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Abstract—Wavelet neural networks (WNNs) have emerged as a 

vital alternative to the vastly studied multilayer perceptrons (MLPs) 
since its first implementation. In this paper, we applied various 
clustering algorithms, namely, K-means (KM), Fuzzy C-means 
(FCM), symmetry-based K-means (SBKM), symmetry-based Fuzzy 
C-means (SBFCM) and modified point symmetry-based K-means 
(MPKM) clustering algorithms in choosing the translation parameter 
of a WNN. These modified WNNs are further applied to the 
heterogeneous cancer classification using benchmark microarray data 
and were compared against the conventional WNN with random 
initialization method. Experimental results showed that a WNN 
classifier with the MPKM algorithm is more precise than the 
conventional WNN as well as the WNNs with other clustering 
algorithms.   
 

Keywords—Clustering, microarray, symmetry, wavelet neural 
networks.  

I. INTRODUCTION 
RTIFICIAL  neural networks (ANNs), consist of a large 
number of interconnecting artificial neurons, which 

employ mathematical or computational models for 
information processing. Due to its fascinating characteristics 
of robustness, fault tolerance, adaptive learning and massively 
parallel capabilities, ANNs have been applied widely in vast 
applications, such as time series prediction, pattern 
recognition and system identification [1]-[3].  
 Multilayer perceptrons (MLPs), along with the back-
propagation learning algorithm, are the most popular type of 
ANNs among all in practical situations [4]-[5]. Nevertheless, 
shortcomings of an MLP: difficulties in reaching the global 
minimum in a complex search space, time-consuming and 
failure to converge when high nonlinearities exist [6], have 
deteriorated the accuracy of its application.  
 To overcome the deficiencies of an MLP, a wavelet neural 
network (WNN) has been introduced as a vital alternative to 
the MLP [7]-[9]. By integrating wavelet families as the 
activation function in the hidden layer of WNNs, there are 
various issues that are concerned with WNNs, varying from 
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different learning algorithms, network architecture, type of 
activation functions used in hidden layer and also the 
parameter initialization. In this paper, the issue of choosing 
the translation parameter will be addressed.  
 A proper initialization of the network parameter is crucial 
to achieve faster convergence rate and higher accuracy rate. 
Methods of using an explicit expression, hierarchical 
clustering, support vector machine, genetic algorithm and K- 
means clustering are among the approaches that have been 
implemented in the parameter initialization [10]-[14]. In this 
paper, we applied various clustering algorithms, namely, K-
means (KM), Fuzzy C-means (FCM), symmetry-based K-
means (SBKM), symmetry-based Fuzzy C-means (SBFCM) 
and modified point symmetry-based K-means (MPKM) 
clustering algorithms in initializing the WNN translation 
parameter. By integrating various clustering algorithms into 
the WNN, these proposed systems will be applied in a real 
world application, where the classification problem of 
heterogeneous cancer using the microarray data is our main 
concern.  
 This paper is organized as follows: In section II, a brief 
introduction of WNNs will be given, followed by the 
description of various clustering algorithms in section III. 
Next, a short review of a microarray experiment, materials and 
methodology are given in section IV. In section V, the 
experimental results, as well as the performance comparison 
between these modified WNNs and the conventional WNN 
with random parameter initialization are given. Finally, some 
conclusions and future directions are drawn in section VI.  

II. WAVELET NEURAL NETWORKS 

A. Wavelet Neural Network Architecture 
Since the first implementation of WNNs by Zhang and 

Benveniste [15], WNNs have received tremendous attention 
from other researchers [16]-[19], due to its great improvement 
over the weaknesses of MLPs.  
 A schematic diagram of a WNN, with d  input nodes, 
m hidden nodes and L output nodes is shown in Fig. 1.  The 

input layer will receive the input variable ),...,( 1 dxxx = and 
transmit the accepted input variables to the next layer. The 
second layer is a hidden layer with a mother waveletψ in each 
hidden node. The nodes in this layer are given by the product 
of the mother wavelet as 
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where jD  and jt   are the scaling and translation vectors 

respectively. 
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Fig. 1 A schematic diagram of wavelet neural network with d input 

nodes, m hidden nodes and L output nodes 
 

The sigmoid function (logistic and hyperbolic tangent) is 
the commonly used basis function in an MLP. Compared to 
the basis functions in the hidden layers of the MLP, the mother 
wavelet used in the hidden nodes of a WNN is a localized 
activation function. Hence, the connection weight associated 
with the hidden nodes can be viewed as locally piecewise 
constant models, which leads to learning efficiency and 
structure transparency. 

