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Abstract—Effectiveness of Artificial Neural Networks (ANN) 

and Support Vector Machines (SVM) classifiers for fault diagnosis of 

rolling element bearings are presented in this paper. The 

characteristic features of vibration signals of rotating driveline that 

was run in its normal condition and with faults introduced were used 

as input to ANN and SVM classifiers. Simple statistical features such 

as standard deviation, skewness, kurtosis etc. of the time-domain 

vibration signal segments along with peaks of the signal and peak of 

power spectral density (PSD) are used as features to input the ANN 

and SVM classifier. The effect of preprocessing of the vibration 

signal by Discreet Wavelet Transform (DWT) prior to feature 

extraction is also studied. It is shown from the experimental results 

that the performance of SVM classifier in identification of bearing 

condition is better then ANN and pre-processing of vibration signal 

by DWT enhances the effectiveness of both ANN and SVM classifier 

Keywords—ANN, Artificial Intelligence, Fault Diagnosis, 

Pattern Recognition, Rolling Element Bearing, SVM. Wavelet 

Transform 

I. INTRODUCTION

OLLING element bearings (REB) are most common 

element used in rotating machinery and their failure is the 

foremost cause of down time in plant machinery.  

Most common REB defects are cracks or pits located at 

outer race, inner race and on the rolling element. These 

defects generate a series of impacts as rolling element passes 

over the defect due to the metal to metal contact. The resultant 

vibration is characterised by sharp peaks. It is difficult to 

identify the defect frequency in spectrum as these impact 

vibrations distributes their energy over wide range of 

frequencies; the bearing's defect frequency contains low 

energy [1] and hence can be easily masked by noise and other 

low frequency effects.  

To overcome this problem, both time and frequency domain 

methods have been developed [2].Time domain methods 

usually involve indices that are sensitive to impulsive 

oscillations, such as peak level, rms value, crest factor 

analysis, kurtosis and shock pulse counting [3]–[6]. Since it is 
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difficult to identify bearing defect in direct spectrum [7] many 

spectral techniques have been developed over the years for 

bearing fault diagnosis, such as Adaptive Noise cancellation 

[8], High Frequency Resonant Technique or Envelope 

Detection [9] and Wavelet Transform [10]. More recently 

various researchers have applied ANN [11]-[14] and SVM 

classifiers [23]-[26] to machinery fault diagnosis.  

In the present work, a comparative study is presented on 

effectiveness of ANN and SVMs for bearing fault diagnostics 

using time-domain as well as frequency spectrum features. 

The vibration signals obtained from bearing in normal 

condition and bearings induced with faults are subjected to 

direct and simple processing for extraction of features that are 

subsequently used as inputs to the ANN and SVM classifier 

for diagnosing the bearing condition of a rotating machine. In 

the present approach, sets of normalized features are used so 

that even if the signals change in magnitude due to the change 

in speed or quality of sensor mounting, the diagnostic results 

are unaffected as long as the signal patterns remain 

unchanged. The features are obtained from the segments of 

the measured vibration signals instead of single values like 

crest factor, kurtosis and peaks for the undivided signals [11], 

[12].The effects of different types of bearing faults, different 

features and preprocessing by DWT are studied. A procedure 

is presented to correctly categorise the bearing conditions. The 

procedure is illustrated using the vibration data of a rotating 

shaft-line with normal and defective bearings. 

II. ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANN) are simplified artificial 

models based on the biological learning process of the human 

brain [15]. ANN has been very extensive in recent years such 

as in prognosis, classification, function approximation, control 

filter, pattern recognition etc [16]. Various researchers have 

used ANN for machinery fault detection. Application of ANN 

to preprocess, compress and classify vibration spectrum for 

bearing faults have been demonstrated by Alguindigue [12]. 

Youshang [11] presented a method for classification of 

bearing faults by ANN that was fed from DWT preprocessed 

signals. Wu and Liu [13] used ANN along with DWT to 
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investigate various faults in an internal combustion engine. 

Rajakarunakaran [14] used two different ANN techniques 

backpropagation algorithm and adaptive resonance network 

for fault detection of a centrifugal pump. 

