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Abstract—Misalignment and unbalance are the major concerns 

in rotating machinery. When the power supply to any rotating system 
is cutoff, the system begins to lose the momentum gained during 
sustained operation and finally comes to rest. The exact time period 
from when the power is cutoff until the rotor comes to rest is called 
Coast Down Time. The CDTs for different shaft cutoff speeds were 
recorded at various misalignment and unbalance conditions. The 
CDT reduction percentages were calculated for each fault and there 
is a specific correlation between the CDT reduction percentage and 
the severity of the fault. In this paper, radial basis network, a new 
generation of artificial neural networks, has been successfully 
incorporated for the prediction of CDT for misalignment and 
unbalance conditions. Radial basis network has been found to be 
successful in the prediction of CDT for mechanical faults in rotating 
machinery. 
 

Keywords—Coast Down Time, Misalignment, Unbalance, 
Artificial Neural Networks, Radial Basis Network.  

I. INTRODUCTION 
HAFT misalignment and unbalance are the most common 
causes of vibration in rotating machinery and these are the 
major concerns in modern industry. Misaligned shaft leads 

to increase in vibration, and an increase in radial and axial 
loads, thereby absorbing more energy and power. This, in 
turn, causes premature wear or even catastrophic failure of 
bearings, seals, coupling and other components in the 
machinery. Shaft misalignment occurs when the centerlines of 
rotation of two or more machinery shafts are not in line with 
each other, or in more precise terms, it is the deviation of 
relative shaft position from a collinear axis of rotation 
measured at the points of power transmission when equipment 
is running at normal operating conditions. There are two types 
of misalignments: Parallel misalignment occurs when the shaft 
centerlines of the two machines are parallel, but offset to each 
other, and Angular misalignment occurs when the shaft 
centerlines are not parallel, but inclined to each other [1]. 
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Unbalance is a condition where the center of mass (rotor disc, 
blower impeller) is not coincident with the center of rotation 
(shaft). Excessive unbalance can lead to fatigue of machine 
components, as well as can cause wear in bearings or internal 
rubs that can damage seals and degrade machine performance 
[2]. In practice, achieving perfectly aligned and balanced 
condition is very difficult and a minute amount of 
misalignment and unbalance are always present.  

When the power supply to any rotating system is cutoff, the 
system begins to lose the momentum gained during sustained 
operation and finally comes to a halt. The behavior of the 
rotor system during this period is known as the Coast Down 
Phenomenon (CDP). The exact time period between the 
power cutoff time and the time at which the rotor stops is 
called Coast Down Time (CDT) [3]. CDT is the total time 
taken by the system to dissipate the momentum acquired 
during sustained operation. The CDT depends on many 
factors like inertia forces of the system components, 
tribological behavior of rotating system components such as 
bearings, seals, carbon brushes. It also depends on operating 
conditions and environmental effect such as fluid drag. The 
performance of the misaligned cylindrical [4] and three-lobe 
journal bearings [5] were evaluated. It was found that the 
CDT decreases with the increase in misalignment. This is 
because both the bearing friction and the power loss increase 
with increase in misalignment. Increase in misalignment will 
cause an increase in coefficient of friction and reduces the 
film thickness resulting in an increase in damping factor. 
Some published works [6], [7] have reported experiments 
conducted on rotor system to evaluate the bearing lubrication 
for different operating conditions and the influence of the 
rotor unbalance response on CDT. It was found that CDT 
could be used as an effective diagnostic parameter and could 
provide pertinent information regarding the tribological 
behavior, degradation and the effectiveness of lubrication.  

All these studies were conducted on De Laval (Jeffcott) 
rotor system supported between two bearings. An industrial 
environment to assess the CDT as a condition monitoring 
parameter was considered and an attempt was made to 
experimentally investigate the use of CDT analysis in a 
Forward Curved Centrifugal Blower [8]. This work was 
carried out to assess the effect of misalignment and unbalance 
for understanding the mechanical behavior of a system under 
simulated industrial environment. It was found that with 
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increased mechanical faults, CDT decreases considerably and 
this is expressed as CDT reduction percentage. There is a 
specific correlation between the reduction percentage in CDT 
and the level of unbalance, and the order of offset and angular 
misalignment with rotational speeds. And the mechanical fault 
has the considerable influence on CDT reduction percentage. 
CDT analysis is a powerful parameter for studying the 
significant machine’s health. It could be used as a powerful 
diagnostic tool for condition monitoring of rotating 
machinery.      

