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Abstract—In this paper by using the port-controlled Hamiltonian 

(PCH) systems theory, a full-order nonlinear controlled model is first 
developed. Then a nonlinear passivity-based robust adaptive control 
(PBRAC) of switched reluctance motor in the presence of external 
disturbances for the purpose of torque ripple reduction and 
characteristic improvement is presented. The proposed controller 
design is separated into the inner loop and the outer loop controller. 
In the inner loop, passivity-based control is employed by using 
energy shaping techniques to produce the proper switching function. 
The outer loop control is employed by robust adaptive controller to 
determine the appropriate Torque command. It can also overcome the 
inherent nonlinear characteristics of the system and make the whole 
system robust to uncertainties and bounded disturbances. A 4KW 8/6 
SRM with experimental characteristics that takes magnetic saturation 
into account is modeled, simulation results show that the proposed 
scheme has good performance and practical application prospects. 
 

Keywords—Switched Reluctance Motor, Port Hamiltonian 
System, Passivity-Based Control, Torque Ripple Minimization  

I. INTRODUCTION 
N recent years, there is a growing concern about the use of 
switched reluctance motor. The major reasons for SRM are 

robustness, high efficiency, low cost, high speed, simple 
structure, easy to maintain, high controllability, high torque to 
inertia ratio, simple power converter circuits with reduced 
number of switches and smaller dimension of the motor in 
comparison to the other motors. High torque ripple and 
acoustic noise are most disadvantages of the motor. Main 
reason of these problems is the stepping nature and inherent 
nonlinear characteristics of the motor, which causes an 
undesired effect on bearing. If the problems of the SRM can 
be solved, it can be an alternative to the other motors [1]. 
 
 
 
 
M.M. Namazi is with the Department of Electrical and Computer Engineering, 
Isfahan University of  Technology, Isfahan, Iran  (e-mail: 
mm.namaziesfahani@ ec.iut.ac.ir).  

S.M. Saghaiannejad, is with the Department of Electrical and Computer 
Engineering, Isfahan University of Technology, Isfahan, Iran (e-mail: 
saghaian@cc.iut.ac.ir). 

A. Rashidi is with the  Department of Electrical and Computer 
Engineering, Isfahan University of Technology, Isfahan, Iran (e-mail: 
315.amir@gmail.com). 

 
 
 

The nonlinear characteristics include the nonlinear torque 
function of position and current and the magnetic saturation at 
certain operation regions. There are two approaches followed 
for torque ripple minimization. One is improve the magnetic 
design of the motor while the other is use of advanced control 
techniques. Several control methods and schemes have been 
proposed to overcome these problems. For example, variable 
structure controller made the SRM drive system insensitive to 
parameter variations and load disturbance [2]. Artificial neural 
network and fuzzy controller needs a lot of designer 
experience [3]. Feedback linearization controller has high 
sensitivity to model uncertainties [4]. Nonlinear internal 
model control for SRM drive required very complicated 
computations and implementation of the system is very 
difficult [5]. 

In the methods mentioned above, for the control strategies 
of the SRM it is assumed that its parameters are known 
exactly or the unknown parameters can be identified by the 
adaptive technique. However the parameters of the SRM are 
not exactly known and always vary with current and position. 
Actually, control is difficult to implement owing to its 
complex algorithm when considering the structural 
information of SRM in design. Improving the applicability of 
the SRM on the basis of the simplified model and taking the 
structural characteristics into account is a significant step in 
designing the controller of the SRM. 

In this paper, a nonlinear feedback controller, which 
effectively use the natural energy dissipation properties of the 
SRM is proposed. Passivity–based Control (PBC), introduced 
in [6], to define a controller design methodology which 
achieves stabilization by passivation [7].  

Paper is organized as follows. At first, in Section II, the 
SRM nonlinear modeling is presented. In Section III the 
concepts of Port Controlled Hamiltonian System and the 
theory of PCH modeling of SRM are described. In Section IV 
a passivity-based robust adaptive controller is designed based 
on combination of passivity-based current control (PBC) and 
robust adaptive technique. In Section V, simulation results 
obtained confirm that the torque ripple reduced in spite of 
external load disturbances. Finally, conclusions are given in 
Section VI. 

II. NONLINEAR CONSTRUCTION AND MODELING OF SRM 

A. SRM Configuration and Basic Principle Operation 
The switched reluctance motor has a simple design with a 
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rotor without windings and stator with windings located at the 
poles [8]. The principle of operation is based on the tendency 
of an electromagnetic system to obtain a stable equilibrium 
position minimizing magnetic reluctance. Whenever 
diametrically opposite stator poles are excited, the closest 
rotor poles are attracted, resulting in torque production.  