An ANN consists of a number of interconnected artificial 

processing neurons called nodes, connected together in layers 

forming a network. A typical ANN is schematically illustrated 

in Fig. 1. This is known as a two-layered ANN as the input 

layer performs no calculations. The number of nodes within 

the input and output layers are dictated by the nature of the 

problem to be solved and the number of input and output 

variables needed to define the problem. The number of hidden 

layers and the nodes within each hidden layer is usually a trial 

and error process. 

As illustrated in Fig.2 each node in a layer (except the ones 

in the input layer) provides a threshold of a single value by 

summing up their input value pi with the corresponding 

weight value wi. Then the neuron’s net input value n is formed 

by adding up this weighted value (sum), with the bias term b.

The bias is added to shift the sum relative to the origin. The 

net input value then goes into transfer function f, which 

produces the neuron output a.

               (1) 

The transfer function f that transforms the weighted inputs 

into the output a is usually a non linear function. The sigmoid 

(S-shaped) or logistic function is the most commonly used 

transfer function which restricts the nodes output between 0 

and 1. 

A The procedure most commonly used to train an ANN is a 

method known as backpropagation [17]. This is a supervised 

method of learning mainly used to train multilayer neural 

networks. In supervised learning, a set of inputs are applied to 

the network, then the resultant outputs produced by the 

network are compared with that of the desired ones. If the 

network is provided with following set of examples for proper 

behavior: 

{p1,t1} , {p2,t2} , … , {pQ,tQ},                             (2) 

where pQ is an input to network and tQ is corresponding 

target. 

The normalized mean square error (MSE) is calculated and 

propagated backwards via the network. Back propagation 

network (BPN) uses it to adjust the value of the weights on 

the neural connection in the multiple layers. This process is 

repeated until the MSE is reduced to an acceptably low value, 

which would be suitable to classify the test set correctly. The 

mean square error function F(x) at iteration k is given by: 

2

k( x )  =  t kF a                        (3) 

BPN uses steepest descent method to adjust the weights and 

biases. The adjusted weights and biases of mth layer at 

iteration k are estimated by: 

, ,
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where  is learning rate and wi,j represents weights of 

connection between neuron i and neuron j.

After the ANN is successfully trained, it should be ready to 

test data not seen previously. Various algorithms are available 

to implement backpropogation network most common 

amongst them is Levenberg-Marquardt algorithm [18] which 

has been used in this paper. 

III. SUPPORT VECTOR MACHINES (SVMS)

ANNs have proven good classifiers but they require large 

number of samples for training, which is not always true in 

practice [19]. Support vector machines (SVMs) are based on 

statistical learning theory and they specialise for a smaller 

sample number. SVMs have better generalisation than ANNs 

and guarantee the local and global optimal solution similar to 

that obtained by ANN [20]. In recent years, SVMs have been 

found to be remarkably effective in many real-world 

applications [21],[22]. As it is hard to obtain sufficient fault 

samples in practice, SVMs have been applied for machinery 

fault diagnosis by various researchers in recent times [23]-

[26]. Yang [26] used intrinsic mode function envelop 

spectrum as input to SVMs for classification of bearing faults 
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and Hu [25] used improved wavelet packets and SVMs for the 

bearing fault detection. 

SVM is developed from the optimal separation plane under 

linearly separable condition. Its basic principle can be 

illustrated in two-dimensional way as Fig.3 [27]. Fig.3 shows 

the classification of a series of points for two different classes 

of data, class A (circles) and class B (pentacles). The SVM 

tries to place a linear boundary H between the two classes and 

orients it in such way that the margin is maximized, namely, 

the distance between the boundary and the nearest data point 

in each class is maximal. The nearest data points are used to 

define the margin and are known as support vectors. 

Suppose there is a given training sample set G={(xi,yi), 

i=1...l }, each sample xi Rd belongs to a class by y {+1,-1}.

