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Abstract—Since supply chains highly impact the financial

performance of companies, it is important to optenand analyze
their Key Performance Indicators (KPI). The synstigicombination
of Particle Swarm Optimization (PSO) and Monte €aimulation is
applied to determine the optimal reorder point darehouses in
supply chains. The goal of the optimization is tfiaimization of the
objective function calculated as the linear comtimeof holding and
order costs. The required values of service legElhe warehouses
represent non-linear constraints in the PSO. Theltxillustrate that
the developed stochastic simulator and optimizatami is flexible
enough to handle complex situations.

[14] shows that a linear supply chain can be stadill by
the anticipation of the own future inventory andtaking into
account the inventories of other suppliers, and gian in
[21] presents a linear order point/lot size modhlt twith its
robustness can contribute to business process imgdel

Based on the previous review it is clear that nafsthe
multi-echelon supply chain optimization and anaysire
mainly based on analytical approach. Simulation dwaw
provides a very good alternative, because it cadeieal life
situations with accuracy, more flexible in terms ioput
parameters and therefore it is more easy to usgeaision

Keywords—stochastic processes, empirical distributions, Montsupport. The simulation results can be analyzeti wérious

Carlo simulation, PSO, supply chain management

|. INTRODUCTION

statistical methods and numerical optimization atgms. To
analyze complex, especially multi-echelon systemsiti-
level simulation models can be used, where theltsesi

| optimized high level model feeds into the lowerdemore
nqetailed models.
"The simulation-based approach was published onlghén

HE determination of safety stock in an inventory mode
one of the key tasks of supply chain manageme

Miranda and Garrido include safety stock in theemtory
model in [12]. Authors in [4] give a model for ptshing
safety stock in a supply chain subject to non-Gtety
demand and show how to extend their former modéinid
the optimal placement safety stocks under constantice
time (CST) policy. Prékopa in [16] gives an imprdveodel
for the so called Hungarian inventory control moaefind the
minimal safety stock level that ensures the comtirsu
production, without disruption.

The bullwhip effect is an important phenomenon up@y
chains. Authors in [10] show how a supply chain dmn
modeled and analyzed by colored petri nets (CPN)@RAN
tools and they evaluate the bullwhip effect, thephis of
inventory goods, etc. using the beer game as ddanating.
More recent research can be found in [1], whichaghthat an
order policy applied to a serial single-product gypchain
with four echelons can reduce or amplify the bulfwaffect
and inventory oscillation. Miranda et al. invest®athe

last decade. Jung et al. [7] make a Monte Carloedas
sampling from real data, and apply a simulationiroigation
framework while looking for managing uncertaintyne€ly use
a gradient-based search algorithm, while authof8]idiscuss
how to use simulation to describe a five-level meey
system, and optimize this model by genetic algorith
Schwartz et al. [18] demonstrate the internal mazteitrol
(IMC) and model predictive control (MPC) algorithnts
manage inventory in uncertain production inventayd
multi-echelon supply/demand networks. A complexanse
of inventory model can be found in [5], where osdeross in
time considering various distributions for the letiche.
Sakaguchi in [17] investigates the dynamic inventaodel in
which demands are discrete and varying period bipge

The aim of our research is to create a Monte-Carlo
simulator which uses probability distributions bdsen
material usage data posted in the logistic moduieamm
enterprise resource planning (ERP) system. Thenmai

modeling of a two echelon supply chain system anebjective of this development was to build a sirtaddhat can

optimization in two steps [15], while a massive thathelon
inventory model is presented by Seo [19], whererer risk
policy for general multi-echelon system is givenhieh
minimizes the system operation cost. A really ca@r@ystem
is examined in [20], where it is necessary to apgpbyne
clustering for similar items, because detailed ysisl could
become impossible considering each item indiviguallhe
stability of the supply chain is also an intensivatiudied area.

The author are with the University of Pannonia, &épent of Process
Engineering, Veszprém, H-8200, Hungary (phone: #3844-8910;
e-mail: janos@abonyilab.com).

use simple building blocks to construct models omplex
supply chain networks. Supply chains processes loan
simulated using these modular models, where pammeif
Key Performance Indicators are analyzed by seitsitiv
analysis. The developed SIMWARE simulator can beduss
a verification tool to analyze and evaluate inventoontrol
strategies. The simulation of “actual” inventoryntolling
strategies provides the most important key perfocaa
indicators KPI-s of these strategies. On the otieand this
simulator can be used for optimization to determthe
optimal values of the key inventory control paraengt

