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Abstract—Super-quadrics can represent a set of implicit surfaces, 

which can be used furthermore as primitive surfaces to construct a 
complex object via Boolean set operations in implicit surface 
modeling. In fact, super-quadrics were developed to create a 
parametric surface by performing spherical product on two parametric 
curves and some of the resulting parametric surfaces were also 
represented as implicit surfaces. However, because not every 
parametric curve can be redefined implicitly, this causes only implicit 
super-elliptic and super-hyperbolic curves are applied to perform 
spherical product and so only implicit super-ellipsoids and 
hyperboloids are developed in super-quadrics. To create implicit 
surfaces with more diverse shapes than super-quadrics, this paper 
proposes an implicit representation of spherical product, which 
performs spherical product on two implicit curves like super-quadrics 
do. By means of the implicit representation, many new implicit curves 
such as polygonal, star-shaped and rose-shaped curves can be used to 
develop new implicit surfaces with a greater variety of shapes than 
super-quadrics, such as polyhedrons, hyper-ellipsoids, super- 
hyperboloids and hyper-toroids containing star-shaped and rose- 
shaped major and minor circles. Besides, the newly developed implicit 
surfaces can also be used to define new primitive implicit surfaces for 
constructing a more complex implicit surface in implicit surface 
modeling. 
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I. INTRODUCTION 
INCE super-quadrics were developed by A. Bar [1], they 
have been widely viewed as a powerful mathematical 

model to represent an implicit or parametric surface. They have 
been successfully applied in implicit surface (solid) modeling 
[2], [3], [4] or computer-aided design. Especially, in soft object 
model [3] or in constructive geometry [4], implicitly defined 
super-quadrics can be used as defining functions to define 
primitive implicit surfaces (solid) or as field functions to define 
primitive soft objects, and the resulting primitive implicit 
surfaces (solids) can further be deformed [5] and be used to 
construct a complex surface via Boolean set operations [6] and 
[7]. Because defining (field) functions control the shapes of 
primitive implicit surfaces to be constructed and so they play a 
very important role in implicit surface modeling. In addition to 
super-quadrics, a lot of defining functions were developed, 
such as super-ellipsoids [3], skeletal primitives [8], star solid 
[9], generalized distance functions [10], implicit sweep objects 
[11], hyper-quadrics [12] and ratio-quadrics which offer faster 
calculation of super-quadrics [13]. 
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Super-quadrics originally were developed to create a 
parametric surface by performing spherical product on two 2D 
parametric curves. They generate a shape by modulating and 
scaling one of the parametric curves with every point on 
another one. In addition, by choosing parametric curves that 
can be redefined implicitly, some of the resulting parametric 
surfaces can be redefined as an implicit surface [1]. However, 
because not every parametric curve is allowed to be represented 
implicitly, this causes that in super-quadrics only parametric 
super-ellipses and super-hyperbolas were used to perform 
spherical product and consequently only implicitly defined 
super-ellipsoids and super-hyperboloids had been developed. 
To increase the variety of the shapes of implicitly defined 
super-quadrics and expand their application in implicit surface 
modeling, this paper proposes spherical product functions, 
which perform spherical product on two 2D implicit curves (a 
contour and a profile curves) like super-quadrics do. Precisely, 
the proposed function generates an implicit surface by 
modulating and scaling the contour curve with every point on 
the profile curve, and hence it can be viewed as an implicit form 
of the spherical product of super-quadrics [1]. The major 
advantage over super-quadrics is that new implicit curves, such 
as polygonal, rose-shaped and star-shaped iso-curves, with 
more diverse shapes than super-ellipses and super-hyperbolas 
adopted by super-quadri can be appled into a spherical product 
function to perform spherical product for creating a new 
implicit surface. As a result, new implicit surfaces like 
polyhedrons, hyper-toroids, super-hypertoroids and hyper- 
boloids which contiain polygoal, rose-shaped and star-shaped 
contours and profiles can be developed. In addition, all these 
new  surfaces can also be applied as new primitive implicit 
surfaces to construict a more complex implicit surface by 
boolean set operations in constructive solid geometry or in soft 
object model. 