 The boundary can be expressed as follows: 

0x b                            (6) 

where  is a weight vector and b is a bias. So the following 

decision function can be used to classify any data point in 

either class A or B:

sgnf x x b                            (7) 

The optimal hyperplane separating the data can be obtained 

as a solution to the following constrained optimization 

problem: 

21
M in im ise  

2
                    (8) 

Subjet to  1 0,   1,....iy x b i l      (9) 

Introducing the Lagrange multipliers 0,i  the 

optimization problem can be rewritten as: 

Maximise 
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The decision function can be obtained as follows 

1

sgn
l

i i i

i

f x y x x b               (12) 

If the linear boundary in the input space s is not enough to 

separate into two classes properly, it is possible to create a 

hyperplane that allows linear separation in the higher 

dimension. In SVM, it is achieved by using a transformation 

(x) that maps the data from input space to feature space. If a 

kernel function 

,K x y x y                    (13) 

is introduced to perform the transformation, the basic form of 

SVM can be obtained 

1

sgn ,
l

i i i

i

f x y K x x b                    (14) 

Among the kernel functions in common use are linear 

functions, polynomials functions, radial basis functions multi 

layered perceptron and sigmoid functions. 

IV. DWT AND MULTI-RESOLUTION ANALYSIS 

A. Discreet Wavelet Transform 

DWT have found wide applications in machinery fault 

diagnosis [29], [13] for their capability to treat the transient 

signals as it provides time and frequency representation 

together with multi resolution analysis [28]. Recently, wavelet 

transform has been applied for rolling element bearing fault 

diagnosis [10], [11], [30].  

  The wavelet transform is a tool that cuts up data, functions 

or operators into different frequency components, and then 

studies each component with solution matched to its scale. 

The use of wavelet transform is appropriate to analyze non-

stationary signal since it gives the information about the signal 

both in frequency and time domains [31]. Let x(t) be the 

signal. The continuous wavelet transform (CWT) of x(t) is 

defined as: 

,sW ,s (t)  (t)dtx                   (15) 

Where              is conjugate of          , that is the scaled and 

shifted version of the transforming function, called a “mother 

wavelet”, which is defined as: 

,s

1 t
(t)

ss
            (16) 

Fig. 3 Classification of data by SVM 
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The transformed signal is a function of  and s, the 

translation and scale parameters. The mother wavelet is a 

prototype for generating the other wavelet (window) 

functions. The scale parameter performs scaling operation on 

the mother wavelet. Each scale represents a frequency band. 

The term translation corresponds to time information in the 

transform domain; it shifts the wavelet along the time axis to 

capture the time information contained in the signal. 

The DWT is derived from discretization of W ,s  given 

by: 

1 2
( , ) ( )  

22

j

jj

t k
DWT j k x t dt          (17) 

An efficient way to implement this scheme was developed 

by Mallat [32]. The basic step of wavelet algorithm is 

illustrated in Fig.4.The DWT is performed by process of 

decomposition in which the discreet signal x is convolved 

with a low pass filter L and a high pass filter H, resulting in 

two vectors A and D. The vectors A and D are down sampled 

to obtain cA1 called approximate coefficient and cD1 called 

detail coefficient. In down sampling the odd indexed elements 

of filtered signals are omitted so that the numbers of 

coefficients produced in decomposition are equal to the 

number of elements in the discreet signal x(t).

B. Multi-Resolution Analysis 

The decomposition process can be repeated using 

approximate coefficients cA to obtain DWT coefficients at 

different levels (scale) as per the desired resolution. The 

process is schematically depicted in Fig. 5. 

V. EXPERIMENTAL SETUP

The test rig shown in Fig. 6 was composed of a variable 

speed AC motor driving a shaft rotor assembly through 

flexible couplers; shafts were rested on two ball bearings. A 

rotor was used for balancing. The bearings under analysis 

(type MB 204) were placed at load end side for ease of 

replacement. The load on the system can be adjusted by a 

manually adjustable magnetic brake, which was driven via a 

belt drive. Vibration signals were acquired by accelerometer 

stud mounted on the bearing housing. The faults were 

artificially introduced to the bearings. The types of faults 

included a defective outer-race, a defective inner-race, and a 

defective roller. The shaft was made to rotate at 25 Hz and 

vibration signals were collected at sampling rate of 51.2 

KSa/s. The numbers of samples collected were 102400 for 

duration of 2 s. 

