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Abstract—The frequency contents of the non-stationary 
signals vary with time. For proper characterization of such 
signals, a smart time-frequency representation is necessary. 
Classically, the STFT (short-time Fourier transform) is 
employed for this purpose. Its limitation is the fixed time-
frequency resolution. To overcome this drawback an enhanced 
STFT version is devised. It is based on the signal driven 
sampling scheme, which is named as the cross-level sampling. 
It can adapt the sampling frequency and the window function 
(length plus shape) by following the input signal local 
variations. This adaptation results into the proposed technique 
appealing features, which are the adaptive time-frequency 
resolution and the computational efficiency. 

Keywords—Level Crossing Sampling, Activity Selection, 
Adaptive Resolution Analysis, Computational Complexity. 

I. INTRODUCTION

LMOST all natural signals like speech, seismic and 
biological signals are of non stationary nature. Moreover 

the man made signals like Doppler, ASK (Amplitude Shift 
Keying), FSK (Frequency Shift Keying) etc. also lie in the 
same category. The spectral contents of these signals vary 
with time, which is a direct consequence of the signal 
generation process [5]. 

Classical systems are based on the Nyquist signal 
processing architectures. They cannot sense the input signal 
local variations and therefore they process it at a fixed pace. 
Thus, in case of low activity sporadic signals like 
electrocardiogram, phonocardiogram, seismic signals etc. they 
produce a large number of useless samples without any 
relevant information. It causes a useless increase in the system 
activity and so a useless increase of the power consumption.  
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The power efficiency can be achieved by smartly adapting 
the system computational load according to the input signal 
local variations. In this context, a signal driven sampling 
scheme, which is based on “level-crossing” is employed.  
    The LCSS (Level Crossing Sampling Scheme) [1] adapts 
the sampling rate by following the input signal local 
characteristics [12, 16]. Hence, it drastically reduces the post 
processing chain activity, because it only captures the relevant 
information [11, 13]. In this context, the LCSS based analog 
to digital converters have been developed [2, 4, 17]. 
Algorithms for processing [3, 11, 13, 18] and analysis [8, 12, 
19] of the non-uniformly spaced out in time sampled data 
obtained with the LCSS have also been developed. 

The focus of this work is to achieve a smart time-frequency 
representation of the time varying signals. The idea is to adapt 
the time-frequency resolution and the computational load 
according to the input signal local variations. It is realized by 
smartly combining the features of both uniform and non-
uniform signal processing tools. 

 Section II briefly reviews the non-uniform signal 
processing tools employed in the proposed case. Complete 
functionality of the proposed technique is described in Section 
III. Its appealing features are further demonstrated with the 
help of a basic example in Section IV. Section V deals with 
the computational complexity and the processing error. In 
Section VI, the proposed technique performance is evaluated 
for a chirp signal. Section VII finally concludes the article. 

II. NON-UNIFORM SIGNAL PROCESSING TOOLS

A. LCSS (Level Crossing Sampling Scheme) 
In recent years, there have been considerable interests in the 

LCSS, in a broad spectrum of technology and applications. In 
[20], authors have employed it for acquiring the non band 
limited signals. It has also been suggested in literature for 
random processes [21], band limited Gaussian random 
processes [22], compression [1] and for monitoring and 
control systems [23, 24, 25, 26]. The LCSS is also known as 
an event based sampling [27, 28]. 

 In the case of LCSS, a sample is captured only when the 
input analog signal x(t) crosses one of the predefined 
threshold levels [1]. The samples are not uniformly spaced in 
time because they depend on x(t) variations as it is clear from 
Fig. 1. The non-uniformity in the sampling process reflects the 
signal local characteristics [12]. 
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 According to [1], the sampling instants of a non-uniformly 
sampled signal obtained with the LCSS are defined by 
Equation 1. 

nnn dttt 1 .                                                      (1) 

1nnn ttdt (2)

Where tn is the current sampling instant, tn-1 is the previous 
one and dtn is the time delay between the current and the 
previous sampling instants (cf. Equation 2). 
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Fig. 1 Level crossing sampling scheme 

B. LCADC (LCSS Based Analog to Digital Converter) 
Classically, during an ideal A/D conversion process the 

sampling instants are exactly known, where as samples 
amplitudes are quantized at the ADC resolution [29]. This 
error is characterized by the SNR (Signal to Noise Ratio) [29]. 
Theoretically, the SNR of an ideal ADC can be calculated 
with Equation 3.  

