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Bifurcation Method for Solving Positive Solutions
to a Class of Semilinear Elliptic Equations &

Stability Analysis of Solutions
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Abstract—Semilinear elliptic equations are ubiquitous in natural
sciences. They give rise to a variety of important phenomena in
quantum mechanics, nonlinear optics, astrophysics, etc because they
have rich multiple solutions. But the nontrivial solutions of semilinear
equations are hard to be solved for the lack of stabilities, such as
Lane-Emden equation, Henon equation and Chandrasekhar equation.
In this paper, bifurcation method is applied to solving semilinear
elliptic equations which are with homogeneous Dirichlet boundary
conditions in 2D. Using this method, nontrivial numerical solutions
will be computed and visualized in many different domains (such as
square, disk, annulus, dumbbell, etc).

Keywords—Semilinear elliptic equations; positive solutions; bifur-
cation method; isotropy subgroups.

I. INTRODUCTION

IN this paper, we study semilinear elliptic boundary value
problems of the form⎧⎪⎨

⎪⎩
Δu + f(x, u(x)) = 0, in Ω,

u > 0, in Ω,

u = 0, on ∂Ω.

(1)

where Ω is a bounded open domain in R
2, and f is a nonlinear

function of x and u . We will deal with f ≡ up, λ1u+up, p >
1, which are elliptic equations (2),(3) below:⎧⎪⎨

⎪⎩
Δu + up = 0, in Ω,

u > 0, in Ω,

u = 0, on ∂Ω.

(2)

⎧⎪⎨
⎪⎩

Δu + λ1u + up = 0, in Ω,

u > 0, in Ω,

u = 0, on ∂Ω.

(3)

Since 60’s of the 20th century, the existence and multiplicity
of solutions to the boundary value problems of the nonlinear
elliptic PDEs such as problems (2), (3) have been studied
by the monotone iterative method in the ordered Banach
space[1,2], the mountain pass lemma and the minmax theorem
in the critical point theory[3,4]. It becomes an important field
in PDE study. But what distribution and structure the solutions
to the BVP of the nonlinear elliptic equations have and
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how to compute them have attracted the attention of many
mathematicians, physicists and engineers.

There are mainly five numerical methods for computing
such kinds of problems: the Monotone Iterative Scheme
(MIS)[5,6], the Mountain Pass Algorithm (MPA)[7], the
High Linking Algorithm (HLA)[8], the Min-Max Algorithm
(MMA)[9,10] and the Search Extension Method (SEM)[11].
MIS is based on the monotone iterative methods in the
ordered Banach space; MPA, MMA and HLA are based on the
numerical implement of the mountain pass lemma and the min-
max theorem in the critical point theory. MPA was proposed by
Choi and McKenna to compute the solutions with the Morse
Index (MI) 0 or 1. Ding, Costa and Chen established HLA for
sign-changing solution (MI=2) of semilinear elliptic problems.
Li and Zhou designed a new min-max algorithm (MMA)
to find multiple saddle points with any Morse index which
is more constructive than the traditional min-max theorem.
Chen and Xie proposed SEM, which searches the initial guess
based on the linear combination of the eigenfunctions of the
linearized problem and then gets the better initial guess by the
continuation method for the discretized problem by the finite
element method.

The advantages of the bifurcation method are computation
of the solutions to problem (1) with any Morse index and
different symmetries as many as possible and simplification
of the computation of problem (1). On the other hand, the
difficulty in searching the initial guess in other methods can be
solved effectively by the bifurcation method. The bifurcation
method is applied successfully to solving the BVP of the
Henon equation[12,13].

The organization of our paper is as follows. In Sec.2, we
introduce our idea of bifurcation method and present some def-
initions, theorems which will be used in the following sections.
In Sec.3, we use bifurcation method to compute nontrivial
positive solution of equation (3) with Ω = [0, 1] × [0, 1] and
analyze stability of this solution. In Sec.4, we compute and
visualize nontrivial positive solutions of equation (3) on many
different complex domains.