The third layer is the output layer. The output will be the 
linear combination of the weighted sum of the hidden layer, 
which is given by (2). 

∑
=

=+−=
m

1j
L1,2,...,kΘ,||)jt(XjD(||jψjw(x)ky      (2) 

where jw and Θ are the weight vector and bias term between 

hidden layer and output layer respectively. Obviously, all the 
neurons in any layer are fully connected to the preceding and 
also the succeeding layer, but no connections between the 
neurons within the same layer are allowed.   

B. Learning Algorithm of Wavelet Neural Networks 
 Various learning algorithms can be applied to the training of 
a WNN; in this paper, the learning of the WNN is by the 
method of solving the pseudo-inverse with fixed parameter 
initialization. Therefore, only the weight matrix W needs to be 
adjusted during the training of WNN, in order to map the 
underlying relationship between the input and output space.  
 Before we begin to describe the learning algorithm of the 
WNN, let us define the cost function as in (3):  

 

                           2))()((
2
1))(( nynynfE d −=                      (3) 

 
where dy is the desired output value and y(n) is the output 

value from the WNN. Hence, the training of the WNN is 
based on the minimization of the cost function. 
 There are two stages involved in the learning of the WNN. 

Firstly, the scaling parameter is fixed. Next, the translation 
vector is chosen from the input vectors using either, KM, 
FCM, SBKM, SBFCM or MPKM. The details of these 
clustering algorithms will be discussed in next section. 
 Let us represent (2) as ψWY = , where  
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is the output of wavelet families ψ , 

and ||))iti(xiDψ(||)it,iD,iψ(x −= . 

Therefore, in order to solve the weight matrix ,W  

YψW += is computed. +ψ is the pseudo-inverse defined as 

.Tψ1ψ)T(ψψ −=+  
A summary of the learning algorithm of WNN is given as 

below: 
i. Initialize the values for iD and .it  

ii. Feed in the input vector X into the WNN. 
iii. Calculate the product of the hidden layer by using eqn. 

(1). 
iv. Solve for the weight matrix W  by using the pseudo-

inverse method. 
v. Obtain the output value of WNN, )(ny  from step (iv). 

vi. Compare )(ny  with the desired output value, dy . 
vii. Calculate the cost function as in eqn. (3). 

viii. Repeat steps (ii) to (vii) until it meets the stopping 
criterion.   

III. THE CLUSTERING ALGORITHM 

A. The Conventional K-means and Fuzzy C-means  
 The action of grouping together the patterns into dissimilar 
clusters, with respect to a similarity measure is referred as 
clustering, in such a way that the patterns within the same 
cluster have higher similarity measure than the patterns in the 
other clusters.  
 The two main approaches of cluster analysis are the 
crisp/hard clustering and fuzzy clustering, where the KM and 
FCM are the most widely used algorithms for each approach 
respectively. For the former approach, each pattern can only 
be categorized into one cluster, whereas for the latter, each 
pattern can belong to more than one cluster, with a degree of 
similarity which is specified by a membership function. The 
details of KM and FCM algorithms can be obtained in [20]. 
 However, both the KM and FCM use Euclidean distance as 
its similarity measure which tends to detect the hyper-
spherical shaped cluster of equal size, which is unfavorable 
when the real world data consisted of various sizes and 

ψ ψ ψ 

x x

y1 

w1 
wm 

Output 
Layer 

Hidden 
Layer 

Input 
Layer 

y2 yL 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2645

 

 

shapes. Thus, these conventional clustering algorithms need 
enhancements.  