MSNRdB .02.676.1 (3)

Where, M is the ADC number of bits, which defines its 
resolution. It shows that the SNR of an ideal ADC depends 
only upon M and it can be improved by 6.02 dB for each 
increment in M.

The A/D conversion process, which occurs in the LCADCs 
[2, 4, 17], is duel in nature. Ideally in this case samples 
amplitudes are exactly known, while the sampling instants are 
quantized at the timer resolution Ttimer. According to [2, 4], the 
SNR in this case can be calculated by using Equation 4. 

timerx

x
dB TP

PSNR 1log.20.3log.10
/

(4)

Where, Px and Px' are the powers of x(t) and of its derivative 
respectively. It shows that in this case the SNR does not 
depend any more on M, but on x(t) characteristics and Ttimer.
An improvement of 6.02 dB in the SNR can be achieved by 
simply halving Ttimer.

Reconstruction issue of the non-uniformly sampled signal 

has been discussed in [27, 30, 31]. In [31], author showed that 
a bandlimited signal can be ideally reconstructed from its non-
uniformly spaced samples, provided that the average number 
of samples satisfies the Nyquist criterion. In the case of 
LCADC, the number of samples is directly influenced by M
and the signal characteristics [2, 4, 17]. Thus, for a given 
application an appropriate M should be chosen in order to 
respect the reconstruction criterion [21]. 

The LCADC advantages are discussed in [2, 4, 17]. The 
major among them are the reduced activity, the power saving, 
the reduced electromagnetic emission and the processing noise 
reduction. Inspiring from these features, the AADC 
(Asynchronous Analog to Digital Converter) [2] is employed 
to digitize x(t) in the studied case. An M-bit AADC has 2M -1
quantization levels which are disposed according to x(t)
amplitude range x(t). In the case of AADC these levels are 
uniformly spaced. If Vin is the AADC amplitude range then 
the AADC quantum q can be defined by Equation 5. 

12M
inVq (5)

Let  be the AADC processing delay for one sample. Then 
for proper signal capturing, x(t) must satisfy the tracking 
condition [2], given by Expression 6.  

q
dt

tdx )(
(6)

In order to respect the reconstruction criterion [31] and the 
tracking condition [2], a band pass filter with pass-band     
[fmin; fmax] is employed at the AADC input. This together with 
a given M induces the AADC maximum and minimum 
sampling frequencies [11, 13], defined by Equations 7 and 8 
respectively.

)12.(.2 maxmax
MfFs (7)

)12.(.2 minmin
MfFs (8)

Where, fmax and fmin are the x(t) bandwidth and fundamental 
frequencies respectively. Fsmax and Fsmin are the AADC 
maximum and minimum sampling frequencies respectively.  

C. EASA (Enhanced Activity Selection Algorithm) 
The EASA is an improved version of the ASA [8]. The 

relevant (active) parts of the non-uniformly sampled signal 
obtained with the AADC are selected by the EASA. This 
selection process corresponds to the adaptive length 
rectangular windowing process. 

The main difference between the ASA and the EASA is the 
choice of the upper bound on the selected window length. For 
the ASA the time length in seconds and for the EASA the 
number of samples is chosen as the upper bound. The EASA 
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is defined as follow.  

Where, T0 = 1/fmin is the fundamental period of x(t). T0 and
dtn detect parts of the non-uniformly sampled signal with 
activity. This condition on dtn is chosen in order to satisfy the 
Nyquist sampling criterion for fmin, when sampling x(t) non-
uniformly with the AADC. Ni represents the number of non-
uniform samples lie in the ith selected window Wi, which lie on 
the jth active part of the non-uniformly sampled signal. Where, 
i and j both belong to the set of natural numbers *. Nref

represents the upper bound on Ni. The choice of Nref depends 
on the x(t) characteristics and the system parameters.  

The above described loop repeats for each selected window, 
which occurs during the observation length of x(t). Every time 
before starting the next loop, i is incremented and Ni is 
initialized to zero.  

