
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2107

Abstract—In this paper the authors propose a protocol, which uses
Elliptic Curve Cryptography (ECC) based on the ElGamal’s
algorithm, for sending small amounts of data via an authentication
server. The innovation of this approach is that there is no need for a
symmetric algorithm or a safe communication channel such as SSL.
The reason that ECC has been chosen instead of RSA is that it
provides a methodology for obtaining high-speed implementations of
authentication protocols and encrypted mail techniques while using
fewer bits for the keys. This means that ECC systems require smaller
chip size and less power consumption. The proposed protocol has
been implemented in Java to analyse its features and vulnerabilities
in the real world.

Keywords—Elliptic Curve Cryptography (ECC), ElGamal, and
authentication protocol.

I. ELLIPTIC CURVE CRYPTOGRAPHY (ECC)
LLIPTIC curves have been extensively studied for over a
hundred years, and there is a vast literature on the topic.

Originally pursued mainly for aesthetic reasons, elliptic
curves have recently become a tool in several important
applied areas, including coding theory, pseudorandom bit
generation, and number theory algorithms [1].

In 1985, Koblitz [2] and Miller [3] independently proposed
using the group of points on an elliptic curve defined over a
finite field in discrete log cryptosystems. Today elliptic
curves are used widely in public key cryptosystems. They also
provide a methodology for obtaining efficient
implementations of network security protocols [4]. Since their
introduction, a broad discussion on their security and
efficiency has been carried on. It is this very efficiency that
makes them so interesting for us today.

We investigate what an elliptic curve is, and what its
algebraic properties are. Given any field F ─ thus a set with
two operations, addition and multiplication that “know about”
each other ─ we can consider solutions to various types of
equations with coefficients in F. An elliptic curve E over the
field F is given by a cubic equation of the form

Y2 + a1XY + a3Y = X3 + a2X2 + a4X + a6 . (1)

We let E(F) denote the set of points (x, y) ∈ F2 that satisfy

Authors are with Department of Applied Informatics, University of

Macedonia, Egnatia 156, GR-54006 Thessaloniki, Greece.

this equation, along with a “point at infinity” denoted Ο.
Fig.1 gives an example of an elliptic curve over the field of
real numbers R. In this particular case, the graph consists of
two separated parts, but this is not always the case. It turns out
that E(F) has some interesting properties. A group operation
can be embedded in this set, and in this way, we obtain an
abelian group. This is best explained geometrically. Take two
points on the curve, P and Q and construct the line through
these two points. In the general case, this line will always
have a third point of intersection with the curve. Take this
third point and construct a vertical line through it. The other
point of intersection of this vertical line with the curve is
defined as the sum of P and Q. If P and Q are identical, then
the line to be constructed in the first step is a tangent to the
curve, which again has exactly one other point of intersection
with the curve. It can be shown that this operation is a
properly defined group operation if an extra point at infinity Ο
is added to the curve, which lies infinitely far on the vertical
axis. This point Ο is the additive identity of the elliptic curve
group. For example, in Fig. 1, this point should be added to P
in order to obtain P as the sum.

Fig. 1 Example of an elliptic curve over the field of real numbers R
and demonstration of the group operation

The elliptic curves that are used in cryptography are defined

over finite fields. Considering only finite fields we get an

Implementing Authentication Protocol for
Exchanging Encrypted Messages via an

Authentication Server based on Elliptic Curve
Cryptography with the ElGamal’s Algorithm

Konstantinos Chalkias, George Filiadis, and George Stephanides

E

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2108

“easier” equation. If adding the multiplicative identity 1 to
itself in F never gives 0 then we say the field has
characteristic 0; otherwise, there is a prime number p such
that pa = 0, for all a ∈ F and p is called characteristic of the
field ─ char(F). If now char(F) ≠ 2, 3, then there is an
admissible change of variables which transforms E to the
curve

y2 = x3 + ax + b. (2)

where a, b ∈ F. The discriminant of the curve is
∆ = – 16(4a3 + 27b2). Algebraic formulas for the group law
can be derived from the geometric description. These
formulas are presented next for elliptic curves E of the
simplified form (2).

