proposed algorithm regards them as the same structures. As for the 

right stem-loop sub-structure of X07545 and X02729, they have 
different lengths in double-stranded pairings and different sizes of 

internal loop. Therefore, our proposed algorithm eliminates the right 
sub-structure from common structures 

 
Fig. 4 Experimental results of U12 minor spliceosomal RNA 

secondary structures.  (a) The L43846.1 (Homo sapiens) RNA 
secondary structure. (b) The L43843.1 (mouse) RNA secondary 
structure. As illustrated in (a) and (b), the maximum common 

secondary structural element is marked by red circles, which is 
identified by our proposed algorithm as well 
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TABLE I 
THE EXPERIMENTAL RESULTS OF IRE STRUCTURES SEARCHING 

 
 
 
 
 
 

Accession 
num 

Official Name UTR position Free 
energy 

Similarity 
score 

True 
Positive 

NM_003234 uransferrin recepuor (p90, CD71) 
 

3’ 1349 
 

-10.8 
 

1.0 √ 

NM_173649 hypouheuical prouein FLJ40172 3’ 812 -18.5 0.89  
NM_000456 sulfite oxidase 3’ 413 -11.6 0.84  
NM_003234 uransferrin recepuor (p90, CD71) 3’ 896 -8.2 0.83 √ 
NM_000617 SLC11A2 solute carrier family 11 

(proton-coupled divalent metal ion transporters), 
member 2 

3’ 39 -9.9 0.82  

NM_014585 solute carrier family 40 (iron-regulated 
transporter), member 1 

5’ 213 -11 0.81 √ 

NM_005536 inosiuol(myo)-1(or 4)-monophosphauase 1 3’ 337 -6.9 0.81  
NM_024076 pouassium channel ueuramerisauion domain 

conuaining 15 
3’ 551 

 
-13.8 
 

0.81  

NM_003234 uransferrin recepuor (p90, CD71) 3’ 946 -8.6 0.78 √ 
NM_014585 soluue carrier family 40 (iron-regulaued 

uransporuer), member 1 
5’ 213 

 
-16.6 
 

0.78  

NM_000146 ferritin, light polypeptide 5’ 38 -9.9 0.76 √ 
NM_002481 prouein phosphauase 1, regulauory (inhibiuor) 

subuniu 12B 
3’ 5712 

 
-8.5 
 

0.75  

NM_004921 chloride channel, calcium acuivaued, family 
member 3 

3’ 954 
 

-8.2 
 

0.75  

NM_014930 zinc finger prouein 510 3’ 124 -8.3 0.74  
NM_002081 glypican 1 3’ 1558 -19.3 0.73  
NM_004109 ferredoxin 1 3’ 363 -8.9 0.73  
NM_003449 uriparuiue mouif-conuaining 26 3’ 337 -9.8 0.71  
NM_003234 uransferrin recepuor (p90, CD71) 3’ 1414 -8.1 0.70 √ 
NM_018234 SUEAP family member 3 3’ 1734 -10.5 0.70  
NM_018992 pouassium channel ueuramerisauion domain 

conuaining 5 
3’ 1433 

 
-16.3 0.70  

NM_032484 GH3 domain conuaining 3’ 328 -15.9 0.67  
NM_015219 exocysu complex componenu 7 3’ 900 -12 0.66  
NM_017637 basonuclin 2 3’ 7119 -5.7 0.66  
NM_001013839 exocysu complex componenu 7 3’ 900 -12 0.66  
NM_015219 exocysu complex componenu 7 3’ 411 -16.4 0.65  
NM_003234 uransferrin recepuor (p90, CD71) 3’ 1461 -13.3 0.64 √ 
NM_001009909 leucine zipper prouein 2 3’ 1224 -8.9 0.64  
NM_001013839 exocysu complex componenu 7 

 
3’ 411 

 
-16.4 
 

0.64  

NR_002787 hypouheuical prouein LOC154449 3’ 383 -6.1 0.63  
NM_198316 uensin like C1 domain conuaining phosphauase 

(uensin 2) 
3’ 406 -15.3 0.61  
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The method we introduce is divided in two major parts: The main program and the function named clique_finding. 
Main Program 
Input: primary RNA sequences 
Output: the similarity score and the maximum common substructure 
BEGIN 
Step 1: Form the secondary structures by the RNAFold program which outputs the combinations of parentheses and dots. The proposed algorithm 

transforms the combinations of parentheses and dots into a simple graph.  
Step 2: Calculate the similarity score of two compared structures by using Eqs. (1) ~ (13). Record the similarity score. 
Step 3: Encode the graphs by label P and L, which is described in previous section. Transform the simple graphs into line graphs. For example, 

each vertex in the line graph L(G) is labelled with its respective edge and vertex endpoint labels in the graph G. The edges in a labelled 
line graph are also labelled.  

Step 4: Construct the compatibility graph with Eqs. (14) and (15). 
Step 5: Call function clique_finding to detect the maximum clique in the compatibility graph. 
END 
 
Function clique_finding 
Initialize the parameters: 

Set parameter vdi (the vertex that is currently expanding at depth d and step i) as null. 
Clear NodeDegreeSort (a parameter to save the degree of each vertex)  
Clear parameter CSS (Candidate Clique Set)  
Clear parameter NMC (Number of Maximum Clique) 
Set m = 0 

Begin: 
d = 1 
Increasing sort of all vertices in G according to the degree of each vertex  
Save the results of sorting in NodeDegreeSort 
FOR j = 1 to length of NodeDegreeSort 
 DO 
      Depth d:     assign jth element of NodeDegreeSort to vdi  

                         now expand vdi 
      Depth d++: consider all vertices that adjacent to vdi in increasing order 

m = the number of vertices that adjacent to vdi 
  such as  vd1, vd2, …, vdm  (where d is the current depth) 

each vertex performs the expanding procedures 
call function check_stop 

IF (return value of check_stop is true) continue  
ELSE break 

Depth d++: consider vertices appeared in last depth that are adjacent to the first vertex in last depth 
 m = the number of vertices appeared in last depth and are adjacent to the first vertex in last depth 
 call function check_stop 

IF (return value of check_stop is true) continue  
ELSE break   

UNTIL   can not expand from last depth. 
 Temp_NMC = d (the depth) 
 Call function check_reset 
Call function check_stop  
Reset d = 1 
IF (return value of check_stop is true) continue 
ELSE break loop 

END OF FOR loop 
End of function clique_finding 
 
Function check_stop 
 IF (d+(m-i) ≥ NMC) return True 
 ELSE return False 
End of Function check_stop 
 
Function check_reset 
 IF Temp_NMC > current NMC 
  reset new value of NMC by Temp_NMC 
  clear CCS 
  save new max clique in CCS 
  return to main program 
     IF Temp_NMC = current NMC 
   Save newly found clique in CCS 
  return to main program 
End of Function check_reset 

APPENDIX  
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