B. The Symmetry-Based K-means and Fuzzy C-means 
 If we notice our surrounding carefully, it can be found that 
the concept of symmetry exists in almost every single area in 
our daily life. A circle, a car, a ladder or even the crystal 
chemical substances of the snow are exhibiting the 
characteristic of symmetry in its nature. Thus, a novel 
similarity measure, namely the point symmetry distance (PSD) 
which is adopted in the conventional clustering algorithms is 
proposed by Su and Zhou [21], in such a way that the patterns 
are assigned to a cluster if they have a symmetrical sense with 
respect to the cluster center.  
 Given a set of patterns ,,...,1, Nipi = and a cluster center 

,c  to measure the degree of symmetry of a data point with 
respect to a cluster center, PSD is defined as:  
 

  
||)(||||)(||

||)()(||
min),( ,,...,1 cpcp

cpcp
cpd

ij

ij
jiNijs −+−

−+−
= ≠=           (5) 

 
 Pursuant to this, Su, Zhou and Hsieh [22] had combined the 
PSD with K-means and Fuzzy C-means clustering algorithms, 
where, the resulting algorithms have been proven to work 
efficiently in handling the data with different geometric 
properties. We name the resulting clustering algorithm by Su 
and Zhou as Symmetry Based K-Means (SBKM) and 
Symmetry Based Fuzzy C Means (SBFCM) respectively. 
 The details of SBKM and SBFCM can be obtained from 
[21] and [22].   

C. The Modified Point Symmetry-based K-means 
 Upon analyzing the SBKM and SBFCM, Chung and Lin 
[23] pointed out that there are potential problems that existed 
in the PSD, including the disadvantages of lack of distance 
difference symmetry property, unsatisfactory in handling the 
symmetrical inter-clusters, and lack of closure property. 
Pursuing in solving these shortcomings, Chung and Lin have 
proposed a new operator, namely the symmetry similarity 
level (SSL), which  is now defined as: 

2
),,(),,(

max),(
22

jkijki

cp
ki

pcpOSLpcpDSL
cpSSL

kj

+
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∈
(6) 

 
for Kk ≤≤1 and Ni ≤≤1 where K is number of clusters 
and N is number of data points.  
 As observed from (6), the SSL operator consists of two 
components, namely the distance similarity level (DSL) and 
orientation similarity level (OSL), where DSL and OSL are 
defined as follows: 
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where )( iki pcv −= and ).( kjj cpv −=  
 
 From (7), Chuang and Lin have integrated the SSL operator 
into the K-means algorithm (MPKM), where the resulting 
MPKM performed efficiently in detecting not only the 
symmetrical intra-clusters, but also the symmetrical inter-
clusters.  
 The flow of the MPKM algorithm is as follows: 
 
Step 1: Initialization  

Initialize the cluster centers Kici ,...,1, = , by 

selecting K  points randomly from all the data 
points 

Step 2: Coarse-Tuning  
Use the conventional K-Means clustering 
algorithm to update the K cluster centers. 

Step 3: Fine-Tuning 1 
Find out the set ikSB   of all candidate 

symmetrical data points jp for each data point 

jp , such that α≥),,( jki pcpDSL and 

β≥),,( jki pcpOSL , where kj Cp ∈ . 

Step 4:  Fine-Tuning 2 
Compute (6) for each data point ip .  

If the value for )*,,( jki pcpSSL   is the largest 

and the most symmetrical point jp  relative to 

*kc belongs to ikSB , assign data point ip  to 

cluster center *kc . 

Otherwise, assign data point ip to the cluster 

center **kc  with the shortest distance. 
Step 5: Updating 

Compute the new center for each cluster by 

∑ ∈
==

Ckip i
k

new
k

i
p

C
c

||
1

 

                                         
Where kC   is the set of the data points that have 

been assigned to the cluster center kc , and || kC  

is the number of data points in kC . 
Step 6: Continuation 

If there are no patterns changes the clusters or the 
iterations reach a predefined maximum value, then 
stop. Otherwise, go to Step 3. 
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More details in the efficiency and effectiveness of the MPKM 
in detecting the symmetrical inter and intra-clusters can be 
obtained from [23]. 