The proposed SIMWARE software provides a framework
to analyze the cost structure and optimize inventantrol
parameters based on cost objectives.
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With this tool we have minimized the inventory halgl
cost by changing the parameters of the reordertrafegy
while keeping the service level at the requiredugal The
simulation of “actual” inventory controlling strafies
provides the most important KPI-s of these stra®gDn the
other hand we can use the simulator as part ofnigdiion
and determine the optimal values of the key invgntontrol
parameters. We are in the process to finalize disérgg model

The Order Quantity is Q, wher&® =d-T. This is the
ordered quantity in a purchase order, &ds equal to the
Expected demand and the Maximumstock level. Maximum
stock level is the stock level necessary to cover Expected
demand in period T; therefore it has to be the quantity we
order.Lead time(L) is the time between the Purchase order and
the goods receipd, denotes the average demand during the
replenishment lead timed, = d - L, whered is the daily

therefore we used a simple cost function at thistpVe have  5yerage demand. Using the same lodjcis a special case; it
minimized the inventory holding cost by changinge thyie|ds consumption if the service level is 100%. Wi#é use

parameters of our operational space while keegirgservice
level at the required value.

In the last decades, optimization was featuredrimost all
aspects of human civilization, thus it has trulycdmee an
indispensable method. In some aspects, even a étmptaha
can highly improve the efficiency or reduce the enges,
however, most companies want to keep their operalticosts
as low as possible, i.e. on global minimum. Prolslemmere
solutions must satisfy a set of constraints arewknas
constrained optimization problems. In inventory tcoh
theory, one of the most important and most stidctstraints is
the service level, i.e. the portion of satisfiedndeds from all
customer needs. The particle swarm optimizatiororélgm

has been successfully applied to a wide set of t®mp

problems, like data mining [29], software testing0]|
nonlinear mapping [31], function minimization [3@} neural
network training [33] and in the last decade, caised
optimization using PSO got a bigger attention [3438].

There exist some well-known conditions under whilch
basic PSO algorithm exhibits poor convergence dbariatics
[28]. However, only a few studies have considerbé t
hybridization of PSO, especially making use of @gad
information directly within PSO. Notable ones ar6&P50

[25] and GTPSO [26], which use the gradient descent

algorithm, and FR-PSO [27], which applies the Fereh
Reeves method. As it will be demonstrated in tHeéng

sections, combining these two methods appropriattig

efficiency of the optimization using PSO can besiderably
improved.

The structure of the paper is the following: Settlbis a
general introduction to the problem describing thelti-
echelon supply chain and the relevant cost stractumd the
proposed flexible modeling tool to build complex Itiru
echelon supply chain models using simple, easyteistand
modules. Section Il introduces the proposed optatidn
algorithm. Section IV represents the main resui®ugh a
case study, while section V concludes our work.

Il. STOCHASTICMULTI-ECHELON SUPPLY CHAIN MODEL

A. Inventory model of a single warehouse

d, to denote the consumption during the pagReorder point
is the stock level when the next purchase order thabe
issued. It is used for materials where the invgntamtrol is
based on actual stock levels.

Sis theSafety stock; this is needed if the demand is higher
than the expected (lind). In an ideal casR equals to total of
safety stock and average demand over lead hned, + S,
where S is the Safety stock which is defined to cover the
stochastic demand changes. For a giSenvice Leve this is
the maximum demand can be satisfied over the Liesa t

Fig. 1 The classic model of inventory control

Assuming constant demand pattern over the cycle,tim
Average StockK) can be calculated as a weighted average of
stock levels over the cycle time:

Q
K==+8S 1

) 1)
Service Level @) is the ratio of the satisfied and the total
demand (in general this is the mean of a probgbilit
distribution), or in other words it is the diffemmbetween the
100% and the ration of unsatisfied demand:

S =100- 100LLQ_ R

(2
We assume that all demand is satisfied from staul u

stock exists_. When we reach stock leRéhe demand over the

lead time {;) will be satisfied up toR. Consequently if

The modular model of the supply chain is based @ tg, < R, we are getting a stock out situation and theile bei

following classic model of inventory control. Thisession
gives a summary of the most important parametershisf

model. In Figure 1Q is the theoretical demand over cycle

time T and this is therder Quantity; R is theReorder point,
which is the maximum demand can be satisfied dutirg
replenishment lead time.). The Cycle time (T) is the time
between two purchase orders.

unsatisfied demand therefore the service level glllower
than 100%d,; is not known and it is a random variable. The
probability of a certain demand levelR§d, ). Based on this,

the service level is formed as shown in the nexiéqgn:
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dmax

[P ~Rd,

] 3)
S =100-100—+

Q

where d, is continuous random variable, aid,,,, is the
maximum demand over Lead time.