For proper spectral representation, the condition given by 
Expression 9 should be satisfied [8]. Where, Li is the length in 
seconds of Wi. In order to satisfy this condition for the worst 
case, which occurs for Fsmax, Nref is calculated for an 
appropriate reference window length Lref. Lref has to satisfy the 
condition: Lref  T0. The process of calculating Nref is given by 
Equation 10. 

0TLi (9)

max.FsLN refref (10)

The lower and the upper bounds on Lref are posed 
respectively by T0 and the system resources (the maximum 
sample frame which system can process at once). For Nref (cf. 
Equation 10), the condition 9 holds for all selected windows 
except for the case when the actual length of the jth activity is 
less than T0.

The EASA displays interesting features with the LCSS, 
which are not available in the classical case. It selects only the 
active parts of the non-uniformly sampled signal, obtained at 
the AADC output. Moreover, it correlates the length of the 
selected window with the input signal local characteristics. 

III. PROPOSED ADAPTIVE RESOLUTION STFT
Block diagram of the proposed STFT is shown in Fig. 2. 

The activity selection and the local features extraction [8] are 
the proposed technique bases. They make to achieve the 
adaptive rate sampling and the adaptive resolution analysis. 
The approaches to realize it are detailed in the following 
subsections. 
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Fig. 2 Block diagram of the proposed STFT. ‘___’ represents the 
signal flow, ‘…’ represents the window shape decision flow and ‘----’
represents the parameters flow at system different stages. 

A. Adaptive Rate Sampling 
The AADC sampling frequency is correlated to x(t) local 

variations [8, 11]. Let Fsi represents the AADC sampling 
frequency for Wi. Fsi can be specific for each selected 
window, depending upon Li and the slope of x(t) part lying 
within this window [8]. It can be calculated by using the 
following equations. 

iii ttL minmax (11)

i

i
i

L
NFs (12)

In Equation 11, tmaxi and tmini are the final and the initial 
times of Wi. Please note that the upper and the lower bounds 
on Fsi are posed by Fsmax and Fsmin respectively.

The sampled signal obtained at the AADC output can be 
used directly for further non-uniform digital processing [3, 
12]. However in the studied case, the non-uniformity of the 
sampling process, which yields information on the signal local 
features, is employed to select only the relevant signal parts 
with the EASA. Furthermore the characteristics of each 
selected part are analyzed and are employed later on to adapt 
the proposed system parameters accordingly.  

The selected signal is resampled uniformly before 
proceeding towards the further processing. The resampling 
frequency Frsi of Wi is chosen depending upon the 
corresponding extracted features. Once the resampling is 
done, there are Nri samples in Wi. Choice of Frsi is crucial and 
its selection procedure is detailed as follow.  

In the proposed system a reference sampling frequency Fref

is chosen such as it remains greater than and closest to the 
FNyq=2.fmax. Depending upon values of Fref and Fsi, Frsi can be 
chosen (cf. Fig. 2).   

For the case, Fsi > Fref, Frsi is chosen as: Frsi = Fref. It is 
done in order to resample the selected data, lies in Wi closer to 
the Nyquist frequency. It avoids the unnecessary 
interpolations during the data resampling process and so 
reduces the computational load of the proposed technique.  

For the case, Fsi  Fref, Frsi is chosen as: Frsi= Fsi. In this 
case, it appears that the data lie in the ith selected window may 
be resampled at a frequency, which is less than the Nyquist 
frequency of x(t) and so it can cause aliasing. Since, the 

While (dtn  T0/2 and N
i  Nref)

    Ni = Ni + 1;
end
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sampling rate of the AADC varies according to the slope of 
x(t) [2]. A high frequency signal part has a high slope and the 
AADC samples it at a higher rate and vice versa. Hence, a 
signal part with only low frequency components can be 
sampled by the AADC at a sub-Nyquist frequency of x(t). But 
still this signal part is locally over-sampled in time with 
respect to its local bandwidth [11, 13, 18]. It is valid as far as 

x(t) = Vin, because it makes the relevant signal part to cross 
all thresholds of the AADC. This statement is further 
illustrated with the results summarized in Table II. Hence, 
there is no danger of aliasing, when the low frequency 
relevant signal parts are locally over-sampled in time at 
overall sub-Nyquist frequencies.   