This paper focuses on the elliptic curves defined over Fp
when char(Fp) ≠ 2, 3 and p > 3. For a given prime, p, the
finite field of order p, Fp is defined as the set Zp of integers
{0, 1, ..., p – 1}, together with the arithmetic operations
modulo p. Equation (2) is written as

y2 ≡ x3 + ax + b (mod p). (3)

where ∆ ≢ 0 (mod p) (to exclude singular curves). The point
addition is based on the line property, which was described
above. So, if y2 ≡ x3 + ax + b (mod p) is the equation of the
elliptic curve and y ≡ dx + c (mod p) is the equation of a line
that intersects the curve at the points P(x1, y1), Q(x2, y2) then
we can compute the third point –(P + Q) (its coordinates are

),(33 cdxx +) by combining the equations. To do this we
first need to find the equation of the line. We compute

2 1

2 1

(mod)y yd p
x x

−
≡

−
or

2
1

1

3 (mod)
2

x ad p
y
+

≡ if P ≡ Q.

Then, x3 ≡ d2 – x1 – x2 (mod p) and y3 ≡ d(x1 – x2) – y1
(mod p). In case of Q = – P = (x1, – y1) there is no d, which
lead us to the point at infinity Ο. [5]

The point multiplication is another well known process. If P
is a point and n is a positive integer, then nP denotes
P+P+…+P (with n summands). To compute nP for a large
integer n, it is inefficient to add P to itself as an n-fold sum.
Instead, we use the same binary expansion scheme we use to
compute an. In other words, it is much faster to use successive
doubling and even if n is very large, the size of the
coordinates of the points does not increase very rapidly; when
we are working over a finite field Fp we can continually
reduce modulo p and thus keep the numbers involved
relatively small. The method of successive doubling can be
stated as follows [5], [6], [7]

Input: n (L-bits), P
Q = 0, i = L – 1

c0c1…cL-1 (n-binary representation), n =
1

0
2

L
i

i
i

c
−

=

⋅∑

while (i ≥ 0) ⇒ Q = Q + Q
if (ci = 1) ⇒ Q = Q + P
i = i – 1
Output: Q

On the other hand if the points P and nP are given, it is very
difficult to determine the value of n; this is the discrete log

problem for elliptic curves and is the basis for the
cryptographic application that will be discussed in the next
section.

Several approaches to encryption/decryption using elliptic
curves have been analysed in the literature, and in such a
system the first task is to encode the plaintext message to be
sent as a point of the elliptic curve. In order to assign the
message to a point of the elliptic curve we can follow the next
steps:

− We get the byte representation of the message

(ASCII),
− x = k*message + 1, found = false
− While x <= (k*message + k) and found = false

− We try to solve the equation. If there is a
solution then found = true and the algorithm
stops. So, the message has been successfully
assigned to the point (x, y). Else, x = x + 1.

Shanks-Tonelli’s algorithm is used to compute the square root
of the equation. According to Koblitz [2] the value of k must
be between 30 and 50 to be sure that the above algorithm will
find a solution.

The number of points of an elliptic curve is definite.
According to Hasse’s theorem this number |E| is between a
lower limit of 1 2p p+ − and an upper limit of

1 2p p+ + () ()()1 2 1 2p p E p p+ − ≤ ≤ + + . This

is why p must be a very big prime number. [5]

II. ELGAMAL ALGORITHM

In the ElGamal algorithm each user has a private and a
public key and of course an elliptic curve equation
y2 ≡ x3 + ax + b (mod p). The private key ‘nb’ is a random Big
Integer where nb < p. Only the user knows this number. The
public key consists of the coefficients ‘a’ and ‘b’, the
modulus ‘p’, a random point ‘G’ and the point Pb = nbG of
the elliptic curve. The public key is published to the other
users.

The procedure of the encryption is described below. The
message that will be sent to the recipient corresponds to a
point ‘Pm’ of the elliptic curve of the recipient.