B. Nonlinear Mathematical Model of SRM 
An important step in any control system design is to 

develop a good mathematical model, which represents the 
plant under various operating conditions. The basic sets of 
differential equations used to dynamic modeling of the SRM 
are as follows. First, the electrical state equations of the SRM 
can be expressed as [1]: 
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 Where ku

 
is the phase voltage, ki is the phase current, kr  

is the phase resistance, dcbak ,,,=  is the active phase and 
),(k kiθλ  is the flux linkage. The flux linkage in an active 

phase is given by product of self inductance and the 
instantaneous phase current as: 

 
kkk iiLi ⋅= ),(),( kk θθλ  (2) 

 
While the simplified model for SRM is obtained by 

substitution of (2) into (1), which results in: 
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Second, the mechanical state equation of the SRM can be 

expressed as follows: 
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Where j  and B  are the moment of inertia and viscous 

friction coefficient, respectively and LT is the load torque. 
Also, the instantaneous torque ),( kiTe θ  can be written as: 
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III. PCH MODELING OF SRM 
Energy conserving dynamical systems with independent 

storage elements can be described by the form of port 
controlled Hamiltonian (PCH) systems as follows [9]: 
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Where )(Xg denotes the input matrix, u and y denote the 

system input and output. The interconnection structure is 
captured in the matrix )(XJ  with )()( XJXJ T −= . The 
dissipation effects are captured by the matrix )(XR  which is a 
semi-positive definite or positive definite matrix. The total 
energy of the system is defined by the positive definite 
function )( XH . The port controlled Hamiltonian systems 
with dissipation (6) satisfy the following power-balance 
equation: 
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The port-controlled Hamiltonian system is passive if the 

Hamiltonian )(XH  is bounded from below [10]. To simplify 
controller design, a complex system can be decomposed into 
subsystems by using some techniques of order reduction, such 
as multi-time-scale analysis. Consider two subsystems in the 
form of (7) with negative feedback interconnection by the 
power port p as shown in Fig. 1 [11]. After the 
interconnection, the closed-loop represented as: 
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Fig. 1 Negative feedback interconnection of subsystems 
 
 
 
 
For the closed-loop model, the energy function is the total 

energy of the two subsystems; )()()( 2211 XHXHXH +=  

therefore, Using (7) and suppose that 1221 ypypyy TT = , the 
derivative of this energy function along time is given by: 
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Therefore, the stability of the overall closed-loop system 

can be guaranteed suppose both of the two subsystems are 
stable. 

In [7] it is prove that the complete model of a SRM can be 
decomposed as the feedback interconnection of the following 
two passive linked subsystems (electrical and mechanical 
passive subsystem): 
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For the interconnected system, using (1), (6) and 

Take [ ] [ ]Tdcba
T iiiixxxxX == 43211  as the 

state vector, the electrical subsystem can be represented as: 
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Where: 
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Here 1g  denotes the input matrix, 1u  the control vector 

and 1ξ  the disturbance. Take ω=2X  as the state variable for 
mechanical subsystem, the dynamic property described as: 
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Substituting jD =2 , BR =2 , [ ]11112 =g , 

⎟
⎠

⎞
⎜
⎝

⎛= k
k i

d
dL

diagp
θ2

1  , LT−=2ξ and 02 =J  (12) can be 

written as (4). 

IV. PASSIVITY-BASED ROBUST ADAPTIVE CONTROL 
In this section, we present a PBRAC method for designing 

SRM controller. The PBRAC block diagram, shown in Fig. 3, 
is separated into the inner loop and the outer loop controller. 

Based on the assumption that stator current ki  as well as rotor 
speed ω  are available for measurement, the controller design 
procedures can be divided into three steps. The first step is 
Passivity-based current control of the electrical subsystem by 
injecting a nonlinear electrical damping term. Then a set of 
reference current vectors *ki  are found out to achieve current 
tracking. The second step is aimed at reference current 
generation. The final step is to design a speed controller for 
speed tracking of the overall system. The sake of the outer 
loop is to generate the appropriate Torque command fed for 
the inner loop. Finally, passivity-based inner loop current 
controller will produce the switching functions. 

A. Passivity-Based Inner Loop Control Design 
Passivity-based control aimed at achieving the signal 

regulation is obtained by controlling the suitable energy of the 
closed-loop system, and add the required damping. The 
dynamic model (11) can be rewritten as: 
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The objective of PBC design is to guarantee tracking of 

signal ki  toward to its desired state *
ki  [12]. This method 

proposes to make a copy of (15), where the state 1X  is 

replaced by the desired state *
1X  and the injection damping 

term is added, that is a desired system: 
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Where the injection damping term 

is { }4321 ,,, kkkkdiagK = , referred as damping injection 
matrix, is a positive definite diagonal matrix 
and *

111
~ XXX −= . Subtracting (14) from (13) yields the 

following error dynamic model: 
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Thus, we can define desired storage energy function 

111
~~5.0 XDXH T

d =  as a Lyapunov function. The desired 
equilibrium point is realized if the Hamiltonian H  has its 
minimum at the equilibrium point. Asymptotic stability is 
proved using LaSalle’s invariance principle for the closed-
loop system (15) where: 
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Following LaSalle’s theorem, the time derivative of storage 

energy function is forced to be negative semidefinite, 
i.e. 0≤dH& , being equal to zero only for the equilibrium 
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points. Therefore (16) is equal to zero only when 0~
1 =X . The 

Lyapunov stability and convergence can be proven that (13) is 
passive and input-output stable. Finally, the above method 
proceeds to restrict *

11 XX = and solve from (14), which 
yields the switching functions as: 
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The reference current is calculated by using the desired 
torque: 
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Where θθ didLk ),( k  is obtained by using the look-up 

table that shown in Fig 2. 