Artificial neural network is a representation of the 
computational architecture of the human brain. It is an 
established tool for effortless computation and its application 
in the area of automated fault detection and diagnosis of 
machine condition is very promising [9]-[12]. The time-
domain vibration signals of rolling bearings with different 
fault condition are pre-processed using Impulse and Laplace 
wavelet transforms. The extracted features for the 
predominant wavelet transform coefficients in time and 
frequency domain are applied as input vectors to artificial 
neural networks for rolling bearing fault classification. The 
ANN classifier parameters (learning rate and number of 
hidden nodes) are optimized using a genetic algorithm [13]. 
The multi layer feed forward backpropagation techniques 
were used to detect bearing faults [14]-[16]. Several methods 
are described [17] for the extraction of features to use as 
neural network inputs and compares these methods based on 
measuring the zero lag higher-order statistics of the measured 
vibration time series and achieved success rate of over 99 
percent. Genetic Algorithm is used to select the most 
significant input features from a large set of possible features 
in machine condition monitoring. Used a large set of 156 
different features and found that, the GA is able to select a set 
of 6 features that gives 100 percent recognition accuracy [18]. 
Radial basis networks require lesser neurons than the standard 
feed forward backpropagation networks [19]-[21]. They can 
be trained in a fraction of time is used to model engineering 
systems and found that it is efficient, reliable and robust 
technique [22].     

The CDT analysis can be used as one of the condition 
monitoring parameter to assess the condition of the rotating 
machinery. From the survey of literature and to our best 
knowledge; the application of ANN is not extended to CDT 
prediction. The main objective of this paper is to develop 
neural network model that will be able to predict the CDT for 
mechanical faults.  

II.  EXPERIMENTAL TEST RIG AND INSTRUMENTATION 
The schematic diagram of experimental Centrifugal Blower 

test rig [23] used for this investigation is shown in Fig. 1. A 
Forward Curved (FC) centrifugal blower is mounted on shaft 
with length 315 mm and diameter of 20 mm at the center 
position of 190 mm between two anti-friction bearings. The 
specifications of the blower are given in Appendix A. The 
shaft is simply supported between two Z type SKF antifriction 
ball bearings. The blower shaft is connected through an 
electromagnetic coupling to a variable speed DC motor 

(operating speed 3000±5% rpm). Motor side shaft is 
supported by one each Z type and P Block (self aligning) 
bearing. An adjustable steel plate of size 400 mm x 300 mm x 
15 mm has been introduced on which the blower setup and 
two bearings housing frames are bolted to introduce the 
required parallel and angular misalignment between the 
blower shaft and motor shaft. This assembly is mounted on the 
main heavy steel frame with adjustable four screws at four 
corner ends of the steel plate and a lead screw at the bottom, 
for horizontal movement. The contact surface of steel plate 
assembly and main steel frame are perfectly flat and smooth 
for accuracy. The whole test rig unit is mounted on a heavy 
steel framework, and then the framework is clamped to a 
foundation with anti vibration rubber pads. An 
instrumentation control panel is built to display and control 
the variables. Two inductive proximity sensors are used to 
measure the speeds of blower and motor independently. 

  

 
 

Fig. 1 Centrifugal Blower Experimental Test Rig  
 
1, Oil sump fitted with motor; 2, Oil entry hose pipe; 3, Oil exit hose pipe;         
4, Journal bearing; 5, Z Type Ball Bearings; 6, Forward Curved Centrifugal 
Blower; 7, Shaft; 8, Magnetic coupling; 9, Self aligning P Block Bearings;      
10, Variable Speed DC motor; 11, Supporting structure; 12, Clamping screws; 
13, Motor supporting frame; 14, Load cell; 15, Misaligning adjusting steel 
plate; 16, Plate movement screw (lead screw attachment is not shown) ; 17, 
Four screws for vertical direction adjustment of steel plate; 18, Two leveling 
support bars; 19, Digital Vernier caliper; 20, Proximity switches;   21, Hotwire 
Anemometer; 22, Butterfly Valve; 23, Concrete base.  
 

The Visual Basic application software developed along with 
instrumentation is used to control the operation of 
experimental test rig and to record the motor, and blower 
speeds as well as CDT for each test run for selected cutoff 
speeds. During start of test run, the system automatically cuts 
off the power supply to motor and magnetic coupling 
simultaneously so that the blower shaft completely disengages 
from motor shaft. At the end of the test, the power supply is 
restored for both motor and coupling such that they run 
continuously. Software has an ability to record CDT with an 
accuracy of 0.06 s (60 ms) intervals and corresponding 
deceleration speed of blower and motor. 