Due to the resampling process, there will be an additional 
error. Nevertheless, prior to this transformation, one can take 
advantage of the inherent over-sampling of the relevant signal 
parts in the system [11, 13, 18]. Hence, it adds to the accuracy 
of the post resampling process [4]. The NNRI (nearest 
neighbour resampling interpolation) is employed for data 
resampling. It is a simple interpolation method as it employs 
only one non-uniform observation for each resampled 
observation. Thus, it is efficient in terms of the computational 
complexity. Moreover, it provides an unbiased estimate of the 
original signal variance, due to this reason it is also known as 
a robust interpolation method [9, 10]. The detailed reasons of 
inclination towards NNRI are discussed in [8, 9, 10]. 

B. Adaptive Shape Windowing 
The window selector implements the condition given by 

Expression 13. The output of window selector is the window 
decision Di, which drives the switch state for Wi (c.f. Fig. 2). 

)
2

)(( 01
1

T
ttTdandNNif i

end
ii

ref
i  (13)

In expression 13, t1
i represents the 1st sampling instant of 

the ith selected window and tend
i-1 represents the last sampling 

instant of the (i-1)th selected window.  
Jointly, the EASA and the window selector, provide an 

efficient spectral leakage reduction in the case of transient 
signals. Indeed, spectral leakage occurs due to the signal 
truncation problem, which causes to process the non integral 
number of cycles in the observation interval. Usually an 
appropriate smoothening (cosine) window function is 
employed to reduce the signal truncation, in the classical case. 
For the Please note that the references at the end of this 
proposed case, as long as the condition 13 is true, the leakage 
problem is resolved by avoiding the signal truncation [8]. As 
no signal truncation occurs so no cosine window is required. 
In this case, Di is set to 1, which drives the switch to state 1 in 
Fig. 2. Otherwise an appropriate cosine window is employed 
to reduce the signal truncation problem. In this case, Di is set 
to 0, which drives the switch to state 0 in Fig. 2.  

C. Adaptive Resolution Analysis 
The STFT is a classical tool, used for the time-frequency 

characterization of the time varying signals [6]. The STFT of a 
sampled signal xn is determined by computing the DFT 
(Discrete Fourier Transform) of an N samples segment centred 
on , which describes the spectral contents of xn around the 
instant . Where, N is defined by Equation 14. 

FsLN .  (14)

In Equation 14, L is the effective length in seconds of the 
window function wn and Fs is the sampling frequency. The 
STFT can be expressed mathematically by Equation 15.  

nfj

L

Ln

nn ewxfX ..2.
2

2

.., (15)

In Equation 15, f is the frequency index, which is 
normalised with respect to Fs.

L controls the STFT time and frequency resolution [6]. In 
the classical case, the input signal is sampled at a fixed 
sampling frequency Fs, regardless of its local variations. 
Thus, a fixed L results into a fixed N (cf. Equation 14). In the 
case, when the spectrum of each windowed block is calculated 
with respect to and no overlapping is performed between the 
consecutive blocks, the time resolution t and the frequency 
resolution f of the STFT can be defined by Equations 16 and 
17 respectively. 

Lt  (16)

N
Fsf (17)

Equation 17 shows that for a fixed Fs, f can be increased 
by increasing N.  But increasing N requires increasing L which 
will reduce t (cf. Equation 16). Thus, a larger L provides 
better f but poor t and vice versa. This conflict between f
and t shows the limitation of the STFT, which is the reason 
for the creation of the MRA (multi resolution analysis) 
techniques [7, 14, 32]. The MRA techniques provide a good 
frequency but a poor time resolution for the low-frequency 
events and a good time but a poor frequency resolution for the 
high-frequency events. It is the type of analysis, best suited for 
most of the real life signals [7].  