IV. MICROARRAY  

A.  Microarray Experiment  
 Classification of patient samples is a critical issue in cancer 
diagnosis and treatment, since a correct classification enables 
specific therapies to pathogenetically distinct tumor types, 
which enables the maximizing of efficacy and minimizing of 
toxicity in the therapy. However, heterogeneous cancers are 
hard to be distinguished into subtypes by clinical and 
histopathological means, since the traditional diagnostic 
method mainly depends on the morphological appearance of 
the tumor. Furthermore, tumors with similar morphological 
appearance might response diversely to the same treatment. 
Hence, heterogeneous cancer distinction only can be made in 
hindsight, based on the response of patients towards the 
treatments received, where differentiating heterogeneous 
cancers highly rely on the experience of the physician. 

 Fortunately, emergence of microarray experiment as a 
cutting edge technology in bioinformatics enables the 
monitoring of expression levels of thousands of genes 
simultaneously. Hence, gaining insight of the cellular 
mechanism and the pathway of the biological reaction are no 
longer an obstacle.  
 Microarray slides are slides with spatially ordered probes of 
cDNA sequence which are printed on a rectangular grid form 
on the slides [24].  To start a microarray experiment, firstly, 
mRNA are extracted from the control samples and 
experimental samples, which are then will be reverse 
transcribed into cDNA. Next, the cDNA for both control and 
experimental samples are labeled with fluorescent dyes, cy3 
(green colour) and cy5 (red colour) respectively. After that, 
both labeled samples are mixed and poured onto the 
microarray slides, where the hybridization will take place. The 
cDNA only will bind to the specific probes on the array, by 
following the base-pair complementarities. Then, the slides 
are washed, to get rid those labeled samples which are not 
hybridized with the probes on the array.  
 After the hybridization, the microarray slides are scanned 
by a laser, where the fluorescent dye of the labeled samples 
which bound with the probes will be excited by the laser, 
where the emitted detectable light will be captured by a 
scanner. The so-called gene expression levels can be 
measured from the amount of the bound labeled samples, 
where it can be quantified by measuring the fluorescence 
intensities, since the probes with more bound labeled samples 
will fluoresce more intensely. By using image processing 
software, the fluorescence background of this scanned image 
is then subtracted, and the expression values for each probe on 
the rectangular grid are calculated. In the end, when all the 
data from all samples are collected, a gene expression matrix, 
which is the input for the classification system is obtained, 
where its rows correspond to the single gene and its column 
correspond to the single sample.  

 
TABLE I 

INFORMATION FOR THE BENCHMARK DATASET USED IN THE EXPERIMENTAL 
SIMULATIONS 

Dataset 
Number 

of  
Genes 

Number of 
Samples 

Number  
of  

Classes 

Author 

LEU 7129 72 2 Golob et al. 
SRBCT 2308 63 4 Khan et al. 

GLO 12625 50 2 Nutt et al. 
CNS 7129 40 5 Pomeroy et al. 

B.  Microarray Benchmark Dataset  
 1) Leukemia (LEU): Golub et al. [25] were the pioneers in 
distinguishing between subtypes of heterogeneous cancers 
based on the genes expression signatures, where the proposed 
approach is applied to the human acute leukemia dataset with 
two subtypes, namely ALL and AML. The dataset comes from 
a gene expression study of 47 ALL and 25 AML tissue 
samples and there are a total of 7129 genes used in this 
microarray experiment.  
 2) Small Round Blue-Cell Tumor (SRBCT): The SRBCT 
dataset used by Khan et al. [26] composed of 2308 gene 
expressions in four classes: Ewing's sarcoma (EWS), Burkitt's 
lymphoma (BL), neuroblastoma (NB) and rhabdomyosarcoma 
(RMS). This dataset comes from 63 tissue samples, with 23 
samples of EWS, 8 samples of BL, 12 samples of NB and 20 
samples of RMS. 
 3) Glioma (GLO): Glioma is a type of cancer that starts in 
the brain or spine. The Glioma dataset used by Nutt et al. [27] 
consists of 12,625 genes of 50 samples, with 28 glioblastomas 
and 22 anaplastic oligodendrogliomas. The glioblastomas and 
anaplastic oligodendrogliomas are classified further into 
classic (CG) and non-classic gliomas (NG).   
 4) Central Nervous System Embryonal Tumor (CNS): 
Embryonal tumors of the CNS are a group of heterogeneous 
tumors, which consists of 5 subclasses: medulloblastoma 
(MED), malignant glioma (MG), atypical teratoid/rhabdoid 
tumors (AT/RT), normal cerebellum (NC) and primitive 
neuroectodermal (PNET) are studied by Pomeroy et al. [28] A 
total of 40 tissue samples with 7129 genes of CNS are used, 
with 10 samples of MED, 10 samples of MG, 10 samples of 
AT/RT, 4 samples of NC and 6 samples of PNET.  
 A summary of the benchmark dataset is given in Table I.  