Following four signals were collected: 

1. Bearing in normal condition,  

2. Bearing with Outer Race fault,

3. Bearing with Inner Race fault, and

4. Bearing with Roller fault. 

VI. FEATURES AND CREATION OF TRAINING/TEST VECTORS

A. Feature Selection 

Each signal of 102400 samples was divided in 40 non 

overlapping bins of 2560 samples (yi). Ten features were 

extracted from these 40 bins as follows: 

Feature 1-5 - First five highest peaks  

Feature 6    - Highest peak of power spectral 

                     density (PSD). 

Feature 7    - Standard deviation .

Feature 8    - Skewness 3 (third central moment). 

Feature 9    - Kurtosis 4 (fourth central moment). 

Feature 10  - Sixth central moment 6.

The features 6 – 10 were extracted using: 

2
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Fig. 7 shows the plots of features extracted from the 

vibration signals. The features of defective bearings are 

plotted against that of normal bearing. The plots show good 

separation between the normal and the defective cases for all 

features justifying their selection. 

These features extracted from vibration signals with or 

without the bearing fault were used for training the ANN and 

to input the SVM classifier for diagnosis of the bearing 

condition. The contribution of the features and the type of 

signals in the diagnosis of machine condition is discussed in 

section VII and VIII. Section IX presents the effect of 

preprocessing with DWT. 

B.  Creation of training and test vectors 

The vibration signal 1–4 each with 102400 samples were 

divided into 40 bins each having length of 2560 samples. The 

lengths of bins were selected so that each would contain 

sufficient number (>5) of impacts caused by passing of the 

rolling element over the fault. Out of these bins 24 bins were 

used for training the ANN and SVM classifier. The remaining  

16 bins which have not been seen by the ANN and SVM 

classifier were used for testing. The training sets were created 

by features extracted from defective signal bins and normal 

bearing signal bins alternately. Thus three sets of 48 training 

vectors outer race fault (ORF), inner race fault (IRF) and ball 

fault (BF), were created for outer race fault, inner race fault 

and ball fault respectively. Similarly three sets of 32 test 

vectors were also created. As there were 10 features, therefore 

a training matrix of 10X144 and test matrix of size 10X96 

were created.  The diagnostic capability of ANN and SVM 

classifiers for different faults were also studied by 

adding/omitting the training sets of respective signal. The 

numbers of features were also varied to measure their effect.  

VII. DIAGNOSIS OF BEARING CONDITION USING ANN

A. Training of artificial neural network 

 The neural network consisting of an input layer, three 

hidden layers and an output layer was used. The input layer 

has nodes representing the features extracted from the 

measured vibration signals. The number of neurons in the first

hidden layer was varied from 10 to 30, the second one, from 5 

to 10 and third from 2 to 10. The number of output nodes was 

varied between 1 and 2. The target values of two output nodes 

can have only binary values 1 or 0 representing normal and 

failed bearing. The ANN was trained using the MATLAB 

neural network toolbox using back propagation with 

Levenberg–Marquardt algorithm [18]. For training, a mean 

square error (MSE) of 10-5, a minimum gradient of    10-10 and

maximum iteration number (epoch) of 15000 were used. The 

training process would stop if any of these conditions were 

met. The initial weights and biases of the network were 

selected randomly. 

The structure of the ANN giving best results was 

n:10:10:4:2 where the n represent the numbers of nodes in the 

input layer, the hidden layers had 10, 10 and 4 nodes and the 
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output layers had 2 nodes. In the training stage, the target 

value of the first output node for the normal bearing condition 

was set to 1 and that for the bearing having outer race, inner 

race and ball defect was set to 0. 

B   Effects of Bearing Defect Type 

Table1 shows the results of training and testing the 

diagnostic capability of the ANN for different input vectors 

representing different type of bearing faults individually as 

well as in groups. All ten features were used to study the roles 

of the bearing defect type. Good training success (93.8 – 

100%) was achieved in all cases studied. However the test 

success varied from 76 – 92.7%. The results of case  1 – 3 

indicates that ANN is able to classify correctly for all type of 

bearing defects even if it is trained with features of only one 

type of defect (along  with  features  of   normal bearing)1.

This indicates to similar nature of impact vibrations produced 

by different kind of bearing faults. Although 100% training 

success was achieved when ANN was input with ORF and BF 

signals; the test success was higher when trained with BF. 

