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Abstract— The vertex connectivity of a graph is the smallest
number of vertices whose deletion separates the graph or makes it
trivial. This work is devoted to the problem of vertex connectivity
test of graphs in a distributed environment based on a general and
a constructive approach. The contribution of this paper is threefold.
First, using a pre-constructed spanning tree of the considered graph,
we present a protocol to test whether a given graph is 2-connected
using only local knowledge. Second, we present an encoding of this
protocol using graph relabeling systems. The last contribution is the
implementation of this protocol in the message passing model. For a
given graph G, where M is the number of its edges, N the number
of its nodes and Δ is its degree, our algorithms need the following
requirements: The first one uses O(Δ×N2) steps and O(Δ×log Δ)
bits per node. The second one uses O(Δ×N2) messages, O(N2)
time and O(Δ × log Δ) bits per node. Furthermore, the studied
network is semi-anonymous: Only the root of the pre-constructed
spanning tree needs to be identified.

Keywords— Distributed computing, fault-tolerance, graph relabel-
ing systems, local computations, local knowledge, message passing
system, networks, vertex connectivity.

I. INTRODUCTION

D ISTRIBUTED connectivity test of a graph has gained
much attention recently. Indeed, many distributed ap-

plications such as routing or message diffusion assume that
the underlying network is connected [1], [11], [10], [12].
Connectivity information is also useful as a measure of
network reliability. This information can be used to design
distributed applications on unreliable networks. For example,
testing and then preserving k-connectivity of a wireless net-
work is a desirable property to tolerate failures and avoid
network partition [1]. In this paper, we propose a general
and a constructive approach based on local knowledge to test
whether a given graph modeling a network is 2-connected
in a distributed environment: A network is represented as a
connected, undirected graph denoted by G = (V, E) where a
node in V represents a process and an edge in E represents
bidirectional communication link. Therefore, our work may
be used as a core of protocols using the connectivity as input
information.

The Problem: Consider a system modeled by a graph
G = (V, E). We denote by N, where N ≥ 2, the number of
the nodes of G and by M the number of its edges. The degree
of G is denoted by Δ. The vertex connectivity of a graph G, or
simply its connectivity, is the minimum size of a node set of G
whose deletion separates, or disconnects, the graph G or makes
it trivial. In many distributed applications, the connectivity
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of the underlying network is considered as an input data. In
dynamic networks, where nodes may disappear resulting from
failures, such information becomes not consistent. Therefore,
the design of a protocol to test whether a graph satisfies
some connectivity improves the consistency of the designed
applications. Given a graph G, the test of the 2-vertex
connectivity of such a graph, or simply 2-connectivity, deals
with the problem of testing whether G is 2-connected or
not. A protocol that solves such a problem responds to the
question: The number of nodes that must be deleted in order
to disconnect a graph is at least 2. Furthermore, we study this
problem in a distributed setting using only local knowledge.
That is, each node “communicates”, or exchanges information,
only between neighboring nodes and each computation acts on
the states of neighbors.

Previous Works: In the late 1920s, Menger [12] studied
the connectivity problem and some related properties. Since
then many results have been obtained in this area. The best
known works about the k-vertex connectivity test problem may
be summarized in [12], [9], [3], [2], [5], [4]. In [9] an algorithm
to test the 2-connectivity of graphs is given. This is a depth
first search based algorithm with a time complexity of O(M +
N). Thereafter, the computation of the vertex connectivity is
reduced to solve a number of max-flow problems. For the
first time this approach was applied in [3]. The computation
of the maximum flow is used as a basic procedure to test the
vertex connectivity. The remaining works try to reduce the
number of calls to max-flow procedure using some knowledge
about the structure of the graph. The time complexity of the
presented algorithms is bounded by O(k ×N ×M). All of
these works are presented in a centralized setting assuming
global knowledge about the graph to be examined.

