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Positive Definite Quadratic Forms, Elliptic Curves
and Cubic Congruences

Ahmet Tekcan

Abstract—Let F (x, y) = ax2 + bxy + cy2 be a positive definite
binary quadratic form with discriminant Δ whose base points lie on
the line x = −1/m for an integer m ≥ 2, let p be a prime number
and let Fp be a finite field. Let EF : y2 = ax3 + bx2 + cx be an
elliptic curve over Fp and let CF : ax3 + bx2 + cx ≡ 0(mod p) be
the cubic congruence corresponding to F . In this work we consider
some properties of positive definite quadratic forms, elliptic curves
and cubic congruences.

Keywords—Binary quadratic form, elliptic curves, cubic congru-
ence.

I. PRELIMINARIES.

A real binary quadratic form F is a polynomial in two
variables x and y of the type

F = F (x, y) = ax2 + bxy + cy2 (1)

with real coefficients a, b, c. We denote F briefly by F = (a, b,
c). The discriminant of F is defined by the formula b2 − 4ac
and is denoted by Δ = Δ(F ). F is an integral form if and only
if a, b, c ∈ Z, and is positive definite if and only if Δ(F ) < 0
and a, c > 0. A positive definite form F = (a, b, c) is said to
be reduced if

|b| ≤ a ≤ c. (2)

Most properties of quadratic forms can be giving by the aid
of extended modular group Γ (see [20]). Gauss (1777-1855)
defined the group action of Γ on the set of forms as follows:

gF (x, y) =
(
ar2 + brs+ cs2

)
x2

+ (2art+ bru+ bts+ 2csu)xy (3)

+
(
at2 + btu+ cu2

)
y2

for g =
(
r s
t u

)
= [r; s; t;u] ∈ Γ, that is, gF is gotten

from F by making the substitution x→ rx+tu, y → sx+uy.
Moreover, Δ(F ) = Δ(gF ) for all g ∈ Γ, that is, the action of
Γ on forms leaves the discriminant invariant. If F is positive
definite or integral, then so is gF for all g ∈ Γ. Let F and
G be two forms. If there exists a g ∈ Γ such that gF = G,
then F and G are called equivalent. If det g = 1, then F and
G are called properly equivalent and if det g = −1, then F
and G are called improperly equivalent. An element g ∈ Γ is
called an automorphism of F if gF = F . If det g = 1, then
g is called a proper automorphism and if det g = −1, then g
is called an improper automorphism. Let Aut(F )+ denote the
set of proper automorphisms of F and let Aut(F )− denote
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the set of improper automorphisms of F (for further details
on binary quadratic forms see [2], [4], [7], [15]).

If a positive definite quadratic form F is not reduced, then
we can get it into a reduced form as follows: Let

Ω = {[1; s; 0; 1] : s ∈ Z} .
Then Ω is a cyclic subgroup of SL(2,Z) which is generated
by S = [1; 1; 0; 1]. Now we want to determine the element
in the Ω−orbit of F for which the absolute value of xy is
minimal. For s ∈ Z, we have

SsF = (a, b+ 2sa, as2 + bs+ c). (4)

Hence the coefficient of x2 of any form in the Ω−orbit of
F is a and the coefficient of xy of such a form is uniquely
determined (mod 2a). If we choice s =

⌊
a−b
2a

⌋
, then we

have −a < b + 2sa ≤ a. This choice of s is minimizes the
absolute value of b. Further by (4), the coefficient of y2 in SsF

is (2as+b)2+|Δ|
4a , this choice of s minimizes this coefficient.

Hence the form F = (a, b, c) is called normal if

−a < b ≤ a. (5)

We see as above that, the Ω−orbit of F contains one normal
form which can be obtained as SsF with s =

⌊
a−b
2a

⌋
. The

normal form in the Ω−orbit of F is called the normalization
of F , which means replacing F by its normalization. Let ρ(F )
denotes the normalization of (c,−b, a). Then ρ is called the
reduction operator for positive definite forms. Let F = F0 =
(a0, b0, c0) and let

si =
⌊
bi + ci

2ci

⌋
. (6)

Then by (4), it is easily seen that the reduction of F is

ρi+1(F ) = (ai+1, bi+1, ci+1)
= (ci,−bi + 2cisi, cis

2
i − bisi + ai) (7)

for i ≥ 0. If the form ρ1(F ) is not reduced, then we apply
the reduction algorithm again and then we find that ρ2(F ).
If ρ2(F ) is not reduced, then we apply again and then we
find ρ3(F ). So in a finite step j ≥ 1, we get ρj(F ) which
is reduced. In this case, the form ρj(F ) is called the reduced
type of F.