Based on our experience in analyzing actual suppgin
systems we discovered that the probability functioof
material flow anddemand are different from the theoreti
functions (see Figure 2 thahows the distribution function
an actual material consumptiocompared tothe normal
distribution used in most of the analytical methodes.
This difference makes difference tiveen the theoretici
(calculated) and the actual inventory movemenierefore it
makes sense using a stochastic simuleapproach based on
“empirical” distribution functions.

Inventory movements can be modeled much betterg!
stochastic differengil equations than modeling based on
theoretical assumption that movements are followiogmal
distribution.We propose the following mod

X, . =

i+l

XL, -W +u(x,Rt,) 4)

Where x; is stock level on thé" week W is a stochastic
process to represent consumption. This stochasticeps it
based on the empirical cumulative distribution fioc we
described in the previous section.is the quantity of materi
received on week based on purchase orders. Purchaders
are calculated baseaah the actual inventory levex), and the
replenishment lead-time).
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Fig. 2The theoretical cumulative distribution functi(top) and the

actual cumulative distribution function for a ravaterial based o
its consumption datebotton)

B. Multi-echel on war ehouse model

The main objective of thpresente development is to build
a simulator that canutilize the previouslyproposed building
blocks to construct models of complmulti-echelon supply
chain networks. Inthe following demonstrated example a
simulatorto analyze a system with two connected wareht
is presentedThe following diagram shows the supply chi
i.e. the structure of the analyze-level system.

\

*2_(Storage
¥
) &

Fig. 3The analyzed-level system
Where the objective function
f(2) = mean(h;) +1.30mean(h,), (5)

i.e. the holding cost in the second Warehouse ip&@en

higher than in the first Warehou
Cost

100 150

100

an
Reorder point — Warehouse 2 Reorder point — Warehouse 1
Fig. 4 The values ahe objective function for th2-level system

In Figure 4, thevalues of the objective function (i.e. cost
presented as a function of the reorder point of the
Warehouses. Figuredhows the service level of Warehous
in the 2level system. The constraint for the service leve
95% in this case.
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vi(k+1) =wiy, (k) +
¢, Orand() [ﬂpr%t —xj(k))+
¢, rand () xgpes = X, (K))

xj (k+1) = x; (k) +v; (k +D) [dt

(6)

@)

Wherev is the particle velocitypbest andgbest are defined as
stated befora,and()is a random number between [0,d1, c2
are learning factors usualjt=c2=2. Code 1. shows the
pseudo code of the PSO algorithm.

Code 1 The pseudo code of the PSO algorithm

Reorder point — Warehouse 1 b Reorder point — Warehouse 2
Fig. 5 The values of service level for Warehouse 1

The simulator is capable to optimize the two watedes in
the same time and calculate the optimum for thelsughain
as a whole. The required values of service levélghe
warehouses represent non-linear constraints, leenomlinear
optimization algorithm developed to solve this cdemp
optimization problem.

Ill.  THE IMPROVEDPSOALGORITHM

There are two popular swarm inspired methods
computational intelligence areas: Ant colony opzation
(ACO) and PSO. ACO was inspired by the behaviorami$
and has many successful applications in discretien@ation

procedure PSO; {
Initialize particles;
while (not terminate) do {
for each particle {
Calculate fitness value;
if fitness pBest than pBest = fitness;
}
Choose the best particle as ¢giBest;
for each particle {
Calculate particle velocity;
Update particle position;
}
}
}

in

problems. The particle swarm concept originated aas
simulation of simplified social system. The oridiirgent was
to graphically simulate the choreography of bird aofbird
block or fish school. However, it was found thatrtjzde
swarm model can be used as an optimizer. Suppose
following scenario: a group of birds are randoméarching
food in an area. There is only one piece of foodhim area
being searched. All the birds do not know whereftia is.
But they know how far the food is in each iterati®o what's
the best strategy to find the food? The effectivie @s to
follow the bird which is nearest to the food.

PSO is based on this scheme. This stochastic @gatiion
technique has been developed by Eberhart and Kgnined
1995 [22]. In PSO, the potential solutions, calpedticles, fly
through the problem space by following the curreptimum
particles. All of particles have fitness values iath are
evaluated by the fitness function to be optimizedd have
velocities which direct to the flying of the patés.