C. Microarray Data Preprocessing  
 Microarray data consists of an overwhelming number of 
genes relative to the number of samples. However, the 
majority of such genes are probably irrelevant in 
discriminating between the subclass of the heterogeneous 
cancers. Hence, gene selection is a crucial aspect in 
microarray data analysis.  
 Before the process of gene selection, preprocessing of 
microarray data by using logarithmic transformation and 
normalization are required 
 Let gix  be the element in the gene expression matrix, 

which denotes the spot intensity measurement of gene g-th 
G)1,...,(g =  with respect to sample i-th 1,...I)(i = .  Applying 
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the logarithmic transformation, the transformed spot intensity 
measurement gix  is calculated by  

                    )gilog(xgix =                                      (9)                                                   

 Subsequently, quantile normalization is applied on the 
transformed spot intensity measurement gix . Let the median 

mock array of gix  be 

                 }gIX,...,g2X,g1median{XgM =                   (10) 

 Followed from that, the percentiles )i100Q,...,i1Q,i0(Q  of 

the i-th sample and the percentiles )M100Q,...,M1Q,M0(Q  

of the median mock array are calculated. Based on the 
percentiles )i100Q,...,i1Q,i0(Q , for any value of gix , the 

interval ]1)i(hQ,ih[Q +  for which it belongs to is obtained. 

Thus, the normalized value, '
giX , can be found by finding the 

linear interpolation between the points )ihQ,mh(Q  and 

)1)i(hQ,1)M(h(Q ++ . 

D. Microarray Data Feature Selection 
 Next, we employ predictive gene selection by using 
conditional t (CT) method which has been proposed by 
Amaratunga and Cabrera [24], where, this novel method has 
been proved that it outperforms the ordinary t test, and also a 
popular regularization method, SAM. The details of the 
algorithm of CT can be found in [24]. There are still 
thousands of genes selected when the commonly used p-value 
cut-off of 0.05 is chosen for CT. Thus, a total number of 30 
top ranked genes from each subtype of cancer are selected as 
the input variables into the WNN. It is reasonable to choose 
30 top ranked genes in order to avoid the occurrence of under-
fitting or over-fitting during the training of WNN, since 30 is 
not extremely big or small.   

V. EXPERIMENTAL SIMULATIONS 

A. Cross Validation 
 Excessive training will force the ANNs to memorize the 
input vectors and insufficient training will cause the ANNs 
unable to learn from the input vectors presented to it, where it 
will lead to poor generalization when new inputs are presented 
to the ANNs. Therefore, in order to avoid these problems, 
multifold cross validation is used. The samples are divided 
into k  groups, where 1k > .  
 Firstly, one group from the samples is left out, where the 
training of the neural network involves the remaining of the 
samples. Next, the validation error is measured by testing it on 
the group left out. The process is repeated for k times, by 
each different group respectively as the testing set. The 
average of the validation error is calculated. In this study, we 
use a 10-fold cross validation. 

B. Performance Index 
 The performance of the WNN based classifier is calculated 
by 

               100%
allN
tN

tion_rateclassifica ×=                      (11) 

where tN is the number of testing samples that been classified 
correctly and allN is the total number of testing samples. 