The remainder of this paper is organized as follows. 
Super-quadrics and implicit surface modeling are introduced in 
Section II. Spherical product function is presented in Section 
III. Section IV presents ray-linear functions for defining a 
spherical product function. Section V gives demonstration of 
the resulting implicit surfaces. Translated and rotated profile 
curves are presented in Section VI. Conclusion is given in 
Section VII. 
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II. SUPER-QUADRICS AND IMPLICIT SURFACE MODELING 
This section introduces super-quadrics and their application 

in implicit surface modeling. 

A. Representation of Parametric Surfaces 
A parametric surface represents an object by a parametric 

formula, such as P(α,β):[0, 1]2→R3, 

P(α,β) =[X(α,β), Y(α,β), Z(α,β)], 

where α and β are parameters. The coordinate of every point on 
the surface can be obtained by calculating P(α,β) directly.  

B. Representation of Implicit Surfaces 
An implicit surface defines an object by using defining 

functions fi(x,y,z):R3→R+, i=1,2,…, as a point set  

{(x,y,z)∈R3 | fi(x,y,z)=1}, 

where R+ stands for the close set [0, ∞] in R. In the following, an 
implicit surface is denoted as fi(x,y,z)=1 for short. 

In addition, an object can also be represented as an implicitly 
defined solid by 

{(x,y,z)∈R3 |fi(x,y,z)≤1}. 

Thus, it can be used as a primitive to construct a more 
complex object via union or intersection operations. To be a 
defining function for a solid, fi(x,y,z) needs to be an 
inside-outside function, which satisfies the following: 
1) if fi(x0,y0,z0)=1, (x0,y0,z0) is on the surface. 
2) if fi(x0,y0,z0)<1, (x0,y0,z0) lies inside the surface.  
3) if fi(x0,y0,z0)>1, (x0,y0,z0) lies outside the surface. 

Two famous families of defining functions are listed as 
follows: 
1) Super-ellipsoids: 

f(x,y,z)=(|x/a1|n+|y/a2|n+|z/a3|n)1/n,                      (1)              

2) Super-quadrics: 

f(x,y,z)=((x/a1)2/n1+(y/a2)2/n1)n1/n2+(z/a3)2/n2)n2/2,           (2) 

 

C. Super-quadrics 
As in [1], super-quadrics were obtained through spherical 

product. A spherical product, denoted as m(β)⊗h(α), on two 
2D parametric curves, h(α) and m(β), produces a parametric 
surface by the position function: 

m(β)⊗h(α)=[hx(α)mx(α), hy(α)mx(α), mx(β)],        (3) 

where h(α)=[hx(α), hy(α)], m(β)=[mx(α), mx(β)], and α1≤α≤α2 
and β1≤β≤β2 are parameters. 

Geometrically, parametric surface m(β)⊗h(α) is viewed as 
horizontal curve h(α) vertically modulated and scalled by  
vertical curve m(β). For example, when super-ellipses are used 
as h(α) and m(β), i.e. h(α)=[a1cosn1α, a2sinn1α] where α∈[-π, 
π] ,is modulated and scaled by m(β)=[cosn2β, a3sinn2β] where 
β∈[-π,π], then parametrically defined super-ellipsoids are 
given by 

h(α)⊗m(β)=[a1cosn1αcosn2β, a2sinn1α cosn2β, a3sinn2β],    (4) 

In Eq. (4), n1 is a squareness parameter of the shape in 
east-west direction and n2 in north-south direction. When n1 < 1, 
the shape is square, n1 ≈ 1, round, n1 ≈ 2, flat-beveled, and n1 > 2, 
pinched. Parameter n2 has the same effect as n1. Fig. 1 shows 
some shapes of super-ellipsoids with n1 = n2.  