III. EXPERIMENTAL PROCEDURE 
The blower shaft and motor shaft are carefully aligned and 
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balanced in both vertical and horizontal directions using 
reverse dial indicator method. An electromagnetic coupling 
was used to ensure that the entire centrifugal blower system is 
completely free from the power source during coast down 
period test run. This is to minimize the effect of external 
disturbance due to the fluctuation in power source voltage, 
frequency, etc that can have an appreciable effect on CDT. 
Initially, the coast down time for each test run at various 
cutoff speeds were recorded and used thereafter as baseline 
references for further investigation, analysis and comparison.  

Parallel misalignment in vertical and horizontal direction 
was introduced using four screws and a lead screw. The 
possible movement of the steel plate in other directions can be 
restricted by means of level bars supported with steel balls 
support. A digital Vernier Caliper is attached to the steel base 
plate to record the offset value. Three level of parallel 
misalignment 0.20 mm, 0.40 mm and 0.60 mm respectively 
have been introduced at the blower end shaft. Angular 
misalignment was introduced by creating the gap between the 
steel plate and main support frame by adjusting the screws in 
one direction and inserting shims of specific thickness 
between the gaps to lift it upward with respect to the main 
frame, and then the corresponding inclined misaligned angle 
was calculated. Three levels of angular misalignment 0.0610, 
0.09930, and 0.1530 respectively have been introduced 
between blower and motor shaft end.  Tests were conducted 
for three cases of unbalance by introducing additional mass of 
22 gram-mm, 27 gram-mm and 32 gram-mm respectively. The 
masses have been added on blower impeller blade in the same 
location. All the experimental tests were conducted at cutoff 
speeds of 1000 rpm, 1500 rpm, 2000 rpm, and 2500 rpm 
respectively to record coast down time and the respective 
deceleration speeds. These experimental data are used to train 
an ANN to predict the CDTs for various mechanical faults.  

The profile CDT curves, the speed in rpm versus CDT in 
milliseconds at higher cutoff speed of 2500 rpm for parallel, 
angular misalignment and unbalance conditions are shown in 
Figs. 2-4. The typical CDT curves are characterized by three 
zones, at the beginning of the coast down as a small convex 
shape, at the middle of the coast down as s concave shape and 
at the end of the coast down one more as a small convex 
shape. It was found that as malfunction progress the blower 
shaft comes to rest faster within a lesser time. This is due to 
the increased power loss and increased torque in the bearings 
which is once again due to increased malfunction. It has been 
observed that the slopes of the curves vary slightly from one 
another; higher energy dissipation takes place during the 
middle of the coast down. At higher speeds the CDT profile 
curves are much sharper and smooth when compared at lower 
speeds and these profile curves follows the frictional 
characteristic described by Raimondi & Boyd design curve 
[24]. Since the blower shaft is completely free from the 
driving shaft during the coast down period, as predicted, the 
blower shaft takes a longer time to dissipate the acquired 
energy during sustainable operation at higher running speeds. 
Consequently a higher CDT is obtained. The CDT reduction 
percentage was calculated in each case using the relation: 

 

CDT reduction percentage = 
[(baseline CDT-obtained CDT)/baseline CDT]*100 
At lower cutoff speed with smaller faults, has no significant 

effect on CDT reduction percentage.     
  

 
 

Fig. 2 CDT profile for parallel misalignment at 2500 rpm 
 

 
 

Fig. 3 CDT profile for angular misalignment at 2500 rpm 
 

 
 

Fig. 4 CDT profile for unbalance at 2500 rpm 

IV. RADIAL BASIS FUNCTION NEURON MODEL 
Radial Basis Function (RBF) networks form one of the 

essential categories of neural networks. A RBF network is a 
two-layer network whose output units form a linear 
combination of the basis functions computed by the hidden 
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units. A function is radially symmetric (or is an RBF) if its 
output depends on the distance of the input sample (vector) 
from another stored vector. Neural networks whose mode 
functions are radially symmetric are referred to as radial basis 
function networks [25].  