II. THEORY & BACKGROUND

Models of (1) arise naturally in physics, engineers, biol-
ogy and ecology, etc. Although nonlinearities may appear in
seemingly endless form, the simplest and most basic form of
nonlinearity is the power type. If we set f ≡ up, p > 1, which
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is (2) we have mentioned, called Lane-Emden (-Fowler) equa-
tion and proposed by Chandrasekhar and Fowler[14,15]. If we
set f ≡ |x|lup, p > 1, l > 0, which is called Henon equation,
studied by Henon first[16]. If we set f ≡ 4π(2u+u2)3/2, which
is called Chandrasekhar equation, proposed by Chandrasekhar,
Lieb and Yau[14,17]. The equations above exhibit rich multi-
plicity of solutions, and draw many researchers interest, and
there is a huge body of literature on them[5−11]. Our focus
here is positive solutions of equation (1).

We embed parameterλ in (1) and make the following form:⎧⎪⎨
⎪⎩

Δu + λu + f(x, u(x)) = 0, in Ω,

u > 0, in Ω,

u = 0, on ∂Ω,

(4)

where λ ∈ R . According to the bifurcation theory[18,19],
Eq.4 has nontrivial solution branches bifurcated from the
trivial solution near the bifurcation points. Along the nontrivial
solution branches we can get the solutions to problems (1) by
the continuation method when the parameterλ goes to 0.

In this paper we will illustrate bifurcation method by embed-
ding (3) to the nonlinear bifurcation problems with parameter
of the following form:⎧⎪⎨

⎪⎩
Δu + λu + up = 0, in Ω,

u > 0, in Ω,

u = 0, on ∂Ω.

(5)

Now, let’s start with some definitions and theorems which
we will use to describe the followings.
DEFINITION 1. For x ∈ R

n, a set Σx = {γ ∈ Γ|γx =
x} ⊂ Γ is called isotropy subgroup of x.
DEFINITION 2. If dif(i = 1, 2, · · · , k − 1) is everywhere
differentiable in U , and dk−1f : U → ζ(X, ζk−2(X, Y )) is
differentiable at x0 ∈ U , then

dkf(x0) ≡ d(dk−1f(x0)) ∈ ζ(X, ζ(X, ζk−2(X, Y ))) = ζk(X, Y )

is called k-th differential of f at x0. And

dkf(x0)(ν1, · · · , νk) =
∂

∂t1
· · · ∂

∂tk
f(x0 +

k∑
i=1

tiνi, λ)
∣∣∣
t1=···=tk=0

.

(6)
DEFINITION 3. Assume f(x, λ) = 0 is an equation
with symmetry Z2, f : X × R → X , X is a Banach space,
X ′ is a conjugate space of X . Space X and X ′ can be
decomposed into X = Xs ⊕ Xa, X ′ = X ′

s ⊕ X ′
a, where

Xs = {x ∈ X : Sx = x}, Xa = {x ∈ X : Sx = −x}, X ′
s =

{y ∈ X ′ : yS = y}, X ′
a = {y ∈ X ′ : yS = −y}. If there

exists a singular point (x0, λ0) of fx on the solution branch
Cs = {(x, λ) : x ∈ Xs} of Xs, and

N(f0
x) = span(ϕ0), ϕ0 ∈ Xa

R(f0
x) = {y ∈ X : ψT

0 y = 0}. ψT
0 ∈ X ′

a

together with ψT
0 (f0

xxνλ + f0
xλ)ϕ0 �= 0, where νλ is the

unique solution to f0
xνλ + f0

λ = 0, then (x0, λ0) is called
a pitchfork bifurcation point of f(x, λ) = 0 with symmetry
Z2. Furthermore, if we assume:

ψT
0 ϕ0 �= 0,

ψT
0 (f0

xxxϕ0ϕ0 + 3f0
xxϕ1)ϕ0 �= 0,

where ϕ1 ∈ Xs is the unique solution to f0
xxϕ0ϕ0+f0

xϕ1 = 0,
then (x0, λ0) is called simple third-order pitchfork bifurcation
point of f(x, λ) = 0 with symmetry Z2.