PSO is initialized with a group of random particle
(solutions) and then searches for optima by updati
generations. In every iteration, each particle pslaied by
following two "best" values. The first one is thesb solution
(fitness) it has achieved so far. (The fitness @alsl also
stored.) This value is callgmbest. Another "best" value that is
tracked by the particle swarm optimizer is the bealue,
obtained so far by any particle in the populati®his best
value is a global best and callgbest. When a particle takes
part of the population as its topological neighbdre best
value is a local best and is callkodst.

The role of thew, inertia weight in Eq. (6), is considered
critical for the convergence behavior of PSO. Thertia

eight is employed to control the impact of the viwas

story of velocities on the current one. Accordingthe
parameter regulates the trade—off between the iotzhlocal
exploration abilities of the swarm. A large inertigeight
facilitates global exploration (searching new ayeakile a
small one tends to facilitate local exploratioe, fine—tuning
the current search area.

PSO shares many similarities with evolutionary
computation techniques, e.g. with evolutionary &thmns
(EAs). Both algorithms start with a group of a ramdy
generated population, both have fitness valuewvatuate the
population. Both update the population and seawhtlie
optimum with random techniques. Both systems do not
guarantee success. The main difference betweene thes
algorithms is that PSO does not have genetic operdike

Srossover and mutation. Particles update themsealtbsthe
Mnternal velocity. They also have memory, whiclingportant

to the algorithm.

Compared with evolutionary algorithms, the inforioat
sharing mechanism in PSO is significantly differdnt EAs,
chromosomes share information with each otherh8ahole
population moves like a one group towards an optarea. In
PSO, onlygBest (or IBest) gives out the information to others.
It is a one-way information sharing mechanism, ¢kelution
only looks for the best solution. Compared with EAH the
particles tend to converge to the best solutiortkdyieven in
the local version in most cases. Compared to EA th
advantages of PSO are that PSO is easy to implearaht
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there are few parameters to adjust. Hence, PSObkan
successfully applied in many areas: function optation,
artificial neural network training, fuzzy systemntwl, and
other areas where GA can be applied.

A. The proposed algorithm

As we saw in section |., the basic PSO algorithrhilsts
poor convergence characteristics under
conditions. We gave a small overview also aboutpifesious
gradient based methods, and
demonstrate a novel way, how the particle swarrmopation
(PSO) technique can be improved with the calcutatidthe
gradient of the applied objective function. There some well
documented algorithms in the
convergence of the basic PSO algorithm. Victoire abt

smaller steps will automatically be taken when aimum is
approached. Also, movement in a direction othem tktze
direction defined by the negative gradient will ukksin a
smaller decrease in the value of the cost function.

B. lllustrative example
In the following a simple illustrative example isepented

some specifo demonstrate the efficiency of the proposed élgor.

in this section we willhe aim of the optimization is to minimize two otfjge

functions with two variables:
f(xy)=x*+y*+xy+5
f (x,y) =sin(120/ x) + cos(60/ y)

(10)

literature to boose th

11)

developed a hybrid PSO to solve the economic diSpatThe gradients of these functions can be analyticallculated:

program. They combined PSO with Sequential Quaﬂratiaf (xY)

Programming to search for the gradient of the dhjec
function. A very similar algorithm is introduced INoel, in
which quasi Newton-Raphson (QNR) algorithm is agaplto
calculate the gradient [23]. The QNR algorithm opties by
locally fitting a quadratic surface and finding tménimum of
that quadratic surface.

Our aim is to develop a novel PSO algorithm whigkble
to consider linear and non-linear constraints anchiculates
the gradient of the objective function to improveet
affectivity.

PSO is initialized with a group of random particlesyf (x,y) _ 60(sin(60/y)

(solutions) and then searches for optima by updatin

generations. In every generation, each particlepgated by
following two "best" values. The first one is thesb solution
(fitness) it has achieved so far. This value idechpbest.

Another "best" value that is tracked by the pagtislvarm
optimizer is the best value, obtained so far by pasticle in
the population. This best value is a global best aalled

gbest. When a particle takes part of the population S icages. As can be seen in both cases the necessabgmnof

topological neighbors, the best value is a locat end is
calledlbest. Our vision is to apply the gradient of the objeet
function in every generation to control the movetsenf the
particles. Therefore, the equation which is appt@dalculate
the velocity of the particles is modified:

v, (k+1) =wlv, (k) +
¢, fhand ) fx .. =X, (K))+

c, fand() Eﬁxgbaa — X (k))+ ®
+c, [grad (f (x))
X, (k+1) = x, (k) +v, (k+1) [dt )

— 7 = 9x+ 12
Ix X+y (12)
of (x,y) =2y +x (13)
oy
and
of (x,y) _ 120[cos(20/x)
X X
> (15)

dy y

The determined gradients are applied to increage th

convergence of the search. The shape of the twiyzmth
functions can be seen in Figure 5. Both of the tions have a
global minimum (at 5 and -2).