A. Robust Adaptive Outer Loop Speed Controller 
After inner-loop controller generates suitable reference 

current, the final step is to design the outer-loop speed 
controller to determine the appropriate reference torque. For 
speed control design purposes, the dynamic model of the SRM 
can be written as: 
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Where Lu TT &= , Let ( ) ( )TTxxx ωβ== 21 , Also let the 
output of the SRM be ω=y . Thus, the model of the SRM 
system can be written in compact form as uxgxfy )()( +=&& , 
where f  and g  are determined from (19). We consider 

( ) ( ) ( ){ }α≤=Ω∈ tTtTtT uuαu :  as an external disturbance 
and control law as: 
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Fig. 2 Partial derivative of flux to position 
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Where 0>K , is the state feedback gain and α̂ denotes the 

estimated value of the unknown parameterα . The constants 
iδ  and iσ  2,1=i  are (small) positive constants specified by 

the designer to avoid discontinuity and control chattering. The 
control law (20) with adaptation mechanism eγα =&̂ , where 

0>γ  is adaptation gain, guarantees that all the closed loop 

signals are bounded and tracking error *ωω −=e  is 
asymptotically converged to zero. Clearly, the smaller value of 

iδ , give less smoothness to the control law [13], [14]. 

V. SIMULATION RESULTS 
The SRM system is simulated using the MATLAB 

software. The model takes magnetic saturation into account. 
The parameters of the motor used for the simulation studies 
are given in Table 1. 

The motor is commanded to accelerate from rest to 200 
RPM under a sudden load change from 3 Nm to 6 Nm. Fig. 4 
shows speed response when corresponding to robust adaptive 
speed control law described by (21) and the proposed PBRAC 
algorithm for the precise plant model. It can be seen that there 
is a steady error on the response of robust adaptive speed 
control without using of PBC, whereas there is no steady error 
for the proposed algorithm. Also, transient response of the 
proposed PBRAC due to an external disturbance quickly 
damped. Hence, there is a considerable improvement of the 
steady state and transient responses.  

The proposed controller is applied to implement the torque 
ripple minimization. The torque ripple is defined as [15]: 
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Torque profiles of the conventional robust adaptive and 

proposed PBRAC are being displayed in Fig. 5. There are 
significant amount of torque ripples when only the 
conventional robust adaptive is used. But, the instantaneous 
torque of the proposed PBRAC is highly improved with much 
lower torque ripples. 

As can be seen from Table 2, when the load torque is 3 Nm, 
the percentage peak-to-peak torque ripple of robust adaptive 
passivity-based control reduces 2.94% compared with that of 
the robust adaptive control. When the load torque is 6 Nm, the 
torque ripple factor reduces 0.3%. 

 
TABLE I 

PARAMETERS OF THE SRM 

Parameters Rating values 

Output Power 4 KW 
Rated Speed 1500 RPM 
Number of Stator Poles 8 
Inertia(J) 0.008 2.msN  
Damping Factor(B) 0.00078 msN .  
Phase Resistance 0.75 Ω  
Dc Voltage Supply 280 V  

 
 

TABLE II 
TORQUE RIPPLE PERCENTAGE 

Control strategy 
Load Torque 

 
3 Nm 

 
 

6 Nm 
Conventional 

 Robust Adaptive 
 

 6.7 %  1.8% 

RAPBC 3.76 % 1.5% 
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  Fig. 4 (a) The speed profile upon the variation of load torque at 
t=0.05 s. (b) and (c) are zoom of (a) 

 

Fig. 3 Block diagram of the overall speed control system 
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       Fig. 5 (a) The SRM produced torque profile. (b) and (c) are 
zoom of (a) 

VI. CONCLUSION 
In this paper, a robust adaptive PBC algorithm is proposed 

for torque ripple reduction and precise speed tracking. By 
decomposing the SRM driving system into an electrical 
subsystem and a mechanical subsystem, the order of the 
system is reduced. The passivity-based controller is designed 
for the electrical subsystem based on the two-time-scale and 
passivity properties. Because of the strict passivity of the two 
subsystems and their negative feedback interconnection, 
stability of the proposed controller for the whole driving 
system can be achieved. The results demonstrate that the 
proposed robust adaptive PBC for SRM possesses excellent 
performance and torque ripple minimization compared with 
conventional robust adaptive control. 
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