THEOREM 1. (Implicit Function Theorem)
(1). Assume f(x0, λ0) = 0, x0 ∈ X, λ0 ∈ R, where

f : X × R → X , X is a Banach space,
(2). f(x, λ) and fx(x, λ) are continuously differentiable

on their open domain,
(3). f0

x ≡ fx(x0, λ0) is nonsingular, and ‖(f0
x)−1‖ ≤ M0.

Then there exists ρ1 > 0, ρ2 > 0, and for all λ ∈ (λ0 −
ρ2, λ

0 + ρ2), there exists x(λ) ∈ Bρ1(x
0), Bρ1(x

0) = {x ∈
X

∣∣∣∣∣∣‖x − x0‖ < ρ1}, in which x = x(λ) with the following
properties:

(4). x(λ0) = x0,
(5). f(x(λ), λ) = 0,
(6). for λ ∈ (λ0−ρ2, λ

0 +ρ2), x(λ) is the unique solution
of f(x(λ), λ) = 0,

(7). x(λ) is continuous for λ ∈ (λ0 − ρ2, λ
0 + ρ2).

PROOF. C.f.[18].

THEOREM 2. (Newton-Kantorovich)
Assume f : X → X ,X is a Banach space, and

(1). ∃x0 ∈ X , fx(x0) is nonsingular, and ‖(f0
x)−1‖ ≤ β,

(2). ‖f−1
x (x0)f(x0)‖ ≤ α,

(3). ∃ρ−0 > 0, ∀x, y ∈ Bρ−
0
(x0), we have ‖fx(x) −

fx(y)‖ ≤ γ‖x − y‖,
(4). αβγ < 1

2 , ρ−0 ≤ (1 −√
1 − 2αβγ)/βγ.

Then series {xn} in Newton iteration

xn+1 = xn − f−1
x (xn)f(xn), x0 = x0,

such that
(5). xn ∈ Bρ−

0
(x0),

(6). series {xn} convergence to x∗ ∈ Bρ−
0
(x0), which is

a unique root of f(x) = 0 when x ∈ Bρ+
0
(x0), ρ+

0 = (1 +√
1 − 2αβ)/βγ.

PROOF. C.f.[20].

THEOREM 3. (Keller Lemma)
Assume A : R

N × R
l → R

N × R
l, and

A ≡
(

A B
CT D

)

where A : R
N → R

N , B : R
l → R

N , CT : R
N → R

l, D :
R

l → R
l, then

(1). If A is nonsingular, then A is nonsingular iff D −
CT A−1B is nonsingular.

(2). If A is singular and dimN(A) = l, then A is
nonsingular iff

(a) dimR(B) = l, (b) R(B) ∩ R(A) = {0},
(c) dimR(CT ) = l, (d) N(A) ∩ N(CT ) = {0}.
(2). If A is singular and dimN(A) > l, then A is singular.

PROOF. C.f.[21,18].

THEOREM 4.
The nontrivial solution branch (x̃(ε), λ(ε)) = (x(λ(ε)) +
ε(ϕ0 + ω(ε)), λ(ε)) bifurcate from symmetry solution branch
(x(λ), λ) near the symmetry-breaking point (x0, λ0) of simple
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third-order pitchfork bifurcation, then the following assertions
are valid.

λ(0) = λ0, ω(0) = 0,

λ(−ε) = λ(ε), λε(0) = 0,

λεε(0) = −ψT
0 (f0

xxxϕ0ϕ0ϕ0 + 3f0
xxϕ1ϕ0)

3ψT
0 (f0

xxϕ0νλ + f0
xλϕ0)

, ωε(0) = ϕ1/2.

PROOF. C.f.[22,18].

III. UNIT SQUARE

(1).Analysis Assume Ω = Ω0 = [0, 1]× [0, 1], then Eq.5 turns
into

F (u, λ) =

⎧⎪⎨
⎪⎩

Δu + λu + up = 0, (x, y) ∈ Ω0,

u > 0, (x, y) ∈ Ω0,

u = 0, (x, y) ∈ ∂Ω0.

(7)

Let D4 = {I, R1, R2, R3, S1, S2, S
′
1, S

′
2}, where

Iu(x, y) = u(x, y), S1u(x, y) = u(x, 1 − y),
S′

1u(x, y) = u(1 − x, y), S2u(x, y) = u(y, x),
S′

2u(x, y) = u(1 − y, 1 − x), R1u(x, y) = u(1 − y, x),
R2u(x, y) = u(1 − x, 1 − y), R3u(x, y) = u(y, 1 − x).