II. REDUCTION OF POSITIVE DEFINITE QUADRATIC

FORMS.

Let F = (a, b, c) be a positive definite quadratic form
with discriminant Δ and let U = {z ∈ C : Im(z) > 0}
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denote the upper half-plane. Given any positive definite form
F = (a, b, c), there exists a unique z = z(F ) ∈ U such that

F = a(x+ zy)(x+ zy). (8)

In this case the point z is called the base point of F and is
denoted by z = z(F ). Let z = u+ iv. Then (8) becomes

F = (a, b, c) = a(x+ zy)(x+ zy)
= ax2 + 2auxy + a|z|2y2.

Hence we find that u = b
2a and v =

√−Δ
2a . Note that v is

positive. Therefore

z =
b+ i

√
Δ

2a
∈ U. (9)

We may assume that Im(z) > 0 since z and z play symmetric
roles. So the condition |b| ≤ a is equivalent to |z + z| ≤ 1,
that is |Re(z) ≤ 1/2|, and the condition a ≤ c is equivalent to
zz ≥ 1, that is, |z| ≥ 1. So the form F = (a, b, c) is reduced
if and only if the base point z lies in the fundamental region
of Γ, which is the region {z ∈ U : |Re(z)| ≤ 1/2, |z| ≥ 1}.

Conversely for given any point z ∈ U, there exists a positive
definite quadratic form

F = (a, b, c) =
(

1
|z|2 ,

2u
|z|2 , 1

)
(10)

of discriminant Δ(F ) = −4v2

|z|4 whose base point is z. There-
fore there is a one-to-one correspondence between positive
definite quadratic forms and points in U.

In [20], we considered positive definite quadratic forms F =
(a, b, c) whose base points lie on the line x = −1/m for an
integer m ≥ 2. We proved that if m is odd, say m = 2k+1, for
an integer k ≥ 1, then there exist k−positive definite integral
forms of the type

Fj = (mj, −2j, 1), 1 ≤ j ≤ k

of discriminant Δ(Fj) = −4j(m−j) whose base points z(Fj)
lie on the line x = −1

m , and if m is even, say m = 2k, then
there exist m− 1 positive definite integral forms of the type

Fj = (kj, −j, 1), 1 ≤ j ≤ m− 1

of discriminant Δ(Fj) = −j(2m−j) whose base points z(Fj)
lie on the line x = −1

m .
Let

F 1
j = (mj, −2j, 1), 1 ≤ j ≤ k (11)

and

F 2
j = (kj, −j, 1), 1 ≤ j ≤ m− 1. (12)

Note that these forms are not reduced since c = 1. But we
can get these forms into reduced forms by using the reduction
algorithm as we mentioned in the previous section.

Theorem 2.1: If m is odd, then the reduced type of F 1
j is

ρ1(F 1
j ) = (1, 0,mj − j2) (13)

and if m is even, then the reduction type of F 2
j is

ρ1(F 2
j ) =

⎧⎪⎪⎨
⎪⎪⎩

(
1, 1, 1−j2+2mj

4

)
if j is odd

(
1, 1, −j2+2mj

4

)
if j is even.

(14)

Proof: Let F 1
j = F 1

j0
= (a0, b0, c0) = (mj, −2j, 1).

Then by (6), we get s0 = −j and hence from (7),

ρ1(F 1
j ) = (1, 0,mj − j2).

Note that this form is reduced. Therefore the reduction type
of F 1

j is ρ1(F 1
j ) = (1, 0,mj − j2).

Similarly let F 2
j = F 2

j0
= (a0, b0, c0) = (kj, −j, 1) and let

j be odd. Then by (6), we get s0 = 1−j
2 and hence

ρ1(F 2
j ) =

(
1, 1,

1 − j2 + 2mj
4

)
.