Results of case 4-6 clearly shows that that the 

contribution of ball fault signal is most significant for 

identification of bearing condition as both test and train 

success was lower (case 4) when features from BF signal was 

omitted. Case 7 gave best performance when all types of 

bearing defects were used to train the network. 

C   EFFECTS OF SIGNAL FEATURES

Table 2 shows the relative importance of signal features for 

identification of machine condition. For cases 18-19, all three 

input signals ORF, IRF and BF were used for training. The 

table presents results using all ten features, namely, the first 

five highest peaks, highest peak of PSD, standard deviation 

( ), skewness ( 3), kurtosis ( 4) and sixth central moment ( 6)

either alone or in combination.. In cases 8–13, the ANN was 

trained with only one feature, the contribution of feature 10 

i.e. sixth central moment (
6
) was found most significant as it 

gave best test success of 94.8 % (91/96) the success with 

training set was also high 80.6%. In cases 9 and 12 i.e. when 

network was trained with only peak of PSD (feature 6) and 

kurtosis (
4
) (feature 9) the performance goal could not be 

1 Vectors ORF, BF & IRF contain features of defective and normal 

bearings. 

reached. However, these features were still retained as using 

them in combination with other features gave good results.  

Low test results were obtained in case 15 and 18 when feature 

6 and 9 were omitted. The use of central moments of order 

more than six did not have any significant effect on the 

diagnosis results. The third central moment 3 was found to be 

not a good feature as poor test success of only 40.6 % was 

obtained when the network was with only 3(case 11). Further, 

good test (97.9 %) and training success (98.6 %) was obtained 

in case 17 when 3 was omitted. In case 19 the training and 

test success were even better then case 7 which made use of 

all features. It is thus proposed that all features except feature 

8 ( 3) be used to train the ANN. 

ANN SVM Case Input 

signals Training

success 

Test

success  

Training

success 

Test

success 

1  ORF  
48/48

(100%)

74/96

(77.1%)

48/48

(100%)

77/96

(80.2%)

2  IRF  45/48 

(93.8%)

74/96

(77.1%)

48/48

(100%)

83/96

(86.5%)

3  BF  45/48 

(100%)

85/96

(88.5%)

48/48

(100%)

82/96

(85.4%)

4  ORF, 

IRF

93/96

(96.9%)

73/96

(76 %)

96/96

(100%)

84/96

(87.5%)

5  ORF, 

BF

96/96

(100%)

89/96

(92.7%)

96/96

(100%)

85/96

(88.5%)

6  IRF, 

BF

93/96

(96.9%)

78/96

(81.3%)

96/96

(100%)

88/96

(91.7%)

7
ORF, 

IRF,BF

141/144

(97.9%)

81/96

(84.4%)

144/144

(100 %)

90/96

(93.8%)

VIII. DIAGNOSIS OF BEARING CONDITION USING SVM

CLASSIFIERS

The SVM classifiers was designed for same training and 

test vectors as used for ANN. Various kernel functions such as 

Linear, Quadratic, Multilayer Perceptron, Gaussian Radial

Test success 

(Max. 96)

68  54 76 50 59 55 87 75 80 95 89 89 90
S

V

M
Training success 

(Max. 144) 

129 85 123 94 106 106 141 144 144 144 144 144 144

Test success 

(Max. 96)

64 48 73 39 42 91 91 64 80 94 75 84 81A

N

N
Training success 

(Max. 144)

125 72* 122 124 123* 116 140 142 143 142 141 138 141

Input features 1-5 6 7 8 9 10 6,7,8,

9,10

1-5,7,

8,9,10

1-5,6,8,

9,10

1-5,6,7,

9,10

1-5,6,7,

8,10

1-5,6,7,

8,9

1-5, 6,7, 

8,9,10

Case 8 9  10 11 12 13 14 15 16 17 18 19 7 

TABLE II

EFFECT OF INPUT FEATURES ON IDENTIFICATION OF BEARING CONDITIONS

TABLE I

EFECT OF BEARING FAULT TYPE ON IDENTIFICATION OF MACHINE 

CONDITION
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Basis Function (RBF) and Polynomial kernels were used for 

all 19 cases. 