The problem (7) is D4 equivariant. Especially, if p
is odd in (7), Eq.7 is Γ equivariant, where Γ =
D4 × Z2, Z2 = {I,−I}, namely F (γu, r) =
γF (u, r). ∀γ ∈ Γ. The isotropy subgroups of D4 are D4 =
{I, R1, R2, R3, S1, S2, S

′
1, S

′
2},ΣR = {I, R1, R2, R3},Σr =

{I, R2},Σ1 = {I, S1},Σ′
1 = {I, S′

1},Σ2 = {I, S2},Σ′
2 =

{I, S′
2},Σd = {I, R2, S2, S

′
2},ΣM = {I, R2, S1, S

′
1}. Let Σ

be one of the above isotropy groups and XΣ be the invariant
subspace of Σ, then the equation (7) yields

FΣ(u, λ) = 0. (u, λ) ∈ XΣ × R (8)

Consider the linearized equation of (7) at u = 0, we get⎧⎪⎨
⎪⎩

Δϕ + λϕ = 0, (x, y) ∈ Ω0,

ϕ > 0, (x, y) ∈ Ω0,

ϕ = 0, (x, y) ∈ ∂Ω0.

(9)

It is well known that Eq.9 always has a trivial solu-
tion if we don’t consider ϕ > 0. Further more, Eq.9 has
eigenvalues λn,m = (n2 + m2)π2 and corresponding eigen-
functions ϕn,m = sin(nπx)sin(mπy). Therefore, ϕn,m =
sin(nπx)sin(mπy) are roots of Eq.9 when λ = λn,m =
(n2 + m2)π2. From theory of symmetry-breaking, we know
that λn,m = (n2 + m2)π2, (n,m = 1, 2, · · · ) are bifurcation
points of (9), and there are nontrivial solutions with different
symmetries bifurcate from these bifurcate points(see Table 1).

From the analysis above, we know that the solution branch
which bifurcates from the first bifurcation point 2π2 is a
positive solution branch. Bifurcation method will be applied
to compute the positive solution of (7), and stability analysis
of this solution is in subsequent pages.

TABLE I
THE SOLUTION WITN DIFFERENT SYMMETRIES OF EQ.9

Bifurcation point λ Number of nontrivial solution Symmetry
2π2 1 D4

5π2 2 Σ1, Σ2

8π2 1 Σd

10π2 2 D4, ΣM

13π2 2 Σ1, Σ2

17π2 2 Σ1, Σ2

18π2 1 D4

20π2 2 Σd, Σr

(2).Algorithm For λ0 = λ1,1 = 2π2, ϕ1,1 = sin(πx)sin(πy),
let

L = Δ + 2π2,

X = {u∣∣∣∣∣∣u ∈ C2(Ω0), u|∂Ω0 = 0},
Y = {u∣∣∣∣∣∣u ∈ C0(Ω0)}.

we define inner product by 〈u, v〉 = 4
∫ 1

0

∫ 1

0
uvdxdy, L is

a Fredholm self-adjoint operator with index zero, and

N(L∗) = N(L) = span{ϕ1,1} := span{ϕ0}, (10)

where N(L) and N(L∗) are the null space of L and L∗

respectively. Space X and Y have the decomposition

X = N(L) ⊕ M, Y = N(L) ⊕ R(L),

where M = N(L)⊥ ∩ X , R(L) is the range of L.
Let P be the orthogonal projector from Y to R(L)

Pz = z − (z, ϕ0)ϕ0. z ∈ Y

Eq.7 is equivalent to

PF (τϕ0 + ω, μ + λ0) = 0, τ ∈ R, ω ∈ M (11)
〈ϕ0, F (τϕ0 + ω, μ + λ0)〉 = 0. (12)

where μ = λ − λ0, u = τϕ0 + ω. Since PFω(0, λ0) =
PFu(0, λ0) = PL = L, and L restricted in M is regular,
Eq.11 has a unique solution ω = ω(τ, μ) which satisfies
ω(0, 0) = 0 by Theorem 1.