This form is reduced. Therefore the reduction of F 2
j is

ρ1(F 2
j ) =

(
1, 1, 1−j2+2mj

4

)
. Let j be even. Then by (6),

we get s0 = −j
2 and hence

ρ1(F 2
j ) =

(
1, 0,

−j2 + 2mj
4

)
.

This form is also reduced. So the reduction of F 2
j is ρ1(F 2

j ) =(
1, 0, −j2+2mj

4

)
. This completes the proof.

Now we consider the proper and improper automorphisms
of F 1

1 and F 2
j and ρ1(F 1

j ) and ρ1(F 2
j ).

Theorem 2.2: For positive definite forms F 1
1 , F

2
j , ρ

1(F 1
j )

and ρ1(F 2
j ), we get

#Aut(F 1
j )+ = #Aut(F 1

j )− = 2

#Aut(F 2
j )+ = #Aut(F 2

j )− = 2

and

#Aut(ρ1(F 1
j ))+ = #Aut(ρ1(F 1

j ))− = 2

#Aut(ρ1(F 2
j ))+ = #Aut(ρ1(F 2

j ))− = 2

for every j.
Proof: First we consider the form F 1

j . Recall that an ele-
ment g ∈ Γ is called an automorphism of F if gF = F . So we
have to find g such that gF 1

j = F 1
j . Let F 1

j = (mj, −2j, 1)
and let g = [r; s; t;u] ∈ Γ. Then by (3), we have the following
system of equations:

mjr2 − 2jrs+ s2 = mj

2mjrt− 2jru− 2jts+ 2su = −2j
mjt2 − 2jtu+ u2 = 1.

This system of equations has a solution for g1 = ±[1; 0; 0; 1]
and g2 = ±[1; 2j; 0;−1]. Note that det(g1) = 1. So

Aut(F 1
j )+ = {±[1; 0; 0; 1]}

and hence #Aut(F 1
j )+ = 2 and det(g2) = −1. So

Aut(F 1
j )− = {±[1; 2j; 0;−1]}



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:7, 2010

937

and hence #Aut(F 1
j )− = 2.

For the quadratic form F 2
j = (kj, −j, 1), the system of

equations

kjr2 − jrs+ s2 = kj

2kjrt− jru− jts+ 2su = −j
kjt2 − jtu+ u2 = 1

has a solution for g1 = ±[1; 0; 0; 1] and g2 = ±[1; j; 0;−1].
Therefore

Aut(F 2
j )+ = {±[1; 0; 0; 1]}

and
Aut(F 2

j )− = {±[1; j; 0;−1]}.
So #Aut(F 2

j )+ = #Aut(F 2
j )− = 2.

Similarly it can be show that

#Aut(ρ1(F 1
j ))+ = #Aut(ρ1(F 1

j ))− = 2

and
#Aut(ρ1(F 2

j ))+ = #Aut(ρ1(F 2
j ))− = 2.

III. FROM POSITIVE DEFINITE FORMS TO ELLIPTIC

CURVES.

Mordell began his famous paper (see [16]) with the words
“Mathematicians have been familiar with very few questions
for so long a period with so little accomplished in the way
of general results, as that of finding the rational points on
elliptic curves”. The history of elliptic curves is a long one,
and exciting applications for elliptic curves continue to be
discovered. Recently, important and useful applications of
elliptic curves have been found for cryptography (see [10],
[13], [14]), for factoring large integers (see [11]), and for
primality proving (see [1], [9]). The mathematical theory of
elliptic curves was also crucial in the proof of Fermat’s Last
Theorem (see [30]).

In this section, we want to carry out the results we obtained
in the previous section to the singular curves which are the
special case of elliptic curves. For this reason, we first give
some preliminaries on elliptic curves. An elliptic curve E over
a finite field Fp is defined by an equation in the Weierstrass
form

E : y2 = x3 + ax2 + bx, (15)

where a, b ∈ Fp and b2(a2 − 4b) �= 0 with discriminant
Δ(E) = 16b2(a2−4b). If Δ(E) = 0, then E is not an elliptic
curve, it is a curve of genus 0 (in fact it is a singular curve).
We can view an elliptic curve E as a curve in projective plane
P2, with a homogeneous equation

y2z = x3 + ax2z2 + bxz3

and one point at infinity, namely (0, 1, 0). This point ∞ is the
point where all vertical lines meet. We denote this point by
O. The set of rational points (x, y) on E