In this article, the fixed resolution dilemma is resolved to a 
certain extent by revising the STFT. The proposed STFT is a 
smart alternative of the MRA techniques. It performs adaptive 
time-frequency resolution analysis, which is not attainable 
with the classical STFT. It is achieved by adapting the Frsi, Li

and Nri according to the local variations of x(t). Thus, the time 
resolution ti and the frequency resolution f i of the proposed 
STFT can be specific for Wi and are defined by Equations 18 
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and 19 respectively. 

ii Lt (18)

i

i
i

Nr
Frsf (19)

Because of this adaptive time-frequency resolution, the 
proposed STFT will be named as the ARSTFT (adaptive 
resolution STFT), throughout the following parts of this 
article. This adaptive nature of the ARSTFT also leads 
towards a drastic computational gain, compared to the 
classical one. It is achieved firstly by avoiding the 
unnecessary samples to process and secondly by avoiding the 
use of the cosine window function as far as the condition 13 is 
true. The ARSTFT is defined by Equation 20. 

nfj

Nr
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i
nnn

ii i

i
i

i
i

i ewtxsamplefX ..2.
2

2

..),(Re, (20)

Where, i and f i are the central time and the frequency 
index of the ith selected window respectively. f i is normalised 
with respect to Frsi. n is the index of the resampled data points 
lie in Wi. The notation wn

i represents that the window function 
length Li and shape (rectangle or cosine) can be adapted for 
Wi.

IV. BASIC EXAMPLE

In order to illustrate the ARSTFT an input signal x(t),  
shown on the left part of Fig. 3 is employed. Its total duration 
is 30 seconds and it consists of four active parts. The summary 
of x(t) activities is given in Table I. 

Fig. 3 Input signal (left) and the selected signal (right) 

TABLE I
SUMMARY OF THE INPUT SIGNAL ACTIVITIES

ACTIVITY SIGNAL COMPONENT LENGTH (SEC)
1st 0.9.sin(2.pi.50.t) 5 
2nd 0.9.sin(2.pi.50.t) 0.4 
3rd 0.9.sin(2.pi.200.t) 0.5 
4th 0.9.sin(2.pi.500.t) 1.6 

Table I shows that x(t) is band limited between 50 to 500 
Hz. In this example x(t) is sampled by employing a 3-bit 
resolution AADC. Thus, Fsmax and Fsmin become 7 kHz and 
0.7 kHz respectively (cf. Equations 7, 8). Fref = 1.25 kHz is 
chosen, which satisfies the criteria given in Section II-C. Vin

= 1.8v is chosen, thus q becomes 0.2571v in this case (cf. 
Equation 5).  

The selected signal obtained with the EASA is shown on 
the right part of Fig. 3. By following the criteria given in 
Section II-C, Nref =4096 is chosen, which leads to 6 selected 
windows. First three selected windows correspond to the first 
three activities and the remaining corresponds to the fourth 
activity. The last three selected windows are not 
distinguishable on the right part of Fig. 3, because they lie 
consecutively on the fourth activity. The parameters of each 
selected window are summarised in Table II.  

TABLE II
SUMMARY OF THE SELECTED WINDOWS PARAMETERS

SELECTED
WINDOW

LI

(SEC)
FSI

(KHZ)
NI

(SMP)
FREF

(KHZ)
FRSI

(KHZ)
NRI

(SMP)
1st 4.99 0.7 3500 1.25 0.7 3500 
2nd 0.39 0.7 280 1.25 0.7 280 
3rd 0.49 2.8 1400 1.25 1.25 625 
4th 0.58 7.0 4096 1.25 1.25 731 
5th 0.58 7.0 4096 1.25 1.25 731 
6th 0.43 7.0 3005 1.25 1.25 536 

Table II exhibits the interesting features of the ARSTFT, 
which are achieved due to the smart combination of the non-
uniform and the uniform signal processing tools. Fsi 
represents the sampling frequency adaptation by following the 
local variations of x(t). Ni shows that the relevant signal parts 
are locally oversampled in time with respect to their local 
bandwidths. Frsi shows the adaptation of the resampling 
frequency for Wi. It further adds to the ARSTFT 
computational gain, by avoiding the unnecessary 
interpolations during the resampling process. Nri shows that 
how the adjustment of Frsi avoids the processing of 
unnecessary samples during the spectral computation (cf. 
Equation 20). Li exhibits the EASA dynamic feature, which is 
to correlate the window function length with the local 
variations of x(t). Adaptation of Li, Frsi and Nri leads to the 
adaptive time-frequency resolution of the ARSTFT, which is 
clear from the values of ti and f i in Table III.