The Linear, Quadratic and Multi layer perceptron kernels 

could not achieve convergence in many cases and training was 

stopped after maximum number of iterations (200000) was 

reached. The RBF and polynomial kernels achieved 

convergence in all 19 cases.

Fig. 8 presents the training, test and combined (test + train) 

success achieved by Polynomial and RBF kernel functions. 

The Fig. 8 presents the results by accumulating all 19 cases. 

The results are presented in percentages combining all 19 

cases thus total 2304 training and 1824 test vectors were 

presented to the SVMs. 

 The order of polynomial for polynomial kernel was varied 

from 2 to 10 to find out the most optimum order. High 

combined (i.e. test plus training) success; more then 80 % was 

achieved for order of polynomial was set between 3 to 6. The 

test and train success increased as order of polynomial was 

increased up to 3. When the order was increased beyond 3 the 

SVM started to over fit; the training percentage continued to 

increase whereas the test success percentage fell. The 4
th order 

of polynomial showed good balance of train and test success.

In case of training with RBF kernel the RBF scaling factor 

was varied from 0.1 to 5 to select the most optimum scaling 

factor. The test and train percentage increased as scaling 

factor was decreased from 5 to 2.5. The SVM starts to over fit 

as the scaling factor was decreased beyond 2.5. The 

cumulative percentages in case of RBF kernel were lower 

(<80%) as compared to the polynomial kernel. Polynomial 

kernel of the order of 4 was thus selected for the SVM 

classifier.

Three methods were tried to find the separating hyperplane 

namely Quadratic Programming, Least-Squares and 

Sequential Minimal Optimization method. The Sequential 

Minimal Optimization method was selected as it gave best 

results amongst the three choices.  

The test and training results for 19 cases using SVM with 

4th order polynomial kernel are presented at Table 1 and 2. It 

is evident from results that more accurate classification of 

bearing condition is achieved by using SVM classifiers as 

compared to ANN. Both the training as well as the test 

successes were higher in case of SVM classifier as compared 

to ANN for all cases except for case 13. In case 10 and 11 the 

train success was lower then that achieved by ANN but 

success with test vectors were higher. 

Another significant aspect of using SVM classifiers is the 

speed of training. The time taken for SVM to train is far less 

in comparison to the time taken by the ANN. Maximum time 

taken by the SVM classifier to train was 4.6 sec (case 13).  

Amongst all cases the ANN achieved fastest training in case 1 

where it took 12 sec to train the network. Thus even the 

slowest case of SVM was much faster then ANN. It is 

proposed that the SVM classifiers be used for bearing 

condition classification. 

IX. EFFECTS OF DISCREET WAVELET TRANSFORM

The effectiveness of pre-processing the acquired vibration 

signals by DWT is discussed in this section. Instead of using 

the raw signal as was the case in previous sections, the 

vibration signals were processed through DWT using 

Daubechies wavelet of order 4 (Db4) at level 6 to obtain the 

low frequency approximate at level six (A6) and the high 

frequency detail signals at level 1 to 6 (D1-D6). Frequency 

range of details were in the descending order, i.e. D1 had 

highest frequency content (12-25.6 kHz), and D6 had the 

lowest frequency content (0.3–1.2 kHz) whereas frequency 

content of D2 ranged from 4.6 – 10 kHz. The test and train 

vectors were created out of these details (D1 - D6) instead the 

raw signal. The selection of features and creation of 

training/test vectors were done as per section VI. 

Fig. 9 shows the results of using various details (D1 – D6) 

by the SVM classifier. Total 2304 training and 1824 test 

vectors created (by accumulating all 19 cases) for each detail 

were presented to the SVM classifier. Fig. 9 presents the 

training, test and combined (training + test) success 

percentages achieved. High test and training success was 

achieved when details D1 and D2 were used, indicating the 

influence of the bearing defect in high frequency range > 5 

kHz [7]. The performance of components D3 – D6 outside 

this frequency range were not very satisfactory.  Best results 

were obtained when D1 was used to extract features, in this 

case the cumulative (case 1 – 19) training success was 94.3% 

and test success was 80 %.

The Fig. 10 presents (case wise) the combined (training 

plus test) success obtained by ANN when the network was 
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input with raw signal and with signals pre-processed with 

DWT (using level 1 details D1). 