I. The sender chooses a secret random integer ‘k’,
where k < p, and sends the points ‘kG’ and
‘Pm + kPb’ to the recipient.
II. The recipient computes the point
Pm = (Pm + kPb) – (kG)nb.
III. The decoding is successful because
Pb=nbG,
(Pm + kPb) – (kG)nb = Pm + knbG – knbG = Pm
IV. Only the person who owns the nb can make
the decryption. [5]

III. AUTHENTICATION PROTOCOL

A. Introduction and Assumptions
There are a lot of authentication protocols and too many

algorithms have been suggested to secure key exchange. Even

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2109

though some of them are very efficient, most of them are a
combination of two or three algorithms. For example, it is
common to use public key system to establish a symmetric
key that is then used in a symmetric system. Even though this
combination has improved efficiency when massive amounts
of data are being transmitted, the use of two different
algorithms makes the cryptographic system more vulnerable
to attacks. In cases where the sent data is limited the
symmetric encryption could be avoided. For this purpose a
complete public key encryption scheme must be implemented.
The authors’ effort was to implement a protocol based on one
simple algorithm for exchanging text messages between the
users of a “Message Server”. The problems that had to be
solved were both the sender’s authentication and the secrecy
of the messages [8].

In order to implement this protocol we have to work based
on some assumptions. The first assumption is that every user
has to be connected to the server to send a message and not
send it directly to the recipient (and vice-versa). The second
assumption is that the public keys are published in a public
directory and in a web page for security reasons. Note that
the server sends the public key of the recipient to the sender in
a safe way (this is explained below). The third one is that the
server has a key pair too. The fourth one and the most
important is that the server’s public key is the only key that
does not need verification. Every user stores servers’ public
key when he creates an account. At last, we assume that there
is no need for a safe communication channel e.g. SSL.

The reason of those assumptions is that the first idea was to
create an application for students to send and receive
encrypted messages by using a loyal and trustworthy server
such as a university server. The role of the server is very
important because no digital signature algorithm is
implemented. The server takes all responsibility of the
members’ verification by providing to both sender and
receiver a random session number known as nonce.

B. Description
Equation Notations:

• Clear message: M
• Mail Identity: Id (Every message has a unique

number)
• Server: S
• Agents: A(Alice), B(Bob)
• Nonces: N1, N2, N3
• Private Keys: PrX
• Public Keys: PubX
• Compound messages: {M1,M2,…,Mn}
• Encrypted messages: PubX ({M1,M2,…,Mn})

Sending Process: (From=Alice, To=Bob)

(1.) A → S : PubS({ From, To, N1})
(2.) S → A : PubA({ PubB, N1, N2, Id })
(3.) A → S : { PubB({ M, N2 }), Id }

Receiving Process: (Bob receives the message)

(4.) B → S : PubS({ To, N3 })
(5.) S → B : {PubB({M, N2}), PubB({N2,N3})}

C. Explanation
The sending process includes three steps. In the first step

the user sends a request to the server. The request consists of
three elements: “From”, “To” and a nonce “N1”. Of course
“From” is the nickname of the sender and “To” is the
nickname of the recipient. “N1” is a random message needed
for the verification of the server when the server replies. All
the three elements are concatenated (using tags) and create a
stream. This stream is encrypted with the server’s public key
and the encrypted stream is sent to the server.

After receiving the request, the server decrypts the stream
and gets “From”, “To” and “N1”. Then the server must reply
by providing a mail Id, the “N1”, a new nonce “N2” and the
receiver’s public key to the sender. Meanwhile, the server
inserts a new row in his internal mail database. Every row
consists of the following fields: {From, To, Id,
PubB({M,N2}), PubS(N2)}.

In the third step the sender has got the reply and verifies the
“N1”. If the verification is correct then he can use the public
key he received. The sender concatenates the clear message
with the “N2” he received and encrypts them with the
recipient’s public key. After that, he sends this encrypted
message to the server followed by the “Id”.