Substituting ω(τ, μ) into (12) yields

g(τ, μ) = 〈ϕ0, F (τϕ0 + ω(τ, μ), μ + λ0)〉 = 0. (13)

Then we get

F (u, λ) = F (τϕ0 +ω, μ+λ0) = Δω +λ0ω +h(τ, μ), (14)

where h(τ, μ) = μ(τϕ0+ω)+(τϕ0+ω)p, ω = ω(τ, μ). From
Definition 2 above, we get

(dkF )(0,λ0)(ν1, · · · , νk) =
∂

∂t1
· · · ∂

∂tk
F (

k∑
i=1

tiνi, λ)
∣∣∣
t1=···=tk=0

=
∂

∂t1
· · · ∂

∂tk

(((
Δ(

k∑
i=1

tiνi) + λ0(
k∑

i=1

tiνi) + (
k∑

i=1

tiνi)
p

)))∣∣∣∣∣
t1=···=tk=0

=

⎧⎨
⎩

0, k �= p & k ≥ 2,

p!
p∑

i=1
νi, k = p.

(15)
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Especially

(dkF )(0,λ0)(ϕ0, · · · , ϕ0︸ ︷︷ ︸
k

) =

{
0, k �= p & k ≥ 2,

p!ϕk
0 , k = p.

(16)

Differentiating Eq.11 with respect to τ , we get

PdF (ϕ0 + ωτ ) = 0, (17)

which is evaluated at (0, 0) leads to Lωτ (0, 0) = 0 due to
dF (0, λ0) = L, ϕ0 ∈ N(L), PL = L. Since ωτ (0, 0) ∈ M
and L restricted in M is regular, it follows that

ωτ (0, 0) = 0. (18)

Similarly, differentiating Eq.12 with respect to τ , we get

gτ (τ, μ) = 〈ϕ0, dF (ϕ0 + ωτ )〉, (19)

therefore
gτ (0, 0) = 〈ϕ0, dF(0,λ0)ϕ0〉 = 0. (20)

Similarly, from (15) we get

ωτ2(0, 0) =

{
−2L−1Pϕ2

0, p = 2,

0, p ≥ 3.
(21)

gτ (0, 0) =

{
128
9π2 , p = 2,

0, p ≥ 3.
(22)

ωτ3(0, 0) =

⎧⎪⎨
⎪⎩

12L−1(P (ϕ0L
−1Pϕ2

0)), p = 2,

−6L−1(Pϕ3
0), p = 3,

0, p ≥ 4.

(23)

gτ3(0, 0) =

⎧⎪⎨
⎪⎩
−12〈ϕ0L

−1Pϕ2
0, ϕ0〉, p = 2,

27
8 , p = 3,

0, p ≥ 4.

(24)

While p ≥ 4, we can get

ωτk(0, 0) = 0, k = 2, · · · , p − 1 (25)

ωτp(0, 0) = −p!L−1Pϕp
0, (26)

gτk(0, 0) = 0, k = 2, · · · , p − 1 (27)

Similarly, we can get

ωμk(0, 0) = 0, k ∈ Z+ (28)
gμk(0, 0) = 0, k ∈ Z+ (29)

gτp(0, 0) =

{
4p!( p!!

(p+1)!! )
2, p is odd

16p!
π2 ( p!!

(p+1)!! )
2, p is even

(30)

gτp+1(0, 0) = 0, p ≥ 4 (31)
ωτμ(0, 0) = 0, (32)
gτμ(0, 0) = 1, (33)

ωτk1μk2 (0, 0) = 0, k1 ∈ Z+, k2 ∈ Z+ & k2 ≥ 2 (34)

gτk1μk2 (0, 0) = 0. k1 ∈ Z+, k2 ∈ Z+ & k2 ≥ 2 (35)

ωτ2μ(0, 0) =

{
2L−1(PL−1Pϕ2

0)), p = 2,

0. p ≥ 3
(36)

gτ2μ(0, 0) =

{
−2〈L−1Pϕ2

0, ϕ0〉, p = 2,

0. p ≥ 3
(37)

gτk−1μ(0, 0) = 0, k = 3, · · · , p (38)

gτpμ(0, 0) = 〈ϕ0,−p!L−1Pϕp
0〉. (39)