Our Model: To encode distributed algorithms we will
use two general models: The first one is the graph relabeling
systems (GRS) [6] called here the local computations model.
In this model, the local state of a process is encoded by
labels associated with the corresponding node. At each step
of the computation on a node, labels are modified in a ball
of neighbors around this node. The modification is given
by rewriting rules of the relabeling system. These rules can
be applied in any order or even concurrently on disjoint
subgraphs. In this work, we consider only relabeling between
two neighbors. We assume that each node distinguishes its
neighbors and knows their labels. The execution time of a
computation is the length of the corresponding relabeling
sequence. A measure of a space complexity of a distributed
algorithm is the size of the required labels.

The second one is the asynchronous message passing model
(MPS)[10]. In this model, each process (node of the graph)
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has its own local memory, with no shared global memory.
Processes communicate by sending and receiving messages
through existing communication links (edges of the graph).
Networks are asynchronous in the sense that processes operate
at arbitrary rates and message transfer delays are unbounded,
unpredictable but finite. However, we assume that message
orders are preserved.

Our Contribution: This paper deals with the 2-vertex
connectivity problem using a set of procedures to show
formally and easily the behavior of the presented algorithm.
Let G be a graph with a distinguished node v0 and let T
be a spanning tree of G rooted at v0. It is known that for
a graph with a distinguished node, a distributed computation
of a spanning tree can be easily performed [7]. Therefore, the
assumption of a pre-constructed spanning tree is not a loss of
generality. The main idea of the 2-connectivity test algorithm
is based on a traversal of the tree starting from the root. Each
visited node v tries to test whether the subgraph induced by its
possible deletion remains connected. That is, a spanning tree
of the graph deprived of v can be built. Therefore, the original
graph is 2-connected if such a construction can be made for
all the nodes of G. In the opposite case, the graph is not
2-connected. This approach is based on an occurrence of the
the Menger theorem [12]. Our main contribution is to give a
protocol to test the 2-connectivity of graphs in a distributed
way using only local knowledge. Moreover, this algorithm
does not need a completely identified network. Only the root
of the pre-constructed spanning tree needs to be identified:
The network is semi-anonymous.

Then, we give two possible implementation of our protocol
in the two previous models. For a given graph G, our GRS
algorithm uses O(Δ × N2) time and O(Δ × log Δ) bits
per node. The other one (MPS) uses O(Δ×N2) messages,
O(N2) time and the same space requirements as the GRS
algorithm. Additionally, our protocol may be used as a brick
to deal with the k-vertex connectivity test of graphs.

The rest of the paper is organized as follows. The model
used to encode distributed algorithms is explained in Section 2.
In Section 3, we introduce the notion of procedure using an ex-
ample of the distributed spanning tree computation. In Section
4, we present our protocol to deal with the problem of the 2-
vertex connectivity test of graphs. In the following section, we
present an encoding of this protocol in the local computations
model. We discuss in Section 6 the implementation of this
protocol in the asynchronous message passing model. Finally,
Section 7 concludes the paper with short discussion about
future works.

II. PRELIMINARIES

A. Graphs
A graph is a collection of nodes V where some of them are

connected by edges E. So a graph is a couple (V, E) where
E ⊆ V 2. We use sometimes the notations VG, EG to denote
respectively V, E where G = (V, E). Node u is a neighbor of
node v if (u, v) ∈ E. A path p in G is a sequence (v0, ...., vl)
of nodes such that for each i < l, (vi, vi+1) ∈ E. The integer
l is called the length of p. A path P = (v0, ...., vl) is simple

if it does not contain cycles. The set of neighbors of node u
is denoted by N(u) = {v ∈ V/(u, v) ∈ E}. The degree of
a node v, denoted deg(v), is the number of neighbors of
v. Then, deg(v) = #{{v, u} ∈ E such that u ∈ V } 1. The
degree of G is deg(G) = max{deg(v) such that v ∈ V }. A
ball center on u with radius l is the set Bl(u) = {u}∪{vj ∈ V/
there exists a path (v0, ...., vj) in G with v0 = u and j ≤ l}.
We will say that v ∈ VG is a l−neighbor of u if v is in
Bl(u). We say that the graph G′ = (V ′, E′) is a subgraph
of the graph G = (V, E), if V ′ ⊆ V and E′ ⊆ E. A graph
is connected if for any pair of its nodes, there exists a path
between them. Thus, a vertex v of a connected graph G is
a “cut-node” iff G \ v is not connected.