The process of sending a message has ended. Now, in case
the receiver wants to download his messages he makes a
request. The receiver sends to the server an encrypted stream
consisted of “his nickname” and a new random message “N3”.

Then, the server decrypts the stream and gets the nickname
and the “N3”. The server selects the rows, where
“To”=nickname, and sends to the receiver two streams. The
first one is the encrypted message that was stored in the
database and the second one consists of “N2”(after being
decrypted) + ”N3”, which is encrypted with recipient’s public
key.

The receiver gets the streams and verifies the “N3” to check
if the server was the one who replied to him, and then he
compares the “N2” he received from the two streams. In case
of successful results, the receiver can read the clear message.

D. Vulnerability on Attacks
As it is referred above, the protocol does not need a safe

channel for the message transactions. Of course the presence
of a safe channel could make the transactions as safe as the
proposed protocol but the point was to use only one algorithm
on authentication and on encryption/decryption process.
Moreover, the use of a digital signature algorithm could have
better results in computations, but on the other hand with this
protocol the receiver does not need to know the sender’s
public key [8].

Let us assume, that T(Trudy) is a third person (attacker)
who wants to decrypt an encrypted message. During the first
step of the Sending Process, i.e. user’s request (1), Trudy
cannot read any part of the request (From, To, N1) because
they are encrypted with the server’s public key. What Trudy
can do is to send a different request with only the same “To”

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2110

or “From” and a different “N1” as she doesn’t know the real
“N1”. An attack like this will not create problems because the
server will not be able to send the appropriate “N1” to the
sender for verification. The sending process will be cancelled.
In the same way an attack at the second communication
process (2) is not dangerous, because only the server can reply
with the correct “N1”.

At the third stage of communication (3) the encrypted
message is finally sent. In this case, Trudy can change the
“Id” of the message, since it is not encrypted, or the whole
encrypted message. In the first case, if the attacker changes
the “Id” of the message, the verification of the message to the
server will fail and the message will be discarded. If Trudy
replaces the whole encrypted message (M, N2) with another
one (M’, N2’), then Bob when he will receive the message, he
will compare the correct N2 that the server sent to him with
the N2’. Because it is unlikely impossible that nonces N2 and
N2’ have the same value, Bob will understand that the
message has been altered. This example is a characteristic
attack in the integrity of the message. Any kind of an attack at
this stage is not harmful.

At the receiving process (4) an attacker can change the
request message the receiver sends. What Trudy can do is to
send the same “To” with a different nonce “N3’ ”. This does
not cause any problem, as the attacker cannot read anything
from the server’s reply. Furthermore, when Bob will try to
verify the server by comparing the values of “N3” (that he
created) and “N3’ ” (nonce that Trudy send to server) he will
not complete the verification process and the message will be
deleted.

Finally at the mail receiving process (5) the attacker cannot
create any kind of problem, as he doesn’t know anything
about the nonce “N3”.

During the communication process we have not found any
kind of attack that could harm the secrecy of the data sent.
We still have not check thoroughly the case of an attack to the
server. However we have found that even though someone
gets the contents of the server’s database he couldn’t read any
of the mails, as the data stored is already encrypted (except
from “From” and “To” fields).

IV. APPLICATION

A. Introduction to the Application
It is an application for sending encrypted messages to a

number of users who have already created an account to our
server. Data is stored in an SQL database at the server with
their public keys. Their encrypted messages are also stored in
the same database. For the encryption we use Elliptic Curve
Cryptography with ElGamal algorithm and for the
authentication of the users we use a protocol, both of which
have been described above. For the implementation of the
application we used JDK 1.4.2_06, MySQL 4.1.7 and Apache
Tomcat 5.5.7.

B. Signing up a New Account
The first step is the creation of a new account at the server.

The new users have to “Sign up a new account” by typing
their nickname, password (this is required for the login),
keypassword (this is required for storing and retrieving their

private keys), first name, last name, address, phone number
and their birthday date. They, also, have to agree with the
applications’ terms of use and of course retype password and
keypassword. The application checks if there is another
account with the same nickname. In case of nickname
duplication, the new user is informed to type a different one.
The password and keypassword fields must have at least 6
characters. If the user has forgotten to complete a number of
fields the appropriate message is being displayed. A
screenshot of the program is shown in Fig. 2.