In [1], because super-ellipses can be represented implicitly, 
Eq. (4) can also be given implicitly by a defining function 
fs(x,y,z) and written by: 

f(x,y,z)=((x/a1)2/n1+(y/a2)2/n1)n1/n2+(z/a3)2/n2=1 

 

 
 

Fig. 1 The shape change of (x2/n1+y2/n1+z2/n1)n1/2=1 while n1=n2 varies 
from 1.9, 15, 1.3, 1, 0.8, 0.57, 0.4, to 0.25 for the surfaces from left to 

right 

D. Implicit Blends 
In constructive geometry of implicit surfaces [3], [4], a more 

complex implicit surface is generated by constructing k implicit 
surfaces f1(x,y,z)=1,...,k, smoothly through a blending operator 
Bk(x1,...,xk):R+

k→R+. This is, a complex object is given by a 
blend Bk(f1(x,y,z),...,fk(x,y,z)) and is obtained by calculating the 
point set  

{(x,y,z)∈R3 | Bk(f1(x,y,z),...,fk(x,y,z))=1} 

Some of the famous blending operators can be found in [4], 
[5],[6], [7], such as  
1) Superellipsoidal intersection blend: 

               Bk(x1,…,xk)= (x1
n+…+xk

n)1/n,  

2) Superellipsoidal union blend:  

Bk(x1,…, xk) = (x1
-n+…+ xk

-n)-1/n. 

Fig. 2 demonstrates a dice defined by a difference blend of a 
cube from twenty-one spheres. 
 

 
Fig. 2 The difference blend of a cube from twenty-one spheres 

III. IMPLICIT REPRESENTATION OF SPHERICAL PRODUCT  
It can be found from Section II that super-quadrics [1] are 

faced with two difficulties listed as follows: 
1) Not every parametric surface m(β)⊗h(α) from Eq. (3) can 
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be redefined implicitly because not every h(α) and m(β) 
can be defined implicitly. 

2) This above also caused that only super-ellipses and 
super-hyperbolas were applied as h(α) and m(β) to define a 
parametric surface m(β)⊗h(α) from Eq. (3) which has an 
implicit represntation, too. 

Due to these above, only implicitly defined super- ellipsoids 
and hyperbolids were developed as primitive implicit surfaces 
for constructing a more complex object in implicit surface 
modeling. To make super-quadrics have a greater variety of 
shapes, this section proposes spherical product functions, 
which is an implicit representation of  spherical product and 
whose iso-surface is generated in the same way as the spherical 
product in Eq. (3) does but from two implicit curves not 
parametrc curves. 

A. Definition of Spherical Product Functions 
Let h(x,y) and m(x, z) , called contour and profile functions 

respectively, map R2 to R+. Then a spherical product function, 
denoted as m(x, z)⊗h(x,y), is written by  

 
m(x, z)⊗h(x,y)=m(h(x,y), z),                       (5) 

 
Thus, if h(x,y)=1, called contour curve, is viewed as a 

horizontal closed curve, and m(x, z)=1, called profile curve, a 
vertical curve, then the surface m(x,z)⊗h(x,y)=1, called implicit 
spherical product, has a cross-section like the curve h(x,y)=1 
and has a profile like the curve m(x,z)=1.  Namely, every point 
(x0,z0) satisfying the conditions m(x0,z0)=1 and x0≥0 generates a 
new contour curve h(x,y)=x0 at z=z0, which is like the contour 
curve h(x,y)=1 translated along z-axis by [0, 0, z0] and scaled by 
x0, as shown in Fig. 3. 
 