B. Graph Relabeling Systems and Local Computations
Local computations, and particularly graph relabeling sys-

tems [6] is a powerful model which provides general tools to
encode distributed algorithms, to prove their correctness and
to understand their power. In such a model we consider a
network of processes with arbitrary topology represented as a
connected, undirected graph where vertices denote processes,
and edges denote communication links. Every time, each
vertex and each edge is in some particular state and this state
will be encoded by a vertex label or an edge label. According
to its own state and to the states of its neighbors, each vertex
may decide to realize an elementary computation step. After
this step, the states of this vertex, of its neighbors and of the
corresponding edges may have changed according to some
specific computation rules. Let us recall that graph relabeling
systems satisfy the following requirements:

(C1) they do not change the underlying graph but only the
labeling of its components (edges and/or vertices), the
final labeling being the result,

(C2) they are local, that is, each relabeling changes only a
connected subgraph of a fixed size in the underlying
graph,

(C3) they are locally generated, that is, the applicability con-
dition of the relabeling only depends on the local context
of the relabeled subgraph.

In this work, we consider only relabeling between two
neighbors. That is, each one of them may change its label
according to rules depending only on its own label and the
label of its neighbor. We assume that each node distinguishes
its neighbors and knows their labels. In the sequel we use the
set B(v) to denote the set of (locally) ordered immediate
neighbors of v which is an input data.

III. SPANNING TREE PROCEDURE

A tree T = (VT , ET ) is a connected graph that have no
cycle and an elected node v0 called the root. We denote by
Sons(v) the set of the sons of v. In the sequel, we assume
that the list “Sons” of v is ordered. The first son of v will
be called “Preferred” son of v. A node u ∈ VT with no son
is called a leaf of T. Then, a spanning tree T = (VT , ET )
of a graph G = (VG, EG) is a tree such that VT = VG and

1 #M denotes the cardinality of the set M.
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ET ⊆ EG. The tree can be defined also by T (Father, Sons).
We denote by Tv a tree with root v. We denote by T (u) \ v
the maximal subtree of T that contains the node u, but not
v.

We present here a distributed algorithm to compute a span-
ning tree T of a graph G, encoded in the local computations
model. Since it will be used by our algorithm, it is presented
as a “procedure” with parameters. This notion of procedure
is similar to the “interacting components” used in [8]. The
spanning tree procedure is referenced as follows:
STP(G,T;v0;Stage,X,Y;Father;Sons), where G is
the treated graph and the procedure builds a spanning tree T
rooted at v0. The structure of T is stored locally in each
node using the labels Father and Sons. Initially, the value
of the label Stage at each node v in G is X. At the end
of the computation, the value of Stage at all the nodes is Y.
The following graph relabeling system describes an encoding
of the spanning tree procedure.

Spanning Tree Procedure STP (G, T ; v0; Stage, X, Y ; F ather; Sons)

• Input : A graph G = (V, E) and v0 the chosen root.
– Labels:

∗ Stage(v) ∈ {X, W A, Y }, F ather(v),
∗ B(v), Sons(v), Included(v), T erminated(v).

– Initialization:
∗ ∀v ∈ V, Stage(v) = X.

• Results: A spanning tree T = (V, ET ) of G with root v0 such that ∀v ∈ V, Stage(v) = Y.