Pre-processing with DWT has improved the success 

(combined) of classifying the bearing condition in 17 cases 

out of total 19 cases. The maximum increase was in case 9 

where combined success increased from 120 (50%) to 

170(70.8%). By pre-processing with DWT the success 

reduced in only two case i.e. case 12 and case 13. 

Pre-processing with DWT also improves the classification 

of bearing condition by the SVM classifiers. Fig 11 presents 

the combined (training + test) success achieved by the SVM 

classifier when input with features extracted from raw signal 

and from pre-processed signal (D1). The combined success 

increased in 14 out of 19 cases. The maximum increase was in 

case 9, whereas four cases i.e.12 – 14, 17 and 18 showed 

decrease.

Another significant effect of pre-processing the vibration 

signal with DWT was on the number of iterations (epochs) 

performed by the ANN and SVM classifier to train. Table 3 

presents the number of iterations performed by ANN and 

SVM classifier to train when they were input with features 

extracted from raw signal and with signal pre-processed with 

DWT. When ANN was input with DWT processed signal the 

number of iterations required for training had reduced 

considerably for all cases except for case 8 and cases 12, 13 

(where the training had stopped at 15000 epochs without 

reaching the performance goal). 

There has been more then 50% reduction in six cases and 

maximum reduction was in case 10 where the number of 

epochs required for training reduced by about 90 %.  

Similarly when SVM was fed with features of signal 

preprocessed with DWT there is a reduction in number of 

iterations performed in training. The reduction was observed 

in 13 out of 19 cases. The number of training iterations had 

increased in cases 14 – 19 where the SVM classifier was fed 

with one features less. However, when all ten features were 

fed (case 7) the number of iterations reduced by about 82 %. 

X. CONCLUSION

A method is presented to identify bearing condition by 

using simple features such as five highest peaks and statistical 

central moments of time domain vibration signal together with 

peak of Power Spectral Density. It is shown that using these 

simple features the bearing condition can be correctly 

classified with high accuracy with the help of ANN or SVM 

classifiers. 19 different cases were created to test the efficacy 

of ANN and SVM classifier in different conditions and it was 

found that SVM classifier performs better then ANN in almost 

all cases. Preprocessing with DWT improves the performance 

of both ANN and SVM classifiers. The test and train success 

increased in most cases when features extracted from details at 

level 1 (D1) were used to train ANN and SVM classifier. The 

DWT preprocessing also significantly lowers the number of 

iterations (epochs) required to train the ANN and SVM 

classifiers.

In practice it is difficult to obtain vibration signatures 

arising out of all kinds of bearing faults such as outer race 

fault, inner race fault or ball fault. In proposed method the 

vibration signals from any one type of bearing fault is 

sufficient to diagnose the bearing condition that may have 

other type of defect. It is perhaps because the proposed 

method does not attempt to make use of bearing defect 

frequency or time domain features; it focuses upon the peaky 

nature of impact vibrations by using highest peaks and 

statistical features such as central moments. 

The present procedure is used to classify the status of the 

machine in the form of normal or faulty bearings. There is a 

scope for its extension to identify fault types and severity 

Fig. 10 ANN classification success 

Fig. 11   SVM classification success 

Fig. 9 Effect of DWT details at various levels 
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levels. Since the SVM classifier training is quite fast, training 

and test may be done on-line. These issues are subjects for 

further study. 

TABLE III NUMBER OF ITERATIONS PERFORMED DURING TRAINING

 ANN SVM 

Case Raw Signal D1 Raw Signal D1 

1 12 9 128 58 

2 18 14 365 88 

3 33 16 789 204 

4 27 13 532 71 

5 32 20 647 113 

6 27 25 506 159 

7 32 27 550 101 

8 106 152 6555 4433 

9 15000a 3578 2614 158 

10 2275 154 64 133 

11 6760 4675 494 108 

12 15000 a 15000 a 1567 142 

13 11930 15000 a 6668 146 

14 56 26 857 23536 

15 64 32 6523 17429 

16 37 32 821 49833 

17 45 27 1154 36153 

18 40 42 1023 26232 

19 44 24 537 51587 
a
 Training was terminated at maximum number of epochs 
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