C. Performance Assessment and Discussion 
 Predictive success of the conventional WNN and the WNN 
with translation parameter initialization using KM, FCM, 
SBKM, SBFCM and MPKM in classifying the microarray 
benchmark dataset is shown in Table II.    
 As shown in Table II, the predictive competence of all 
WNN models is considerably superior in categorizing the 
heterogeneous cancer microarray dataset that we used. 
Ranging from 94.44% to 98.66% (LEU dataset), 100% 
(SRBCT dataset), 86% to 88% (GLO dataset) and 92.5% to 
95% (CNS dataset), apparently all WNN models worked 
efficiently in separating the heterogeneous cancer into its 
subtypes, which is beneficial for cancer treatment, diagnosis 
and therapy.  
 By varying the initialization methods that we used in 
choosing the translation parameter of the WNN, observably, 

 
 

TABLE II 
COMPARISON OF THE CLASSIFICATION CAPABILITY OF WNN WITH 

DIFFERENT INITIALZATION ALGORITHM 

Dataset No. of 
Classes 

Initialization 
Algorithm Classification Rate 

    
LEU 2 Random  94.44 

  KM 95.83 
  FCM 97.22 
  SBKM 97.22 
  SBFCM 97.22 
  MPKM 98.61 
    
    

SRBCT 4 Random  100 
  KM 100 
  FCM 100 
  SBKM 100 
  SBFCM 100 
  MPKM 100 
    
    

GLO 2 Random  86 
  KM 88 
  FCM 88 
  SBKM 88 
  SBFCM 88 
  MPKM 88 
    
    

CNS 5 Random  92.5 
  KM 92.5 
  FCM 92.5 
  SBKM 95 

  SBFCM 95 
  MPKM 95 
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the conventional WNN with random parameter initialization 
yielded the lowest classification rate, specifically, 94.44%, 
86% and 92.5% for the LEU, GLO and CNS datasets 
respectively. 
 Adopting the clustering algorithms in translation parameter 
initialization improves the classification rate slightly. Besides 
that, integrating KM and FCM with PSD had improved the 
predictive capability of WNN mildly, which can be observed 
in the classification results of the LEU and CNS datasets.  
 The efficacy and efficiency of the WNN is further enhanced 
by applying the SSL operator with the KM in the network 
initialization, which can be seen in the LEU dataset. The 
classification rate increased from 94.44% (conventional 
WNN) to 98.61% when the MPKM algorithm is employed. 
 In general, the highest classification for all microarray 
benchmark datasets is achieved when MPKM is applied in the 
parameter initialization. This verifies again the promising 
effectiveness of MPKM in choosing the proper initialization 
of the translation parameter for achieving faster convergence 
rate and higher accuracy rate.  
 By using the proposed methods, there are still some 
misclassification samples, which might be probably due to the 
process of gene selection. We know that tissue purity is 
important in the microarray experiment, yet biopsies of cancer 
tissues usually contain cancerous tissue and are unavoidable, a 
small portion of normal tissue. Hence, the genes expression 
values derived from the microarray experiment, in fact are 
from a composition of normal and cancerous tissues. An 
improved technique for the extraction of RNA from the 
heterogeneous cancers samples might help in enhancing the 
gene selection. 
 

VI. CONCLUSION 
 A proper initialization method for WNN model is vital in 
improving the predictive competence and classification 
capability of WNN. In this paper, translation parameter 
initialization based on KM, FCM, SBKM, SBFCM and 
MPKM are developed and its application in microarray data 
cancer classification is studied.  
 The experimental results showed that these improved WNN 
models performed excellently in the cancer classification, 
where the highest correct classification percentage ranged 
from 88% to 100%, and they outperformed the WNN with 
random initialization. The improved WNN model with 
MPKM achieved the highest classification rate in all 
microarray benchmark datasets. Thus, the beneficial potential 
of this initialization method is promising. 
 Application of the MPKM with other neural network 
models and further real world application can be our future 
direction. Enhancing the MPKM with intelligent agents like 
fuzzy logic, particle swarm optimization will be an interesting 
topic to be pursued.  
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