• Rules:
ST R1 : The node v0 starts the computation

Precondition :
∗ Stage(v0) = X

Relabeling :
∗ Stage(v0) := WA

∗ F ather(v0) := ⊥
∗ Sons(v0) := ∅
∗ Included(v0) := ∅
∗ T erminated(v0) := ∅

ST R2 : Spanning rule acting on 2 nodes v, w where w is not yet in the on-building tree
Precondition :
∗ Stage(w) = X

∗ v ∈ B(w) and Stage(v) = WA

Relabeling :
∗ Stage(w) := W A

∗ F ather(w) := v

∗ Sons(w) := ∅
∗ T erminated(w) := ∅
∗ Sons(v) := Sons(v) ∪ {w}
∗ Included(v) := Included(v) ∪ {w}
∗ Included(w) := {v}

ST R3 : Node v discovers its neighbors already included in the tree
Precondition :
∗ Stage(v) = WA

∗ w ∈ B(v), Stage(w) = WA and w �∈ Included(v)

Relabeling :
∗ Included(v ) := Included(v) ∪ {w}
∗ Included(w) := Included(w) ∪ {v}

ST R4 : Node v finishes locally the computation of a spanning tree
Precondition :
∗ Stage(v) = WA

∗ Included(v) = B(v) and T erminated(v) = Sons(v)

Relabeling :
∗ Stage(v) := Y

∗ if (F ather(v) �=⊥) then
T erminated(F ather(v)) := T erminated(F ather(v)) ∪ {v}

Here, Father(v) =⊥ means that v has no defined father.
The computation finishes when Stage(v0) = Y. In this case,
all the nodes v also satisfy Stage(v) = Y. Obviously we
have a spanning tree of G rooted at v0 defined by the third
components and the fourth components of the labels of the
nodes. The root of the spanning tree is then the unique node
with its father equal to ⊥ . Therefore, we claim the following:

Property 1: For a graph G = (V, E), when a distinguished
node v0 is labeled Stage(v0) = Y, (#E + #V + 1) rules
have been applied. Then, the spanning tree T of G rooted
at v0 has been built.

In the sequel, we will need to define some procedures to
encode our algorithms. For a sake of uniformity, procedures
will use the following standard header format:

name (H0, · · ·Hi;v0, · · ·vj; l0,x0,x′
0; · · · ; lm,xm,x′

m)

The header of the procedure is composed of its name and
a set of optional parameters including the structures of the
manipulated graphs, the set of the distinguished nodes. The
rest is related to the used labels, their required initialization
values and their expected values. Note that the structure is
used in the header to clarify the presentation of the procedure.
Although it is stored locally in each node.

The correctness of an algorithm using such procedures
results from those of these procedures. The complexity is
based on those of the procedures and the number of their
invocations in the designed application. Since procedures are
executed as atomic actions in the relabeling part of the rules,
the power of local computations model is not altered.

IV. 2-VERTEX CONNECTIVITY TEST OF GRAPHS

In this section we present a protocol to test whether a given
graph G is 2-connected. Since a 2-connected graph is a graph
without any cut-node, we explore all the nodes of G, each
visited node is tested to know if it is or not a cut-node. That
is an occurrence of the Menger theorem [12] :

Proposition 2: Let T be a spanning tree of a graph G.
Then the graph G is 2-connected iff ∀v ∈ VG, ∃ E ⊆

EG \ ET such that (VG\v, ET\v ∪ E) is a spanning tree of
(VG\v, EG\v) with #E ≤ #SON(v).

Our distributed 2-vertex connectivity test algorithm consists
of the two following rounds: (1) the computation of the
spanning tree called Investigation tree, denoted by Inv T,
of G with root v0, (2) exploration of Inv T to identify cut-
nodes of G. In round one, we use an algorithm as described
in the previous section. This procedure constructs a spanning
tree Inv T of a given graph G rooted at v0 with local
detection of the global termination. It means that v0 detects
the end of the spanning tree computation of G. In round two,
we explore the tree Inv T using “depth-first trip” [10] . When
the trip reaches a node vd, vd does the following:

1) configure. Node vd constructs a spanning tree T of
G rooted at itself and initializes the set of labels erasing
the trace of the last test. The aim of this procedure is to
prepare its test.

2) disconnection. vd disconnects itself, it will be labeled
Stage(vd) = D.

3) reconnection. Node vd orders to its preferred son to con-
struct a spanning tree of the graph G′ = (VG\vd

, EG\vd
)

rooted at the preferred son of vd. Node vd is not a
cut-node if its preferred son succeeds this task.