Therefore we have approximately

ω(τ, μ) =

⎧⎪⎨
⎪⎩

1
2 ωτ2 (0, 0)τ2 + 1

6 ωτ3 (0, 0)τ3 + 1
2 ωτ2μ(0, 0)τ2μ + O(τ4), p = 2

1
6 ωτ3 (0, 0)τ3 + O(τ4), p = 3
1
p! ωτp (0, 0)τp + O(τp+1). p ≥ 4

(40)

g(τ, μ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τμ + 64
9π2 τ2 − 2〈ϕ0L−1Pϕ2

0, ϕ0〉τ3 − 〈L−1Pϕ2
0, ϕ0〉τ2μ + · · · , p = 2

τμ + 9
16 τ3 + · · · , p = 3

τμ + 16
π2 ( p!!

(p+1)!! )
2τp − 〈ϕ0, L−1Pϕp

0〉τpμ + · · · , p ≥ 4 & p is even
τμ + 4( p!!

(p+1)!! )
2τp + · · · . p ≥ 4 & p is odd

(41)

Next we want to get the approximative analytic solution of
(7). Here we deal with Eq.7 while p = 3, λ1 = 1. Substituting
μ = λ1 − λ0 into (41), we can get

τ =
4
3
√−μ =

4
3

√
−(λ1 − λ0) =

4
3

√
2π2 − 1.

Then we have

u =
4
3

√
2π2 − 1 × ϕ0 + ω(

4
3

√
2π2 − 1, 1 − 2π2). (42)

In order to know ω( 4
3

√
2π2 − 1, 1 − 2π2) in (42), we get

ω(τ, μ) = 1
6ωτ3(0, 0)τ3 + O(τ4) from (40). When p = 3,

differentiating Eq.11 with respect to τ three times, then we
get

6Pϕ3
0 + Lωτ3(0, 0) = 0. (43)

Due to

ϕ3
0 = sin3(πx)sin3(πy) =

9

16
sin(πx)sin(πy) − 3

16
sin(πx)sin(3πy)

− 3

16
sin(3πx)sin(πy) +

1

16
sin(3πx)sin(3πy),

(44)

we get Pϕ3
0 = Psin3(πx)sin3(πy) = 1

16sin(3πx)sin(3πy),
together with ωτ3 is restricted in XD4 , then we can let
ωτ3(0, 0) = Csin(3πx)sin(3πy), where C is a undetermined
constant. Substituting ωτ3(0, 0) into (43) yields

ωτ3(0, 0) =
3

128π2
sin(3πx)sin(3πy). (45)

From (42) we can get the approximative positive analytic
solution of Eq.7

u =
4

3

√
2π2 − 1sin(πx)sin(πy)+

(2π2 − 1)
3
2

128π2
sin(3πx)sin(3πy).

(46)

(3).Stability analysis
We always have trivial solution branch (u, λ) = (0, λ) for

equation F (u, λ) = u+λu+up = 0. When the trivial solution
branch cross the bifurcation point (0, λ0), one eigenvalue of
F 0

u equals zero, and all the others are less than 0. So we
can know that the sign of the ”special” eigenvalue determines
stability of the trivial solution when eigenvalue λ cross λ0.

As mentioned in Sec.2, the meaning of ϕ0, ψ0, νλ, ϕ1 are
given by Definition 3. In addition, we construct l0 which
satisfies lT0 ϕ0 = 1.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:2, 2011

145

0 5 10 15 20 25 30 35
−6

−4

−2

0

2

4

6

(2π2,0)(1,0)

λ

max(u(x,y))
   0<x,y<1 

ustable

stable

Fig.1. Trivial and nontrivial positive solution branches of (7).

Now we consider the stability of the trivial solution
branch(u, λ) = (0, λ), let

G(z, λ) =
(

Fu(u, λ)ϕ − σϕ
lT0 ϕ − 1

)
= 0, (47)

where z = (ϕ, σ), z0 = (ϕ0, 0), differentiating G(z, λ) = 0

with respect to z at (u0, λ0) we get G0
z =

(
F 0

u −ϕ0

lT0 0

)
.