Then, the user has to choose a directory for his Inbox. In
addition, the user has to create the RSA (1024 bits) and the
ECC (200 bits) keys. The RSA keys are used for encrypting
and decrypting his private ECC key nb. The ECC keys are
used for sending and receiving encrypted mails from the
server.

The RSA keys are stored in a keystore file (key database)
using the keystore class of the keytool of JDK. The user has
to choose the directory and the name of the file. This keystore
file is used for security reasons. A database with the RSA
keys is created with the password entered by the user. The
keypassword is used for storing and retrieving the RSA
private key. At the time of creation of the account, the RSA
public key is used to encrypt the ECC private key. Now the
ECC private key cannot be read, and if we need it, we decrypt
it with the RSA private key from the database by giving the
password and the keypassword.

The reason we have chosen the RSA algorithm and the
keystore class is because we wanted to protect the ECC
private keys. Multiple users can have an account in the same
computer. Optionally, by using RSA for encrypting ECC
keys, a user can have access to his ECC keys remotely, using
RSA public key cryptography. So, to prevent every ECC
private key from being stolen by the other users of the
computer or by Internet attacks we need to password protect
these keys. We have a double security. Imagine a hacker who
wants to get the private key from a computer. He has to know
both the password and the keypassword to get the RSA
private key in order to decrypt the ECC key.

The ECC public key and the encrypted ECC private key are
stored in a property file. The nickname of the user is used for
naming this file. The following data is stored in this file:
• Inbox Directory,
• the path of the keystore file,
• the private ECC key encrypted with the RSA public key,
• a, b, p, G, Pb (public ECC key).

When the RSA and the ECC keys are created, the following
data is sent to the server:

• Nick Name,
• First Name,
• Last Name,
• Address,
• Phone Number,
• Birthday Date,
• a, b, p, G, Pb (public ECC keys).

The above data is being added to the users’ table of the

server’s database. The primary key of this table is the
nickname.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2111

Fig. 2 Singing up a new account

C. Login
The users who already have an account, or have just created

a new one, can send or receive encrypted mail messages from
the server. But before that, they have to login first. They type
their nickname and their password. If the nickname/password
is incorrect, the keystore file isn’t accessible and an error
message is being displayed.

D. Sending – Receiving –Reading Messages
After a successful login the user has three choices:

1. Send a message to another user,
2. Receive new messages from the server,
3. Read messages from his Inbox.

If the user wants to send a message, he has to write the

message and define the name of the recipient. He can either
write the nickname of the recipient or, if he doesn’t remember
it, he has to connect with the server in order to retrieve the
nicknames of the current users. Then, he has to retrieve the
public key of the recipient and finally send the mail. In order
to make the encryption procedure faster the message is being
separated in smaller strings. Each string has 19 characters
apart from the last one. For example, if the message has 42
characters, it will be divided in three strings with 19, 19, 4
characters correspondingly. Then, each string is being
decrypted with the public key of the recipient. The two points
that are produced from the encryption of the first string (see

section 2) are being concatenated with the two points, which
are produced from the encryption of the second string and etc.

 For the concatenation specific tags are used. The procedure
that follows has been described in section 3.

If the user wants to receive new messages from the server,
he has to connect to the server using the authentication
protocol, which has been described above. The new messages
are stored in the inbox directory of the user.

If the user chooses to read a message, he has to type his
keypassword, to get his ECC private key and decrypt the
message. For the decryption of the message the inverse
procedure is being used. First of all, we separate each pair of
points and compute the decrypted messages. Finally, we
concatenate the decrypted messages to produce the initial
message. Fig. 3 illustrates an example of reading a message.