The algorithm terminates according to the following cases:
(a) if some node fails the reconnection phase, (b) after the
exploration of all nodes of G without the previous case. In the
last case, v0 states that G is 2-connected. As we shall see, the
aim of the configuration phase represented above as configures
is achieved by the current tested node which builds an auxiliary
tree T of G adding the simulation of the disconnection
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of the current explored node vd
2. In the next section, we

present an implementation of the reconnection phase using
the reconnection procedure. It is the main procedure of our
protocol.

Given a node vd of a spanning tree T of a graph G,
the reconnection procedure builds, if possible, a spanning tree
of G \ vd rooted at r. It works as follows: Let T be a
spanning tree of G. We denote by T ′ the “on-building” tree
of G \ vd rooted at r. This procedure is composed of the
following steps:

1) computes the base of the tree. This base of T ′ is the
subtree of T \ vd rooted at r. It is identified using a
marking procedure (see bellow).

2) search extension. Using a “depth-first trip” [10] on T ′

each node v is visited until one of the neighbor of v is
not yet included in the current tree T ′.

3) connection is found. The visited node v finds a neighbor
u that is not in the “on-building” tree. Such a node is
called a connection entry and v is named a connection
node. Therefore, the edge (u, v) is added to T ′. The
subtree of T containing u is reorganized in such a way
that u becomes its root using the root changing procedure
(see bellow). Then, this subtree is included in T ′ and its
nodes are marked as nodes of T ′. Now, the search of
isolated subtrees is restarted on the extended T ′.

Finally, r detects that it had extended as much as possible
its tree and the procedure is terminated.

V. ENCODING IN THE LOCAL COMPUTATIONS MODEL

The protocol is implemented in both graph relabeling sys-
tems and asynchronous message passing model using a set
of procedures. Here we present the first implementation. In
Section 6, we discuss one of the procedures used in the second
implementation.

A. Reconnection Procedure: RP (G, T, T ′; r, vd)

We start with the main procedure: the reconnection proce-
dure. It is composed of nine rules and uses two procedures:
The marking procedure and the root changing procedure.
In the sequel we present a short description of these two
procedures. The reconnection procedure is more detailed.

Marking Procedure (MP (T ; v0; Stage, X, Y )): This
procedure allows us to change the label Stage of all the
nodes of T from X to Y . Therefore, if the MP is applied
to a tree T = (V, E) rooted at v0, v0 will detect that all
the nodes of T are marked Y after the application of 2#V
rules.

Root Changing Procedure (RCP (T ; u)): This proce-
dure makes r the new root of the tree T. Hence, after the
application, in the worst case, of 2#V rules node u becomes
the new root of T.

Reconnection Procedure : RP(G, T, T ′; r, vd)

• Input: A graph G = (V, E) with a spanning tree T = (V, ET ), a node vd to be tested and r a
preferred son of vd.

– Labels:

2Sons of vd become “orphan nodes” or without “father”.

∗ Stage(v) ∈ {A, D, Ended, F, KO, OK, Over, SC, W}, F ather(v), Sons(v),
B(v)

∗ T o Explore(v), P otential(v), Treated(v)

– Initialization:
∗ ∀ v ∈ V \ {vd}, Stage(v) = A.

∗ Stage(vd) = D.

∗ Sons(F ather(vd)) = Sons(F ather(vd)) \ {vd}.

∗ ∀ v ∈ Sons(vd), F ather(v) = ⊥ .

∗ ∀ v ∈ V, To Explore(v) = Sons(v).
∗ ∀ v ∈ V, Potential(v) = ∅.

∗ ∀ v ∈ V, To Ignore(v) = ∅.

∗ ∀ v ∈ V, Treated(v) = ∅.

• Results: 2 possibilities :
1) A spanning tree T ′ of G \ vd with root r. In this case, vd is labeled OK and all the sons of

vd are labeled Ended.

2) The graph G is not 2-connected and the label of vd is labeled KO and there exists at least one neighbor
of vd labeled A.