 
Fig. 3 (a) Dotted curves are cross-sections generated by points 

M(0.8,07) and N(1,0) on m(x,z)=1. (b) The surface m(x,z)⊗h(x,y)=1 
has a cross-section like the contour curve h(x,y)=1 and a profile like 

the profile curve m(x,z)=1 
 

B. Implcit Representation  of Spherical Product 
Before explaining why m(x,z)⊗h(x,y) in Eq. (5) is an implicit 

form of spherical product, non-negative ray-linear property is 
defined first: 

A function f(x,y,z):R3→R+ is called non-negative ray-linear if 
f(ax,ay,az)=af(x,y,z) holds for any (x,y,z)∈R3 and a∈ R+. 

It is called ray-linear for short in this paper. Based on the 
ray-linear property it can be derived that if m(x,z) and h(x,y) 
both are ray-linear, then an implicit spherical product surface 
m(x,z)⊗h(x,y)=1 from Eq. (5) generates a shape in the same 
way as  the spherical product does in Eq. (3). It is explained 
below. The implicit surface m(x,z)⊗h(x,y)=1 is composed of all 
the contour curves h(x,y)=mx with z=z0 where (mx, z0) satisfies 
the condition m(mx,z0)=1. From the ray-linear property of 
h(x,y), every contour curve h(x,y)=mx is equivalent to the curve 
h(x,y)/mx=1, i.e. h(x/mx,y/mx)=1. It follows that if the parametric 
formula of h(x,y)=1 is [hx(α), hy(α)], then every contour curve 
h(x,y)=mx with z=z0 can be given by  [hx(α)mx, hy(α)mx, z0]. 
This explains why the shape m(x,z)⊗h(x,y)=1 is generated in 
the same way as the spherical product of super-quadrics in Eq. 
(3). 

IV. RAY-LINEAR CONTOUR AND PROFILE FUNCTION  
As stated in Section III, since 2D ray-linear contour and 

profile functions enable a spherical product function to have an 
iso-surface like spherical product of super-quadrics dose, this 
section develops new ray-linear contour and profile functions, 
created by constructing lines and super-hyperbolas via an 
intersection operation, for defining an implicit spherical 
product function. 

A. Ray-linear Lineal Functions 
A ray-linear function possessing linear iso-curves in 2D 

space is proposed and denoted by: 
 

fp(x, y)=| v • [x, y] | / dv,                              (6) 
 

where v is the unit normal vector of the line fp(x, y)=1 and dv is 
the shortest distance from the origin to the line.  fp(x, y)=1 is a 
pair of parallel lines, and it is easy to show that  fp(x, y) is 
ray-linear. 

B. Ray-linear Super-hyperbolic Functions 
Let v and u be unit vectors in 2D space, v• u=0, dv, du, and 

m>0. Then, a ray-linear function with super-hyperbolic 
iso-curves is proposed and defined by 

fh(x,y)= ( )
⎪
⎩

⎪
⎨

⎧
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where  fv(x, y)=| v • [x, y] |/dv and  fu(x, y)=| u • [x, y] |/du. 
It is easy to show that fh(x,y) is ray-linear. As shown in Fig. 4, 

the shape of fh(x,y)=1 is a pair of super-hyperbolic and 
symmetrical curves bounded in specified regions; vectors v and 
u both control the orientation of the curves; parameter dv 
determines the shortest distance from the origin to the curve; 
and parameter m controls the squareness of the curve. For 
example, 
1) When m≈1, fh(x,y)=1 degenerates toward two folded lines 

passing through points f, e, and g and points f’, e’, and g’, 
respectively, the red dotted lines in Fig. 4. 

2) When m>1, fh(x,y)=1 is super-hyperbolic, the solid curve.  
3) When m≈∞, fh(x,y)=1 is two curves that approach the 
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square dotted lines and pass through points a, c, d, and b 
and points a’, c’, d’, and b’,  respectively. 

 

 
Fig. 4 Super-hyperbolic curves: solid lines bounded between red 

dotted curves 

C. Generalized Elliptic and Hyperbolic Functions 
Before introducing the generalized elliptic and hyperbolic 

functions, Theorem 1 is proposed first: 
Theorem 1: If fi(x,y):R2→R+, i=1,...,k, and blending operator 
Bk(x1,...,xk):R+

k→R+ all are ray-linear, then the blend Bk(f1(x, 
y),..., fk(x, y)) is ray-linear, too. 