The general model of RBF neuron is shown in Fig. 5. The 
transfer function for a radial basis neuron is radbas. The radial 
basis neuron receives as net input, the vector distance between 
its weight vector w and the input vector p, multiplied by the 
bias b. The basis functions in the hidden layer produce a 
localized response to the inputs so that each hidden unit has a 
localized receptive field. The basis function can be viewed as 
the activation function in the hidden layer. The outputs of the 
hidden unit lie between 0 and 1. The closer the input to center 
of the Gaussian, the larger the response of the node. The node 
produces an identical output for inputs with equal distance 
from the center of the Gaussian; it is called a radial basis. The 
output unit finds a linear combination of nonlinear basis 
functions and thus the network performs a nonlinear 
transformation of the input.  

RBF network is capable of approximating any arbitrary 
mapping. The main difference between the RBF network and 
the backpropagation network is in their basis functions. The 
radial basis function covers only small regions, whereas the 
sigmoid function used in neural network assumes nonzero 
values over an infinitely large region of the input space. 
Classification tasks are more amenable to the RBF network 
than the backpropagation network in the case when the 
problem is extended to higher dimensions [26].  

 

 
Fig. 5 Radial Basis Neuron Model 

V.  RBF TRAINING PROCEDURE  
The radial basis neural networks have been designed by 

using the function newrb in the neural network toolbox 
supported by MATLAB [27]. The function newrb iteratively 
creates a radial basis network by including one neuron at a 
time. Neurons are added to the network until the sum of 
squared error is found to be very small or the maximum 
numbers of neurons are reached. At each iteration, the input 
vector, which will result in lowering the network error most, is 
used to create a radial basis neuron. During the training, each 
of the connecting weighs of the individual neuron is compared 
with the input signals. The distance between the connecting 

weights determines the output of hidden neurons and input 
vector, which is further multiplied by bias. Bias is an 
additional scalar quantity being added between the neuron and 
fictitious neuron. The output is propagated in a feed forward 
direction to the output layer neuron, which will give the 
output if the connection weights are close to the input signal. 
This output is compared with target vector. If the error reaches 
the error goal, then training is terminated, otherwise the next 
neuron will be added. The connecting weights are modified 
each time by changing the maximum neurons and the spread 
constant. The value of maximum neuron and spread constant 
keeps on changing till the network is trained properly. Radial 
basis networks can be used to approximate functions; newrb 
adds neurons to the hidden layer of a radial basis network 
until it meets the specified mean squared error goal. 

VI. RADIAL BASIS NEURAL NETWORK IN CDT DATA 
PREDICTIONS  

The input parameters were normalized before being applied 
to train and test the networks; the CDT data were normalized 
by dividing each time interval (60 ms) by CDT for normal and 
various faulty conditions. Normalized CDT values range from 
0 to 1. Similarly, deceleration speed is normalized by dividing 
each deceleration speed by the cutoff speed for normal and 
various faulty conditions. Normalized speed reduction values 
range from 1 to 0. In the present work Radial basis function 
neural network is considered for predicting the CDT. 

A. Parallel Misalignment 
The RBF network was trained for the various levels of 

parallel misalignment conditions. From 27 CDT data points at 
various level of parallel misalignment, 21 data were used for 
training and the remaining 6 data were used for testing at 1000 
rpm. From 32 CDT data points, 24 data were used for training 
and the remaining 8 data were used for testing at 1500 rpm. 
From 40 CDT data points, 30 data were used for training and 
the remaining 10 data were used for testing at 2000 rpm. From 
44 data CDT data points, 33 data were used for training and 
the remaining 11 data were used for testing at 2500 rpm. 
Variation in number of data points for training and testing is 
due to higher CDT values at higher speeds. Fig. 6 shows the 
training procedure adopted by RBF for parallel misalignment. 
This plot shows error as a function of training epochs. 

 

 
 

Fig. 6 ANN Training for parallel misalignment 
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Fig. 7 Experimental and Artificial Neural Networks predicted CDT data for a) aligned, b) 0.20 mm, c) 0.40 mm and d) 0.60 mm                                 
parallel misalignment at blower shaft speed of 1000 rpm, 1500 rpm, 2000 rpm and 2500 rpm  

 
  The trained network was used to predict the CDT data at 

different cutoff speeds, at various offset distances, and the 
results were compared with the experimental values as shown 
in Fig. 7. Normalized CDT was used to plot, since this is more 
appropriate than using CDT values. These plots represent 
normalized CDT versus CDT test time intervals corresponding 
to the number of test data points for experimental and ANN 
predicted values.   

B. Angular Misalignment 
The RBF network was trained for the various orders of 

angular misalignment conditions with the same number of sets 
of data points used in parallel misalignment were used for 
training and testing under same shaft cutoff speeds. The 
trained network was used to predict the CDT data at different 
cutoff speeds and the results were compared with the 
experimental values as shown in Fig. 8.    