• Rules:
RR1 : Node r labels the nodes of its subtree to F and starts the attempt of reconnection

Precondition :
∗ Stage(r) = A

Relabeling :
∗ P otential(r) := B(r) \ Sons(r)
∗ MP (Tr ; r; Stage, A, F )
∗ Stage(r) := SC

RR2 : Node v is a connection node
Precondition :
∗ Stage(v) = SC

∗ u ∈ P otential(v)
∗ Stage(u) = A

Relabeling :
∗ RCP (T (u) \ vd, u)
∗ MP (Tu; u; Stage, A, F )
∗ F ather(u) := v

∗ Sons(v) := Sons(v) ∪ {u}
∗ T o Explore(v) := T o Explore(v) ∪ {u}

RR3 : Node u is labeled F or D

Precondition :
∗ Stage(u) ∈ {F, D}
∗ u ∈ B(v) and u ∈ Potential(v)

Relabeling :
∗ P otential(v) := P otential(v) \ {u}
∗ T o Ignore(u) := To Ignore(u) ∪ {v}

RR4 : Node v is not a connection node, it delegates one of its sons u, the reconnection search
Precondition :
∗ Stage(v) = SC

∗ P otential(v) = ∅
∗ u ∈ To Explore(v)

Relabeling :
∗ T o Explore(v) := T o Explore(v) \ {u}
∗ P otential(u) := B(u) \ (Son(u) ∪ {v} ∪ T o Ignore(u))
∗ Stage(u) := SC

∗ Stage(v) := W

RR5 : The subtree with root v does not contain connection node
Precondition :
∗ Stage(v) = SC

∗ P otential(v) = ∅
∗ T o Explore(v) = ∅

Relabeling :
∗ Stage(v) := Ended

∗ Stage((F ather(v)) := SC

RR6 : Node r informs vd that it has built the maximal connected tree Tr of G \ vd.

Precondition :
∗ Stage(r) = Ended

Relabeling :
∗ Stage(vd) := Over

RR7 : The graph G is not 2-connected
Precondition :
∗ Stage(vd) = Over

∗ v ∈ Sons(vd)
∗ Stage(v) = A

Relabeling :
∗ Stage(vd) := KO

RR8 : Node vd is informed that its son v is labeled Ended

Precondition :
∗ Stage(vd) = Over

∗ v ∈ Sons(vd)
∗ Stage(v) = Ended

Relabeling :
∗ T reated(vd) := T reated(vd) ∪ {v}
∗ Stage(v) := Over

RR9 : A new spanning tree of G \ vd rooted at r has been built
Precondition :
∗ Stage(vd) = Over

∗ T reated(vd) = Sons(vd) \ {r}

Relabeling :
∗ Stage(vd) := OK

The two following Lemmas show the behavior of the
reconnection procedure.
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Lemma 3: Let vd be a cut-node of a graph G = (V, E).
Then the reconnection procedure fails to construct a spanning
tree T ′ of G \ vd.
Sketch of the Proof. By contradiction. We suppose that the
reconnection procedure will succeed to construct a spanning
tree of G \ vd. This means that G \ vd remains connected.
We show that after the execution of such a procedure, some
son of vd is labeled A which contradicts our assumption.

Lemma 4: Let vd be not a cut-node of a graph G = (V, E).
Then the reconnection procedure will succeed to construct a
spanning tree T ′ of G \ vd rooted at the preferred son r of
vd.
Sketch of the Proof. The proof is by induction on the size of
#Sons(vd). After the disconnection of such a node, we have
#Sons(vd) subtrees. We must show that after such event,
the reconnection procedure will reconnect such subtrees to
construct a spanning tree T ′ of G \ vd.

For the time complexity, the application of the reconnection
procedure to a graph G = (V, E) uses, in the worst case,
#E + 5#V − 5 rules. Therefore, a node vd in G detects if
it is or not a cut-node in O(#E + #V ) steps.