It is easy to prove this theorem. Based on Theorem 1, one can 
integrate super-ellipsoidal intersection blend: Bk(x1,…,xk) =(x1

n 

+…+xk
n)1/n, with Eqs. (6)-(7) together, and then develop a new 

ray-linear blending operation (function) by  

Bk(f1,…,fk) =(f1(x, y)n+…+fk(x, y)n)1/n,             (8) 

where fi (x, y), i=1,...,k,  is fh(x, y) or fp(x, y) from Eqs. (6)-(7). 
 

     
Fig. 5 Contour and profile curves, h(x,y)=1 and m(x,z)=1 by Eq. (8), 

where parallel lines are defined by fp in Eq. (6) and folded lines by fh  in 
Eq. (7). 

 

Some of the contour curves h(x,y)=1 or profile curves 
m(x,z)=1 defined by Eq. (8) are displayed in Fig. 5. They can be 
used to define a new implicit spherical product surface. 

V. DEMONSTRATION OF IMPLICIT SPHERICAL PRODUCT 

SURFACES 
Some of the implicit spherical product surfaces defined from 

Eq. (8) are demonstrated in this section. 

A. Generalized Elliptic Contour and Profile Functions 
When fp(x, y) in Eq. (6) acts as fi(x, y) in Eq. (8) and namely 

contour function h(x,y) is an intersection of four pairs of 
parallel lines, an eight-sided curve shown in Fig. 6,  

h(x,y)= (fp1(x, y)n1+ fp2(x, y)n1+fp3(x, y)n1+fp4(x, y) n1)1/n1,  

where fp1=|x/30|, fp2=|y/30|, fp3=| 2/x + 2/y |/30 and fp4=| 
2/x− + 2/y |/30, and profile function m(x,z) is also an 

intersection of four pairs of parallel lines,  
m(x,z)= (fp1(x,z)n2+ fp2(x,z)n2+fp3(x,z)n2 +fp4(x,z) n2)1/n2, 

where fp1=|x|, fp2=|z/30|, fp3=| 2/x + )230/(z | and fp4= | 2/x−  +
)230/(z |, then surfaces m(x,z)⊗h(x,y)=1, where n2 of m(x,z) is 

set 100 for a contracted polygonal profile and n1 of h(x,y) is set 
from 100,10, to 6 for a changing polygonal contour, are shown 
in Fig. 7 from left to right, and the first one  is  a polyhedron. 
 

 
Fig. 6 The curves of fp1=|x/30|, fp2=|y/30|, fp3=| 2/x  + 2/y |/30, and 

fp4=| 2/x− + 2/y |/30 
 

 
Fig. 7 The surfaces m(x,z)⊗h(x,y)=1 defined by using an intersection 

blend of four pairs of parallel lines as h(x, y) and m(x, z) both 
 

B. Generalized Hyperbolic Contour and Profile Functions 
When fh(x,y) in Eq. (7) acts as fi(x,y) in Eq. (8), i.e. contour 

function h(x,y) is a polygonal curve in Fig. 6 and profile 
functions m(x,z) are those shapes in Figs. 5(A)-(I), then the 
shapes of m(x, z)⊗h(x,y)=1 are listed in Fig. 8.  

In the same case as that in Fig. (8) except the contour h(x,y) is 
replaced with the four-sided curve in Fig. 5(J) given by: 

h(x,y)= (fp1(x, y)n1+fp2(x, y)n1)1/n1, 

fp by Eq. (6) 

fh by Eq. (7) 
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where fp1=|x| and fp2=|z/30|, the resulting shapes of m(x, 
z)⊗h(x,y)=1 are listed in Fig. 9. 