TABLE III
THE SELECTED WINDOWS TIME AND FREQUENCY RESOLUTION

WINDOW 1ST 2ND 3RD 4TH 5TH 6TH

ti (Sec) 4.99 0.39 0.49 0.58 0.58 0.43 
f i(Hz) 0.2 2.5 2.0 1.71 1.71 2.33 

Table III demonstrates that ARSTFT adapts its time-
frequency resolution by following the local variations of x(t). 
It provides a good frequency but a poor time resolution for the 
low frequency parts of x(t) and vice versa. This type of 
analysis is best suited for most of the real life signals [7]. The 
spectrum of each selected window is computed and plotted 
with respect to i on Fig. 4. 

Fig. 4 shows the fundamental and the periodic spectrum 
peaks of each selected window. As Fs1 and Fs2 both remain 
less than Fref, so Frs1= Fs1 and Frs2= Fs2 are chosen. 
Contrary, Fs3 to Fs6 all become greater than Fref, thus Frs3 to 
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Frs6, all are chosen equal to Fref (cf. Table II). The adaptation 
of Frsi for Wi can be visualised on Fig. 4. In this case, for Wi

the spectrum periodic frequency fp
i is equal to Frsi.

Fig. 4 The ARSTFT of the selected windows 

The ARSTFT also adapts the window shape (rectangle or 
cosine), for Wi. The condition 13 remains true for the first 
three selected windows, thus Di is set to 1. As no signal 
truncation occurs so no cosine window is required in this case. 
On the other hand, the number of samples for the fourth 
activity is 11200. Therefore, Nref =4096 leads to the three 
selected windows for the fourth activity time span. The 
condition 13 becomes false, thus Di is set to 0. As signal 
truncation occurs, so suitable length cosine (Hanning) 
windows are employed to reduce this effect.  

In the classical case, if Fs=Fref is chosen, in order to satisfy 
the Nyquist sampling criterion for x(t). Then the whole signal
will be sampled at 1.25 kHz, regardless of its local variations. 
Moreover, the windowing process is not able to select only the 
active parts of the sampled signal. In addition, L remains static 
and is not able to adapt with x(t) local variations. This static 
nature makes the classical system to process unnecessary 
samples and so causes an increased computational activity 
than the proposed one. For this studied example, the fixed 
N=4096, will lead to nine fixed L=3.3 second windows, for 
the total x(t) time span of 30 seconds. It leads to the fixed 

t=3.3 seconds and f=0.31 Hz for all nine windows (cf. 
Equations 16 and 17).

V. PERFORMANCE EVALUATION

A. Computational Complexity 
This section compares the computational complexity of the 

ARSTFT with the classical STFT. The complexity evaluation 
is made by considering the number of operations executed to 
perform the algorithm.  

In the classical case, the sampling frequency and the 
window function length plus shape remains time invariant. If 
N is the number of samples lie in the window then the 
windowing operation will perform N multiplications between 
wn and xn (cf. Equation 15). The spectrum of the windowed 
data is obtained by computing its DFT. A complex term is 
involved in the DFT computation. The DFT complexity is 
calculated by taking the real and the imaginary parts 

separately. Thus, DFT performs 2N multiplications and 2(N-1)
additions per output frequency. For larger values of N, 2.(N-
1)  2.N. Thus, the DFT computational complexity for N
output frequencies becomes 2.(N)2 additions and 2.(N)2

multiplications. The combine computational complexity C1 of 
the STFT is given by Equation 21.  

For the proposed ARSTFT, Fsi, Frsi and wn
i are not fixed 

and are adapted for Wi, according to the local variations of 
x(t). In comparison to the classical case, this approach locally 
requires some extra operations for each selected window. The 
EASA performs 2.Ni comparisons and Ni increments for Wi

(cf. Section II-C). The choice of Frsi and window shape, 
require three comparisons. The selected signal is resampled 
before computing its DFT. The NNRI is employed for the 
resampling purpose. The NNRI only requires a comparison 
operation for each resampled observation. Therefore, the 
resampler performs Nri comparisons. If Di = 0, then a cosine 
window function is applied on the resampled data, which 
performs Nri multiplications (cf. Fig. 2). The DFT performs 
2.(Nri)2 additions and 2.(Nri)2 multiplications for Wi. The 
combine computational complexity C2 of the ARSTFT is 
given by Equation 22. 