E(Fp) = {(x, y) ∈ Fp×Fp : y2 = x3+ax2+bx}∪{O} (16)

is a subgroup of E. The order of E(Fp), denoted by #E(Fp),
is defined as the number of the points on E and is given by

#E(Fp) = p+ 1 +
∑

x∈Fp

(
x3 + ax2 + bx

Fp

)
,

where ( .
Fp

) denotes the Legendre symbol (for the arithmetic
of elliptic curves and rational points on them see [18], [29]).

Now we want to construct a connection between quadratic
forms and elliptic curves. For this reason, let F = (a, b, c) be
a quadratic form of discriminant Δ(F ) = b2−4ac. We define
the corresponding elliptic curve EF as

EF : y2 = ax3 + bx2 + cx. (17)

If we take x→ x
3√a

in (17), then we obtain

EF : y2 = x3 + ba−2/3x2 + ca−1/3x. (18)

The discriminant of EF is hence

Δ(EF ) = 16(ca−1/3)2
[
(ba−2/3)2 − 4(ca−1/3)

]
= 16(

c

a
)2Δ(F ).

So we have a correspondence between binary quadratic forms
and elliptic curves, that is, we have the following diagram:

F → EF

↓ ↓
Δ(F ) → Δ(EF ) = 16( c

a )2Δ(F )

In [8], [23], [24], [25], [26], [27], we considered some
specific elliptic curves and derived some results on them.
In this section, we consider the same problem for curves
corresponding to positive definite forms obtained in Section 2.
We proved that if m is odd, m = 2k+ 1, then there exist k−
positive definite integral forms of the type F 1

j = (mj, −2j, 1)
for 1 ≤ j ≤ k of discriminant Δ(Fj) = −4j(m − j) whose
base points z(Fj) lie on the line x = −1

m . Now let p be a prime
number. Then F 1

j = (pj, −2j, 1) for 1 ≤ j ≤ (p− 1)/2 and
let

EF 1
j

: y2 = pjx3 − 2jx2 + x (19)

be the corresponding elliptic curve over Fp. Set

EF 1
j
(Fp) = {(x, y) ∈ Fp × Fp : y2 = pjx3 − 2jx2 + x}.

Then we have the following theorem.

Theorem 3.1: Let EF 1
j

be an elliptic curve defined in (19).

1) If p ≡ 1, 3(mod 8), then

#EF 1
j
(Fp) =

{
p if j ∈ Qp

p+ 2 if j /∈ Qp.

2) If p ≡ 5, 7(mod 8), then

#EF 1
j
(Fp) =

{
p if j /∈ Qp

p+ 2 if j ∈ Qp,

where Qp denote the set of quadratic residues.
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Proof: (1) Let p ≡ 1, 3(mod 8) and let j ∈ Qp. If y = 0,
then the cubic congruence has two solutions since

pjx3 − 2jx2 + x ≡ 0(mod p) ⇔ −2jx2 + x ≡ 0(mod p)
⇔ x(1 − 2jx) ≡ 0(mod p)

⇔ x = 0 and x =
1
2j
.

Let 1
2j ≡ t(mod p) for some t �= 0. Then there are two rational

points (0, 0) and (t, 0) on EF 1
j
. If y �= 0, then it is easily seen

that there are p−3
2 integers in Fp such that pjx3 − 2jx2 + x

a square. Let pjx3 − 2jx2 + x = u2 for some u �= 0. Then
y2 ≡ u2(mod p) ⇔ y ≡ ±u(mod p). Hence there are two
integer solutions, that is, for each point x ∈ Fp such that
pjx3 − 2jx2 + x a square, then there are two rational points
(x, u) and (x, p − u) on EF 1

j
. We know that there are p−3

2

integers in Fp such that pjx3 − 2jx2 + x a square. Therefore
there are 2

(
p−3
2

)
= p− 3 rational points on EF 1

j
. We see as

above that there are also two rational points (0, 0) and (t, 0)
on EF 1

j
. Adding the point ∞, we get total p− 3 + 2 + 1 = p

rational points on EF 1
j
.