From ψT
0 ϕ0 �= 0, we know G0

z is nonsingular by Keller lemma.
So we get that (47) has a unique solution branch (z(λ), λ) =
(ϕ(λ), σ(λ), λ) which satisfies σ(λ0) = 0, ϕ(λ0) = ϕ0 by the
Implicit function theorem. Differentiating Fu(u, λ)ϕ−σϕ = 0
with respect to λ at λ = λ0, then we have

(F 0
uuu0

λ + F 0
uλ)ϕ0 + F 0

uϕ′(λ0) − σ′(λ0)ϕ0 = 0, (48)

so we get σ′(λ0) = ψT
0 (F 0

uuν0
λ+F 0

uλ)ϕ0

ψT
0 ϕ0

> 0. From analysis
above, we know the trivial solution branch (u, λ) = (0, λ) is
stable for λ < λ0, is unstable when λ > λ0(see Fig.1).
REMARK 1. In fact, during actual computation, we always

Fig.2. Approximative positive analytic solution of (7) while p = 3, λ1 = 1.

use 1
ε [Fu(u0 + ενλ, λ0) − Fu(u0, λ0)] to substitute F 0

uuνλ in
σ′(λ0). Similarly we can solve others such as F 0

uλ, etc.
Then we discuss stability of the nontrivial solution

branch(u, λ) = (ũ(ε), λ(ε)), let

H(z, ε) =
(

Fu(ũ(ε), λ(ε))ϕ(ε) − σ1ϕ(ε)
lT0 ϕ − 1

)
= 0, (49)

where z = (ϕ, σ1), z0 = (ϕ0, 0), H0
z =

(
F 0

u −ϕ0

lT0 0

)
is

nonsingular at ε = 0. So we get that Eq.49 has a unique
solution branch (z(ε), ε) = (ϕ(ε), σ1(ε), ε) which satisfies
σ1(λ0) = 0, ϕ(λ0) = ϕ0 by the Implicit function theorem.
Differentiating Fu(ũ(ε), λ(ε))ϕ(ε)−σ1ϕ(ε) = 0 with respect
to ε at ε = 0, we get

[F 0
uu(νλλε(0)+ϕ0)+F 0

uλλε(0)]ϕ0+F 0
uϕ′(0)−σ′

1(0)ϕ0 = 0. (50)

From Theorem 4, we know λε(0) = 0, ψT
0 F 0

uuϕ0ϕ0 = 0 at
simple third-order pitchfork bifurcation point. By (50), we get
σ′

1(0), ϕ′(0) = ϕ1, so we know stability of the nontrivial
solution branch is determined by σ′′

1 (0). In order to know
σ′′

1 (0), we differentiate Fu(ũ(ε), λ(ε))ϕ(ε)−σ1ϕ(ε) = 0 with
respect to ε two times at ε = 0, and then we have

(F
0
uuuũ

0
εũ

0
ε+F

0
uuũ

0
εε+F

0
uλλ

0
εε)ϕ0+2F

0
uuũ

0
εϕ

′
(0)+F

0
uϕ

′′
(0)−σ

′′
1 (0)ϕ0 = 0.

(51)

Substituting ϕ′(0) = ϕ1, ũ
0
ε = ϕ0, ũ

0
εε = νλλ0

εε + ϕ0 into
(51), we can compute σ′′(0). For example, let p = 3, and
then we have numerical result σ′′(0) > 0, so we know that
the bifurcation is subcritical, and the nontrivial solution branch
is unstable(see Fig.1).

Simultaneously, we can use (41) to illustrate stability of
Eq.7. By theorem of singularity[23,24], we know that Eq.7 is
strong equivalence with{

τμ + 16
π2 ( p!!