AdditionstionsMultiplica

NNNAC 22
1 ).(2).(2. (21)
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1

222 )(2)(2

32
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In Equation 21, A is the total number of windows, occurs 
for the observation length of x(t). In Equation 22, i=1,2,..,K 
represents the index of the selected window.  is a multiplying 
factor, its value is 1 if Di = 0 and 0 if Di = 1. From C1 and C2 it 
is clear that there are uncommon operations between both 
techniques. In order to make them approximately comparable 
the following assumption is made. 

An increment or a comparison has the same 
processing cost as that of an addition. 

By following this assumption, comparisons and increments 
are merged into additions count, during the complexity 
evaluation process. The computational comparison of the 
ARSTFT with the classical one is made for results of the basic 
example. The gains are summarized in Table IV. 

TABLE IV
SUMMARY OF THE COMPUTATIONAL GAIN

Time Span (Sec) Gain in Additions Gain in Multiplications 
1st activity 2.737 2.739 
2nd activity 212.473 214.021 
3rd activity 42.686 42.955 
4th activity 12.213 12.365 

Table IV shows the gain in additions and multiplications of 
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the ARSTFT over the classical STFT for each x(t) activity. It 
demonstrates that the ARSTFT leads to a significant reduction 
of the total number of operations as compare to the classical 
STFT. This reduction in operations is achieved by adapting 
Fsi, Frsi and wn

i according to the local variations of x(t).

B. Resampling Error 
In the proposed techniques the resampling is performed, 

which changes the properties of the resampled signal with 
respect to the original one. This error mainly contains of two 
effects. The time-amplitude pairs uncertainties which occur 
due to the AADC finite timer and threshold levels precision. 
The interpolation error which occurs during the uniform 
resampling process, considering their combine effect, the 
Mean resampling Error for Wi can be computed by employing 
the following Equation. 

iNr

n
nni

i xrxo
Nr

MRE
1

.1
(23)

Where, xrn is the nth resampled observation, interpolated 
with respect to the time instant trn. xon is the original sample 
value which should be obtained by sampling x(t) at trn. In the 
studied example discussed in Section IV, x(t) is analytically 
known, thus it is possible to compute its original samples 
values at any given time instant. It allows to compute the 
resampling error introduced by the proposed technique by 
employing Equation 23.  

The mean interpolation error is calculated for each selected 
window. The results are summarized in Table V.  

TABLE V
MEAN INTERPOLATION ERROR FOR EACH SELECTED WINDOW

Window 1st 2nd 3rd 4th 5th 6th

MIei(dB) -26.3 -26.2 -25.9 -24.1 -24.1 -23.8 

Table V shows that the error introduced by the resampling 
process is quite a minor one. In the case of high precision 
applications, the resampling error can be further reduced by 
increasing the AADC resolution M and the interpolation order 
[4, 11, 15]. Thus, an increased accuracy can be achieved at the 
cost of an increased computational load. Therefore, by making 
a suitable compromise between the accuracy level and the 
computational load, an appropriate solution can be devised for 
a given application. 

VI. CASE STUDY
The instantaneous frequency of a chirp signal varies with 

time. The chirp-like signals are common in real life 
applications, like sonar and radar systems, spread spectrum 
communications, acoustic sounds etc. Being a common 
example of various time varying systems, it is employed to 
study the proposed technique performance. 

The input chirp signal x(t) is bandlimited between 10 Hz to 
500 Hz and its total duration is 8 sec. In the first quarter of 

time span, its frequency rises from 10 Hz to 500 Hz and 
contrary in the second quarter, it falls from 500 Hz to 10 Hz. 
The same pattern is repeated onwards. x(t) frequency pattern 
can be visualized from Fig. 5. 
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Fig. 5 The input signal frequency pattern 

A 3-bit resolution AADC is used for digitizing x(t)and
therefore, we have Fsmin= 140 Hz and Fsmax= 7000 Hz. The 
amplitude range is always set to Vin=1.8 V, which leads to a 
quantum q = 0.257 V. The amplitude of x(t) is normalized to 
0.9 V in order to avoid the AADC saturation.

With the given specifications, 10858 samples are obtained 
at the AADC output. In order to apply EASA, Nref =1024 is
chosen, which satisfies the criteria given in Section II-C. For 
the chosen Nref, EASA delivers 11 selected windows. The 
selected windows parameters are summarized in Table VI.  