B. 2-Connectivity Test Algorithm
In this part we present our protocol referred to in the

rest of the paper as 2VCT algorithm. This algorithm uses
three procedures: The spanning tree procedure to construct
the investigation tree (round 1), the configuration procedure
to encode phase (1) of round 2. Phase (3) of this round is
achieved using the reconnection procedure presented above.
Now, we present a short description of the configuration
procedure. Then, we give an example of 2VCT algorithm’s
run.

Configuration Procedure (CP (G, T ; vd)): Given a
graph G = (V, E) , this procedure allows to build a spanning
tree T of G rooted at vd. In addition, all the required
initializations of the labels of G, used in the reconnection
procedure, are achieved here. This procedures uses an
extended version of the marking procedure and an extended
version of the spanning tree procedure. Moreover, vd

prepares its disconnection. So each of its sons sets its label
“Father” to ⊥ . Thus, the cost of the configuration procedure
is O(#E + #V ) time when applied to a graph G.

2VCT Algorithm: To store locally the investigation tree
Inv T, each node has the following labels in addition to
the labels used during the execution of the other procedures:
InvStage(v), InvFather(v), InvSons(v).

Let G = (V, E) be a graph and v0 ∈ V be a node
to launch and supervise the test process. At the start of the
computation, we have ∀v ∈ V, InvStage(v) = N. The node
v0 starts the computation: It builds a spanning tree Inv T
of G rooted at v0. Subsequently, all the vertices of G are
such that InvStage = A. Since the test scheme is based of
the use of a “depth-first trip” exploration on the tree Inv T,
the root v0 is the only one able to start the trip. Each node
ready to be examined switches its label to On Test.

The examination phase of the node vd consists on the test of
whether vd is or not a cut-node of the graph G. It proceeds as

follows. The node vd labeled On Test constructs a spanning
tree of the graph G, using the configuration procedure. At the
end of this procedure, vd is labeled Stage(vd) = D and its
preferred son Preferred(vd) tries to build a spanning tree
of the graph G \ vd using the reconnection procedure. As we
shall see in the next paragraph, eventually vd decides if it’s
or not a cut-node of G.

If vd is not a cut-node, it transfers the label On Test to
one of its not yet tested sons (“ InvSons ”). Since the leaf
nodes of the tree Inv T are not “cut-nodes”, the “chosen”
son must not be a leaf. Note that the leaf node must be avoid
from the list “ InvSons ” of its father in the tree Inv T.
Eventually a node vd finishes the test of all the nodes in its
subtree ( InvSons(vd) = ∅ ). So it informs its father that the
computation is over. Now vd is avoided from the list InvSons
of its father which then can continue the exploration choosing
one of its not yet tested son. Furthermore, only the root v0

detects the end of the “trip” when all its sons are over. It means
that all the nodes are tested and succeeded. Then, v0 affirms
that the graph G is 2-connected.

In the opposite case (vd is a cut-node), the reconnection
procedure fails. So the tested node vd will be labeled
Stage(vd) = KO. Then vd sets its label InvStage(vd)
to Over. There are two possibilities: First, if vd �= v0

then it informs its father in Inv T and so on until the
root v0. Second, if the reconnection procedure fails about
the root v0. So, v0 is a cut-node. It stops the test procedure
(InvStage(vd) = KO ST ). In the two cases, v0 affirms that
the graph G is not 2-connected.

C. Overall Proof of Correctness and Complexity Analysis
Now, we show the correctness of the 2VCT algorithm

using a scheme based on the procedures properties. Assume
that when the procedures are executed in the relabeling part
of some rule: They are executed as atomic steps with the two
following consequences:

• Each procedure achieves its expected task,
• Each procedure terminates during the execution of the

rule referencing it.
The analysis is closed with time and space complexity

measures. First, we claim the following:
Fact 5: If the graph G = (V, E) contains at least one

cut-node then it is not 2-connected. Otherwise, if it doesn’t
contain any cut node then it is 2-connected.

Theorem 6: The 2VCT algorithm presented above imple-
ments a distributed test of the 2-vertex connectivity of a graph.
Sketch of the Proof. The correctness proof is by induction on
the number of nodes of G and the results of Fact 5, Lemma
3 and Lemma 4. This is based also on the used exploration
technique.