Consider the case that h(x,y) is an intersection of four pairs of 
super-hyperbolas (folded lines) by Eq. (7) and it is like a star 
shape shown in Fig. 10 and defined by: 

h(x,y)=(fh1(x,y)n1+ fh2(x,y)n1+fh3(x,y)n1+fh4(x,y) n1)1/n1, 

where       fh1:   fv1(x, y)=|x/25|  and  fu1(x, y)=|y/25|, 
fh2:   fv2(x, y)=|y/25|  and  fu2(x, y)=|x/25|,  

fh3 :  fv3(x, y)=| 2/x + 2/y |/25  and  
                    fu3(x, y)=| 2/x− + 2/y |/25, 

fh4 :  fv4(x, y)= |- 2/x + 2/y |/25 and 
                   fu4(x, y)= | 2/x + 2/y |/25, 

and the squareness parameters m of fh1, fh2, fh3 and fh4 are all set 
close to 1. Besides, m(x,z) is an intersection of two pairs of 
parallel lines,  

m(x,z)= (fp1(x, z)n2+ fp2(x, z)n2)1/n2, 

where fp1=|x|,  fp2=|z/25|  and  n2 of m(x,z) is set close to 1. Thus, 
as n1 of h(x,y) are set from 100, 8, 2, 1.5, 1, to 0.7, causing the 
contour curve to change from a star, a rose to a concave rose, 
the surfaces m(x, z)⊗h(x, y)=1 are shown from top left to 
bottom right in Fig. 11.  
 
 

 
Fig 10 The intersection of four pairs of super-hyperbolas (folded 
lines), fh1= , fh2=1,  fh3=1 and fh4=1 defined using fh(x, y) in Eq. (7) 

 

 
Fig. 11 Star-shaped and rose-shaped surfaceS m(x,z)⊗h(x,y)=1 where 
the star-shaped curve in Fig. 10 is used to define the contour curve h(x, 

y)=1 

VI. TRANSLATED PROFILE CURVE 
When a profile curve is translated by [C, 0], C≥0, and is 

written as: 

m(x-C, z)=1, 

then a new spherical product function that has a shape of 
hyper-toroids is given by:  

                                      m(x-C, z)⊗h(x, y).                            (9) 

As shown in Fig. 12, the shape of m(x-C, z)⊗h(x,y)=1 is like 
a toroidal surface whose major circle, contour curve h(x,y)=1, is 
translated along z-axis forwards and backwards and controlled 
by the points possessing x-cooridinate larger than or equat to 0 
on the minor circle, the translated profile curve m(x-C, z)=1. 
Geometrically speaking, Eq. (9) can be used to define 
hyper-toroids containing polygonal, rose-shaped and star- 
shaped major and minor circles, as shown in Fig. 13. When the 
polygonal curve in Fig. 6 is used as both the contour and the 
profile curves, then the surface m(x-C,z)⊗ h(x,y)=1 is shown in 
Fig. 13(A); in the same case as that in Fig. 13(A) but the 
contour curve is replaced with the star-shaped curve in Fig. 10 
where all the squareness parameters m of fh1 , fh2 , fh3 and fh4 are 
set 1.1 and 2 respectively, then the surfaces m(x-C,z)⊗h(x,y) =1 
are shown in Figs. 13(B)-(C). 
 

 
Fig. 8 The surfaces m(x,z)⊗h(x,y)=1 created using the curves in 
Figs. 5(A)-(I) as m(x, z)=1 and the curve in Fig. 6 as h(x, y)=1 

 
Fig. 9 The surfaces m(x,z)⊗h(x,y)=1 defined using the curves shown 

in Figs. 5(A)-(I) as m(x,z)=1 and the curve in Fig. 5(J) as h(x,y)=1 
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Fig. 12 A translated profile curve, in a red line 

 

      
(A)                           (B)                              (C) 