Now let j /∈ Qp. If y = 0, then the cubic congruence
pjx3 − 2jx2 + x ≡ 0(mod p) has two solutions since

pjx3 − 2jx2 + x ≡ 0(mod p) ⇔ −2jx2 + x ≡ 0(mod p)
⇔ x(1 − 2jx) ≡ 0(mod p)

⇔ x = 0 and x =
1
2j
.

Let 1
2j ≡ t(mod p) for some t �= 0. Then there are two rational

points (0, 0) and (t, 0) on EF 1
j
. Now let y �= 0. Then there

are p−1
2 integers in Fp such that pjx3 − 2jx2 + x a square.

Let pjx3 − 2jx2 + x = u2. Then y2 ≡ u2(mod p) ⇔ y ≡
±u(mod p). Hence there are two integer solutions, that is,
for each point x ∈ Fp such that pjx3 − 2jx2 + x a square,
then there are two rational points (x, u) and (x, p − u) on
EF 1

j
. We know that there are p−1

2 integers in Fp such that

pjx3 − 2jx2 + x a square. Therefore there are 2
(

p−1
2

)
=

p−1 rational points on EF 1
j
. We know that there are also two

rational points (0, 0) and (t, 0) on EF 1
j
. Adding the point ∞,

we get total p− 1 + 2 + 1 = p+ 2 rational points on EF 1
j
.

(2) Let p ≡ 5, 7(mod 8) and let j /∈ Qp. If y = 0, then

pjx3 − 2jx2 + x ≡ 0(mod p) ⇔ −2jx2 + x ≡ 0(mod p)
⇔ x(1 − 2jx) ≡ 0(mod p)

⇔ x = 0 and x =
1
2j
.

Let 1
2j ≡ t(mod p) for some t �= 0. Then there are two rational

points (0, 0) and (t, 0) on EF 1
j
. Now let y �= 0. Then there

are p−3
2 integers in Fp such that pjx3 − 2jx2 + x a square.

Let pjx3 − 2jx2 + x = u2. Then y2 ≡ u2(mod p) ⇔ y ≡
±u(mod p). Hence there are two integer solutions, that is,
for each point x ∈ Fp such that pjx3 − 2jx2 + x a square,
then there are two rational points (x, u) and (x, p − u) on
EF 1

j
. We know that there are p−3

2 integers in Fp such that

pjx3−2jx2+x a square. Therefore there are 2
(

p−3
2

)
= p−3

rational points on EF 1
j
. Adding the points (0, 0), (t, 0) and ∞,

we get total p− 3 + 3 = p rational points on EF 1
j
.

Finally let j ∈ Qp. If y = 0, then

pjx3 − 2jx2 + x ≡ 0(mod p) ⇔ −2jx2 + x ≡ 0(mod p)
⇔ x(1 − 2jx) ≡ 0(mod p)

⇔ x = 0 and x =
1
2j
.

Let 1
2j ≡ t(mod p) for some t �= 0. Then there are two rational

points (0, 0) and (t, 0) on EF 1
j
. Now let y �= 0. Then there

are p−1
2 integers in Fp such that pjx3 − 2jx2 + x a square.

Let pjx3 − 2jx2 + x = u2. Then y2 ≡ u2(mod p) ⇔ y ≡
±u(mod p). Hence there are two integer solutions, that is,
for each point x ∈ Fp such that pjx3 − 2jx2 + x a square,
then there are two rational points (x, u) and (x, p − u) on
EF 1

j
. We know that there are p−1

2 integers in Fp such that

pjx3−2jx2+x a square. Therefore there are 2
(

p−1
2

)
= p−1

rational points on EF 1
j
. Adding the points (0, 0), (t, 0) and ∞,

we get total p− 1 + 3 = p+ 2 rational points on EF 1
j
.

Remark 3.2: Note that we only consider the number of
rational points on elliptic curves EF 1

j
and Eρ1(F 1

j
) correspond-

ing the forms F 1
j and its reduced type ρ1(F 1

j ), respectively.
When we consider the quadratic forms F 2

j and its reduced
type ρ1(F 2

j ) and so elliptic curves EF 2
j

and Eρ1(F 2
j
), then we

find that there is no rule for the number of rational points on
them since m is even.