TABLE VI
SUMMARY OF THE SELECTED WINDOWS PARAMETERS

Selected
Window

Li

(Sec)
Fsi

(kHz) 
Ni

(Smp) 
Fref 

(kHz) 
Frsi

(kHz) 
Nri

(Smp) 
1st 0.93 1099 1024 1250 1099 1024 
2nd 0.32 3206 1024 1250 1250 400 
3rd 0.24 4177 1024 1250 1250 300 
4th 0.20 4945 1024 1250 1250 250 
5th 0.18 5629 1024 1250 1250 225 
6th 0.16 6205 1024 1250 1250 200 
7th 0.15 6575 1024 1250 1250 187 
8th 0.31 3294 1024 1250 1250 387 
9th 0.38 2697 1024 1250 1250 475 
10th 0.53 1910 1024 1250 1250 662 
11th 0.77 797 618 1250 797 618 

The time-frequency resolution values for the ARSTFT are 
calculated by employing Equations 18 and 19. The results are 
summarized in Table VII. 

Tables VI and VII combinely demonstrate the ARSTFT 
signal driven nature. They show the adaptation of its sampling 
frequency and time-frequency resolution by following the 
input signal local variations. Contrary in the classical STFT, 
the sampling frequency and the window function remain time 
invariant. If  the sampling is performed at Fref = 1250 Hz, then 
for the 1024 samples 10 windows will be obtained, among 
them each one will be of 0.82 sec length. It will lead towards 
its fixed t = 0.82 sec and f = 1.2 Hz values (cf. Equations 
16 and 17). 
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TABLE VII
THE SELECTED WINDOWS TIME AND FREQUENCY RESOLUTION

Selected
Window 

ti

(Sec)
f i

(Hz)
1st 0.93 1.1 
2nd 0.32 3.1 
3rd 0.24 4.2 
4th 0.20 5.0 
5th 0.18 5.5 
6th 0.16 6.3 
7th 0.15 6.6 
8th 0.31 3.3 
9th 0.38 2.6 
10th 0.53 1.8 
11th 0.77 1.0 

The resampling error is calculated by employing Equation 
23, which is bounded by -23.8 dB for all selected windows. It 
shows the proposed system accuracy. Further resampling 
accuracy can be achieved by increasing the AADC resolution 
and the interpolation order [4, 11, 15].   

The computational gain of the ARSTFT over the classical 
one is also calculated by employing Equations 21 and 22. It 
shows 3.8 and 3.9 times gains in additions and multiplications 
respectively. It confirms the out performance of the ARSTFT 
over the classical one, even in the case of a continuously 
varying chirp signal. It is achieved due to the joint benefits of 
the AADC, the ASA and the resampling, as they make to 
adapt the sampling frequency and the window function (length 
plus shape) according to the signal local characteristics.

VII. CONCLUSION

A new tool for the adaptive resolution time-frequency 
analysis has been proposed. The ARSTFT is especially well 
suited for the low activity sporadic signals. It is shown that Fsi 
and Li change by following the x(t) local variations. Criteria 
to choose the appropriate Fref and Nref are developed. A 
complete methodology of choosing Frsi and wni for the ith 
selected window has been demonstrated. It is shown that the 
ARSTFT adapts its time-frequency resolution by following 
the local variations of x(t).  

The resampling error is calculated. It is shown that the 
errors made for the studied cases are minor ones. Moreover, a 
higher accuracy can be achieved by increasing the AADC 
resolution and the interpolation order. Thus, an accuracy 
improvement can be achieved at the cost of an increased 
computational load.  

The ARSTFT outperforms the STFT. The first advantage of 
the ARSTFT over the STFT is the adaptive time-frequency 
resolution and the second one is the computational gain. These 
smart features of the ARSTFT are achieved due to the joint 
benefits of the AADC, the EASA and the resampling, as they 
enable to adapt Fsi, Frsi, Ni, Nri and wn

i by exploiting the local 
variations of x(t).

The employment of fast algorithms in place of the DFT for 
the spectrum computation is in progress. It will add up to the 
computational gain of the ARSTFT.  

The ARSTFT application for the real life signals is a 

prospect. Moreover, performance comparison of the ARSTFT 
with the MRA techniques in terms of computational 
complexity and quality is an area of future research. 
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