In Table I, the analysis af; is summarized in these two

generations is lower if the gradient is appliedctmtrol the
movement of particles than in case the value;ofs 0. It
means that the application of gradient can incretse
convergence of PSO algorithm.The proper value;a$ close
in these two investigations. However, to determiae
universally applicable value more objective funeianust be
analyzed and many evaluations must be performedhdn
case we have a proper value égrthe PSO algorithm can be
further improved with the integration of Monte Qarl
simulation to numerically determine the gradient.

Where grad(f (x)) represents the partial derivatives of the

objective function, and; is the weight for the gradient term.

In Noel's work a uniformly distributed random value

applied asc; from the interval 010,0.5]°. Since the negative

gradient always points in the direction of steepksirease in
the function, the nearest local minimum will be ateed
eventually. Since the gradient is zero at a localimum,
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At the initial reorder points the actual servicedls are
below the desired values (0.95 and 0.90) in boththef
warehouses (0.76 and 0.63). After the optimizagtimtess the
reorder points is changed to 200 and 71.708. Dughi®
modification the service levels are much bettemtla the
initial state (0.97 and 0.89).

The average inventory levels before and after apttion
can be seen in Figure 7. It can be seen that befuimmization
the inventory of the Warehouse 02 is depleted betvike 9th
and 17th weeks and after 25th weeks. Due to thenigattion
the inventory in the second warehouse is not emptyese
crucial periods.

Figure 8 shows only the service level for the first
warehouse, but in the optimization problem botlviserlevels
were taken into consideration. The optimal solutign
highlighted with the green square. It satisfies ©8%

-1000  -1000

y x constraints and ensures the minimal holding costthe
warehouses.
TABLE |
THE AFFECTOF C3 ON THE CONVERGENCEOF PSO
C3 0 0.01 0.02 0.05 0.06 0.07 0.08 0.09 0.1
Gener
ziggf 127 134 122 136 116 125 138 135 142
ik eq.3)
//,,'/;4 j Gener
22;;5 114 93 99 86 0 68 103 110 97
eq. 4)
meTﬁffrfTTﬂﬂffT’77\7\7TTTTffTTTTT*TTTf
| —— Werehouse 01| 1 1 | RS R
[ | e O N N |
[ V\Hd‘[]sem rTTYy )T ITaT T T T T T T
H =+ R Bl el i B B el e e
B Tt e
FTTaAT T T T TATIT T T T TIT T T
Fig. 6 Shape of the analyzed objective functions RN I R R
L T e e e e I O A B |
mf L s
. .. . . [ R B
The developed simulator and optimization algorittem be ~ ©  Frra-~rr7a---rr{a-rrfa-m AT
. . . . > A S | e O |y A
used to optimize the two warehouses in the same #and o [ T oo
calculate the optimum for the supply chain as a l&ho 2150+ +4—-f 44t dd-mrrd 4 bt ddoe 4
8 A N | e O A
Authors deVelOped a hew Component-based MATLAB g NN RN RN RN
simulator, as well as a novel PSO algorithm. Thyg@dhm is S R DR | -
based on an existing implementation form MATLAB @ah  — lw*%ﬁ*l”%ﬁ*l*l#f’ T | -
[37]. The reason we choose this Toolbox is thaait handle I R L
linear and Non-linear constraints also. It handbeslinear Fhdo o e -
inequqlity constrain?s in the form c(>_<) <= 0_usih_;@ft' or I = R
‘penalize’ boundaries. The penalization is like ft"so S e e e e T
boundaries, except that some kind of penalty vahust be B BN RN
calculated from the degree of each constraint timia N e R N e
MC simulation is applied to describe the stochastikavior S S
of the process. The investigated period is 28 wedke 0 5 10 15
service levels of both of the warehouses are détean Ten Wk

MC simulations are evaluated to simulate differgitiations
and the average of the simulated results is usedltolate the
value of the applied objective function at giveorder point.
PSO is applied to modify the reorder point duehi talue of
the objective function and finally to find the ghdlmptima.

Before the optimization the reorder points of theot
warehouses are 160 and 60 units.
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