IV. FROM POSITIVE DEFINITE FORMS TO CUBIC

CONGRUENCES.

In 1896, Voronoi (see [28]) presented his algorithm for
computing a system of fundamental units of a cubic number
field. His technique, described in terms of binary quadratic
forms. Later his technique was restarted in the language of
multiplicative lattices by Delone and Faddeev (see [5]). In
1985, Buchmann (see [3]) generalized the Voronoi’s algorithm.
Recall that a cubic congruence over a field Fp is

x3 + ax2 + bx+ c ≡ 0(mod p), (20)

where a, b, c ∈ Fp and p is prime. Solutions of cubic
congruence (including cubic residues) was considered by many
authors. Dietmann (see [6]) considered the small solutions
of additive cubic congruences. Manin (see [12]) considered
the cubic congruence on prime modules. Mordell (see [17])
considered the cubic congruence in three variables and also the
congruence ax3 + by3 + cz3 + dxyz ≡ n(mod p). Williams
and Zarnke (see [31]) gave some algorithms for solving the
cubic congruence on prime modules. Let H(Δ) denote the
group of classes of primitive, integral binary quadratic forms
F (x, y) = ax2 + bxy + cy2 of discriminant Δ. Let K be
a quadratic field Q(

√
Δ), let L be the splitting field of

x3 + ax2 + bx + c, let f0 = f0(L/K) be the part of the
conductor of the extension L/K and let f be a positive integer
with f0|f . In [19], Spearman and Williams considered the
cubic congruence x3 + ax2 + bx+ c ≡ 0(mod p) and binary
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quadratic forms F (x, y) = ax2 + bxy+ cy2. They proved that
the cubic congruence x3 +ax2 +bx+c ≡ 0(mod p) has three
solutions if and only if p is represented by a quadratic form
F in J , where J = J(L,K, F ) is a subgroup of index 3 in
H(Δ(K)f2).

In [21], [22], we considered the number of integer solutions
of cubic congruences ax3 + bx2 + cx ≡ 0(mod p) for an
indefinite binary quadratic form F (x, y) = ax2+bxy+cy2. In
this section, we consider the same problem for positive definite
forms F 1

j . Let p be a prime number. Then F 1
j = (pj,−2j, 1)

and hence the cubic congruence associated with F 1
j is

CF 1
j

: pjx3 − 2jx2 + x ≡ 0(mod p). (21)

Let CF 1
j
(Fp) = {x ∈ Fp : pjx3 − 2jx2 + x ≡ 0(mod p)}.

Then we have the following theorem.

Theorem 4.1: Let CF 1
j

be a cubic congruence defined in
(21). Then

#CF 1
j
(Fp) = 2

for all primes p ≥ 5.
Proof: For the cubic congruence, CF 1

j
, we have

pjx3 − 2jx2 + x ≡ 0(mod p)
⇔ −2jx2 + x ≡ 0(mod p)
⇔ x(−2jx+ 1) ≡ 0(mod p)

⇔ x = 0 and x =
1
2j
,

that is, there are two solutions of CF 1
j
. So #CF 1

j
(Fp) = 2.

Now we consider the cubic congruence associated with
the reduced type of F 1

j . Recall that the reduction of F 1
j is

ρ1(F 1
j ) = (1, 0, pj − j2) by (13). So the associated cubic

congruence is

Cρ1(F 1
j
) : x3 + (pj − j2)x ≡ 0(mod p). (22)

Let Cρ1(F 1
j
)(Fp) = {x ∈ Fp : x3 + (pj − j2)x ≡ 0(mod p)}.

Then we have the following theorem.

Theorem 4.2: Let Cρ1(F 1
j
) be a cubic congruence defined

in (22). Then

#Cρ1(F 1
j
)(Fp) = 3

for all primes p ≥ 5.
Proof: For the cubic congruence Cρ1(F 1

j
), we have

x3 + (pj − j2)x ≡ 0(mod p)
⇔ x3 − j2x ≡ 0(mod p)
⇔ x(x2 − j2) ≡ 0(mod p)
⇔ x(x− j)(x+ j) ≡ 0(mod p)
⇔ x = 0, x = j and x = p− j.

So #Cρ1(F 1
j
)(Fp) = 3.
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