(p+1)!! )
2τp = 0, p is even

τμ + 4( p!!
(p+1)!! )

2τp = 0. p is odd
(52)

That is, Eq.7 has the same qualitative property as Eq.52 near
the bifurcation point λ0 = 2π2. Assume p = 3, λ1 = 1, Eq.7
has the same stability as τμ + 9

16τ3 = 0 near the bifurcation
point λ0 = 2π2, so we also know that the bifurcation point
λ0 = 2π2 is of pitchfork type and the nontrivial solution
branch is unstable. We can find that two methods above are
in perfect accord with each other, that is, system (7) has sub-
critical bifurcation at λ = 2π2. We use bifurcation numerical
method which will be showed in Sec.4 to get a bifurcation
graph from λ = 2π2 toλ = 1(see Fig.1).

In addition, it’s easy to know that equation F (u, λ) =
Δu + λu + u3 = 0 is Z2 equivariant, that is, this equation
also has a nontrivial unstable negative solution branch, which
in not shown in Fig.1.

IV. OTHER COMPLEX DOMAINS

(1). Numerical method
The algorithms here are the same as in Sec.3. The only dif-

ference is that the bifurcation point λ0 and the corresponding
eigenfunctions ϕ0 must be computed numerically.

We use finite difference method to discrete Eq.5, then we get
numerical solutions of (2) and (3). A more detailed algorithm
is following:

Step 1: General domain Ω is divided homogeneously, the
five-point difference scheme is used to discrete Laplace opera-
tor Δ , and it keeps the same symmetry as the original problem
for the discretized problem to simplify the computation, where
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we choose N = 200, h = 1/200.
Step 2: We store the data of the five-point difference

operator Δh in A , and compute the eigenvalue problem
Aϕh = λhϕh, where ϕh and λh are approximations to ϕ0

and λ0.
Step 3: Let

u = τϕh + ω, η = λ − λh, (53)

where τ is a small parameter, and ω satisfies (ϕh, ω) = 0.
Substituting (53) into (5), we have⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Δω + (η + λh)ω + ητω + (τϕh + ω)p = 0, (x, y) ∈ Ω0,

ω > 0, (x, y) ∈ Ω0,

ω = 0, (x, y) ∈ ∂Ω0,

(ϕh, ω) = 0.

(54)

The Gauss-Newton method is used to solve this nonlinear
equation for different τ from τ = 0 to end τ = τend. τend must
be chosen big enough in order that the nontrivial solutions of
(54) are faraway from the trivial solution.

Step 4: Continue λ until λ = λ1, and then we get the
nontrivial solution u(x, y) of (3) and plot it.

(2).Visualization of positive solutions of (3) in many com-
plex domains(p = 3, λ1 = 1)

TABLE II
THE SOLUTIONS WITN DIFFERENT SYMMETRIES TO EQ.3

(p = 3, λ1 = 1)

Shape of the domain Bifurcation point λ Symmetry
Unit square(Fig.3) 19.739 D4

Unit disk(Fig.4) 22.976 O(2)
L-shaped domain(Fig.5) 38.576 Σ′

2
Unsymmetrical annulus(Fig.6) 49.102 Σ1

Annulus(Fig.7) 212.166 O(2)
The exterior of a ”Butterfly”(Fig.8) 64.805 Σd

Heart(Fig.9) 60.555 Σ′
1

Crisscross(Fig.10) 57.610 D4

Ellipse(Fig.11) 56.382 ΣM

Dumbbell shaped domain(Fig.12) 189.157 ΣM

Fig.3. Positive solution of (3) on square with p = 3, λ1 = 1.

Fig.4. Positive solution of (3) on disk with p = 3, λ1 = 1.

Fig.5. Positive solution of (3) on a L-shaped domain with p = 3, λ1 = 1.

Fig.6. Positive solution of (3) on unsymmetrical annulus with p = 3,
λ1 = 1.

Fig.7. Positive solution of (3) on annulus with p = 3, λ1 = 1.

Fig.8. Positive solution of (3) on the exterior of a ”Butterfly” with p = 3,
λ1 = 1.

Fig.9. Positive solution of (3) on a heart domain with p = 3, λ1 = 1.
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Fig.10. Positive solution of (3) on crisscross with p = 3, λ1 = 1.

Fig.11. Positive solution of (3) on ellipse with p = 3, λ1 = 1.

Fig.12. Positive solution of (3) on a dumbbell shaped domain with p = 3,
λ1 = 1.
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