Fig. 13 Hyper-toroids created by Eq. (9), where an eight-sided polygon, 
a star and a rose in Figs. 6 and 10 are used as the contour curves (major 
circles) respectively for the surfaces from left to right and a translated 

eight-sided polygonal curve in Fig. 6 as the profile curves (minor 
circles) 

 
Moreover, when a profile curve is translated and given by:                                       

 m(|x-C|, z)=1                                     (10) 

where |x-C| means the absolute value of (x-C) and C≥0, then a 
new spherical product function is given by:  

                                   m(|x-C|, z)⊗h(x, y).                               (11) 

Because the value of h(x, y) is larger than or equal to 0, the 
profile curve m(|x-C|, z)=1 used to modulate the contour curve 
h(x, y)=1 is composed of two curves: m(x-C, z)=1, x>C, and 
m(-(x-C),z)=1, 0≤x<C, which are symmetrical to line x=C. In 
fact, the curve m(-(x-C), z)=1, 0≤x<C, is the reflection of the 
curve m(x-C, z)=1, x>C, with respect to line x=C. For example, 
when the profile curve m(x,z)=1 is as in Fig. 14(A), as C 
increases, translated profile curves by Eq. (10) may be those on 
the boundaries of the shaded areas in Figs. 14(B)-(F). It follows 
from Fig. 14 that Eq. (11) can be used to create hyper-toroids 
with a minor circle of symmetric shape. For example, when 
Figs. 14(A)-(F) are used as profile curves and the eight-sided 
polygon of Fig. 6 as a contour curve, the shapes of spherical 
product surfaces by Eq. (11) are shown in the surfaces from top 
left to bottom right in Fig. 15. 

 
 
 

 
Fig. 14 (A) A profile curve to be translated. (B)-(F) The translated 

profile curves of Fig. 14(A) by Eq. (10) where the value of C 
increases for the curves from Fig. 14 (B) to (F) 

 
Fig. 15 Hyper-toroids by Eq. (11) with a symmetric shape of minor 

circle, where Figs. 14(A)-(F) are used as profile curves (minor circles) 
for the surfaces from top left to bottom right and the eight-sided 

polygon of Fig. 6 as the contour curve (major circle) 

VII. CONCLUSION 
Super-quadrics were developed by performing spherical 

product on two 2D parametric curves. Because not every 
parametric curve can be represented implicitly, only 
super-ellipses and super-hyperbolas are appled to define 
super-quadrics and so only implicit super-ellipsoids and 
super-hyperboloads have been developed. To increase the 
variety of the shapes of implicitly defined super-quadriics and 
to expand their applicition on implicit surface modeling, this 
paper has developed an implicit representaion of spherical 
product of super-quadrics, which performs spherical product 
like super-quadrics do but on two 2D implicit curves. The 
implicit representaion of spherical product is written as a 
spherical product function, which is a composition of a contour 
and a profile curves and whose iso-surfaces are generated by 
modulating the contour curve via the profile curve. Based on 
spherical product functions, this paper has developed implicit 
generallized ellipses and hyperbolas with polygoanl, star- 
shaped and rose-shaped curves as contour and profile curves, 
and consequently a new set of implicit hyper-ellipsoids and 
hyperboloids with polyhedral, concave, convex, star and rose 
shapes have been developed, and it is more diverse than 
super-quadrics. 
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Besides, translated profiles have been successfully appled 
into spherical product functions in this paper. As a result, 
hyper-toroids that have a symmetric shape of minor circle and 
possess polygonal, rose-shaped and star-shaped major and 
minor circles have been created, too. Furthermore, all these 
newly proposed functions can be further used as new field 
functions in soft object model [3] or as new defining functions 
in constructive solid geometry [4] to define new primitive 
implicit surfaces. That is, this paper has offered a greater 
variety of primitive implicit surfaces with more diverse shapes 
than super-quadrics for constructing a complex implicit surface 
via boolean set operations in implicit surface modeling. 
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