For the time complexity, the worst case of the execution
of the 2VCT algorithm corresponds to the case when the
reconnection procedure is applied to each node. For the space
complexity, each node v is labeled L(v) using the two
following components:
(1) B(v), Included(v), T erminated(v), Sons(v),
F eedbacks(v), T o Explore(v), Potential(v),
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To Ignore, T reated(v), InvSons(v),
(2) Stage(v), Father(v), InvStage(v), InvFather(v).

Thus, to encode the first component of a label, every node
needs to maintain subsets of its neighbors as descendants. By
taking into account the other variables used in the second
component of labels, we can claim that each node v needs
O(deg(v) × log deg(v)) bits.

The following result completes the analysis.
Theorem 7: Given a graph G = (V, E). The 2VCT

algorithm computes the test of the 2-vertex connectivity of G
in O(deg(G)×#V 2) time using O(deg(G)× log deg(G))
bits per node.

VI. ASYNCHRONOUS MESSAGE PASSING MODEL

Since computations used in our protocol are based on local
information, the implementation of the presented modules and
then the 2VCT algorithm is implemented in the asynchronous
message passing model using a transformation (translation)
from the previous one adding simple changes. The proofs
of correctness and the complexities analysis are also based
on those of the local computations model. Here, we give an
example of an implementation of the spanning tree procedure,
as presented in Section 3, to illustrate such a transformation.

We used the same variables as those of GRS model. The
initiator (the root) v0 starts the computations broadcasting a
<st tok> message to all its neighbors. At any step of the
computation, when a node v, not yet in the tree (Stage(v) �=
WA) receives a <st tok > message from its neighbor w,
node v includes itself in the tree by changing its Stage to
WA. Moreover, in the same time, Father(v) is set to w,
set “Included” is now composed of w and set “Terminated”
is initialized to ∅. Finally, v informs w to add it in its set of
sons sending the <st son> message. At the reception of such
a message, w adds v in both its sets of sons and in the set
of nodes that are included in the tree (“Included”). When v
finds all its neighbors already included in the tree, it detects
that it has locally terminated its computation, then it informs
its father. The computation finishes when all the nodes v are
such that Stage(v) = Y which means that they terminated
locally their computations. And obviously we have a spanning
tree of G rooted at v0 defined using the same components
as the one computed in the local computations model.

VII. CONCLUSION AND FUTURE WORKS

This work deals with the test of the 2-vertex connectivity
of graphs in a distributed setting using local knowledge.
We present a new formalization of such a problem using
a constructive and a general approach. It is based on an
occurrence of Menger’s theorem and its relation with the
possible construction of a spanning tree. The protocol is
encoded in the local computations model and implemented in
the message passing model using a set of procedures. Given
a graph G = (V, E) with degree Δ and N nodes: The
first algorithm requires O(Δ×N2) steps and O(Δ× log Δ)
bits per node. For the second one, without combining some
phases to reach better some constants, it achieves correctly the
test of the 2-vertex connectivity of G in O(N2) time using

O(Δ×N2) messages and the same space requirements as the
first one.

Thus, our work has an extra benefit: Algorithms encoded
in the local computations model may be implemented in
the asynchronous message passing model. Furthermore, the
transformation guarantees the following: The proofs and the
complexities measures used in the first one allows to deduce
those of the second one. Therefore, a small bridge is proposed
between these two models.

For the k-vertex connectivity test, we conjecture that we
can use the previous procedures to generalize our algorithm
to test the k-vertex connectivity of graphs in polynomial time.
Intuitively, we can reduce this problem to the case of k = 2
followed by an incremental test procedure. One interesting
application of the distributed k-vertex connectivity testing is
the measure of a network fault-tolerance. In fact, the quality
of the reachability of any couple of nodes in an unreliable
network, and hence their communication, will depend on the
number of paths between these nodes. If such paths are already
computed, it is essential to maintain them while crash or
disconnection of certain nodes occur.
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