E. Communication between Client, Server and Database
The communication between clients and server is being

done using a servlet. The servlet can ‘read’ the requests from
the clients and corresponds accordingly by sending data to
clients, communicating with the database, etc. The
communication with the SQL database is carried out by the
same servlet. For this purpose mysql connector for java is
being used. Only localhost queries can be executed in the
server’s database. This is for security reasons. So, the
database is accessible only from the server.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2112

Fig. 3 Reading a message from Inbox

V. CONCLUSIONS
Elliptic Curve Cryptosystems are one of the best ways of

sending – receiving encrypted messages or keeping encrypted
data. The encrypted messages – data can only be read from
one person only, the owner of the private key. If an attacker
gets the encrypted data, he will need years in order to decrypt
the message and the information he will get will be useless.
So we have ultimate protection.

It is proved that the authentication protocol, which has been
developed by the authors, is invulnerable. ElGamal’s
algorithm success is based on the difficulty of the discrete
logarithm problem, which is still remaining as one of the most
difficult problems to be solved. Moreover there is no use of
symmetric algorithms (eg DES) and one way hash-functions
(eg MD5) which have been proved to be vulnerable in brute-
force attacks when small messages are being transmitted.
Furthermore, the application that is based on this protocol
works quite well. The sending and receiving processes take
only a few seconds to be completed, with a 56 Kbps modem
and a 500 MHz Pentium III server. Furthermore, we found out
that the bit-length of the ECC public keys we use in the
application is the appropriate. The keys are big enough to
offer a high-level security but not as big as the keys of other
algorithms (e.g. RSA) for faster communication.

VI. FUTURE WORK

We are thinking of making a statistical analysis on how
often someone sends or receives an encrypted message, how
often someone tries to attack our server and the success ratio
of message transactions. Moreover we will make an analysis
on what kind of information the encrypted messages contain
(such as credit cards number, information about stocks, PIN
codes etc.).

We could also develop a number of other protocols for
obtaining the authentication of the users during the procedure

of sending and receiving encrypted messages. Then, we could
easily compare the computation speed of the implemented
protocols and of course their vulnerability.

Furthermore, we believe that the following characteristic
should be added to our application. The user could specify
which area of the message would be sent as plain text and
which area would be encrypted with the public key of the
recipient.

In addition, each user will have the advantage of joining in
a group of users. Each group will have its own public and
private keys. So, if someone wants to send a message to the
users of the group he will have to send it only to the ‘group’.

Finally, we are going to expand our application for sending
encrypted files attached to the messages. The following
algorithm can be implemented for this purpose. The sender
creates a random integer k. Then k can be used as a password
for this file using a hash function. Finally the encrypted file
and the integer k (encrypted with the public key of the
recipient) are sent to the recipient.

REFERENCES
[1] N. Koblitz, A. Menezes and S. Vanstone, The state of elliptic curve

cryptography. Designs, Codes and Cryptography, 19 (2000), 173-193.
[2] N. Koblitz, Elliptic curve cryptosystems. Mathematics of Computation,

48 (1987), 203-209.
[3] V.Miller, Uses of elliptic curves in Cryptography. H.C.Williams, (ed.)

Advances in Cryptology-CRYPTO 85, Proceedings, Lecture Notes in
Computer Science, No 218 (1985), 417-426, Springer-Verlag.

[4] M. Aydos, E. Savas, and C. K. Koc , Implementing Network Security
Protocols based on Elliptic Curve Cryptography, Proceedings of the
Fourth Symposium on Computer Networks, pages 130-139, Istanbul,
Turkey, May 20-21, 1999.

[5] L. C. Washington, Elliptic curves Number Theory and Cryptography,
Chapman&Hall / CRC, 2003.

[6] M. Rosing, Implementing Elliptic Curve Cryptography, Manning, 1999.
[7] D. Hankerson , A.Menezes, and S.Vastone, Guide to Elliptic curve

cryptography, Spinger-Verlag, 2003.
[8] C. Boyd and A. Mathuria, Protocols for authentication and Key

Establishment, Springer-Verlag, 2003.