C. Unbalance 
The RBF network was trained for the various unbalance 

weights with the same number of sets of data points used in 
parallel misalignment were used for training and testing under 
the same shaft cutoff speeds. The trained network was used to 

predict the CDT data at different cutoff speeds and the results 
were compared with the experimental values as shown in    
Fig. 9.   

VII. RESULTS AND DISCUSSIONS  
The radial basis function network was trained to predict 

coast down time. The CDTs and deceleration speeds are used 
to train and test the neuron to predict the CDT for different 
levels of mechanical faults.  The neural network predicted 
data were compared with the experimental values at the coast 
down time intervals of 180-2160 ms. It has been observed that 
artificial neural network modeling of system based parameters 
are found to match closely with the experimental data at 
normal and at various mechanical faults conditions, the 
variation is around 1.29 percentages.  

From the modeling, the results show that the distribution of 
experimental values and ANN predicted values are very close 
to each other in all the three cases. However, it is found that 
the deviation is slightly more at lower speeds for angular 
misalignment condition. At higher speed, the best prediction 
results are observed for all the three cases in various levels of 
introduced mechanical faults. 
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Fig. 8 Experimental and Artificial Neural Networks predicted CDT data for a) aligned, b) 0.0610, c) 0.0990 and d) 0.1530 angular misalignment 
at blower shaft speed of 1000 rpm, 1500 rpm, 2000 rpm and 2500 rpm 

 
  

By comparing the ANN predicted CDT values with 
experimental CDT values; artificial neural networks modeling 
of system is found to be satisfactory for predicting the CDT 
for parallel, angular misalignment and unbalance faults.  

The absolute standard deviation and root mean square error 
[25] used in this study for the evaluation of differences 
between ANN and experimental values are defined as: 
 
Absolute Standard Deviation: 
 

pointsdataofNumber
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Root Mean Square Error: 
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The absolute standard deviation and root mean square error 
calculated for each fault at various cutoff speeds are tabulated 
in Table. 1. From these results, for all the three cases, it has 
been observed that the error values as described by ABSD, 
RMSE are well within the permissible limits. This proves the 
efficiency of the methodology adapted in this research. The 
absolute standard deviation for all the three cases is found to 
be very small which indicates that the ANN predicted CDT 
values are very close to experimental values. The root mean 
square error is an excellent criterion for evaluating the 
performance of the neural network used. The lower values of 
root mean square error indicates the best performance of the 
neural network in predicting the CDT for all the cases for 
various mechanical faults. Hence the ANN based prediction of 
CDT for mechanical fault in rotating machinery has been 
found successful and reliable. This work leads to a new 
dimension of using ANN as an effective tool to predict 
condition monitoring parameter. The artificial neural network 
modeling to predict coast down time is highly justified for the 
CDT analysis as one of the condition monitoring parameter to 
assess the condition of the rotating machinery. 
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Fig. 9 Experimental and Artificial Neural Networks predicted CDT data for a) balanced, b) 22 gram-mm, c) 27 gram-mm and d) 32 gram-mm 
unbalance weights added at blower shaft speed of 1000 rpm, 1500 rpm, 2000 rpm and 2500 rpm  

 

VIII. CONCLUSION 
Artificial neural network has been found to be successful in 

predicting the coast down time for misalignment and 
unbalance in rotating machinery. In this research work, the 
radial basis network approach has been used for CDT data 
prediction as it employs limited neurons for the construction 
and requires lesser computational time in modeling the 
system.  

 
The proposed technique of using radial basis function 

requires only limited experimental data points to train, model 
and predict the system behavior. RBF network was 
successfully implemented to predict CDT data for various 

mechanical faults. The performance of the RBF network in 
predicting the CDT is found to be more accurate. The work 
may be extended to classify the mechanical faults in rotating 
machinery. The same methodology can well be extended to 
condition monitoring systems as well as in analyzing vibration 
data in rotating systems.   
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TABLE I 
COMPARISON BETWEEN EXPERIMENTAL AND ARTIFICIAL NEURAL NETWORK PREDICTED CDT VALUES FOR MECHANICAL FAULTS  

Cutoff Speeds rpm 
1000 rpm 1500 rpm 2000 rpm 2500 rpm Mechanical faults 

ABSD RMSE ABSD RMSE ABSD RMSE ABSD RMSE 
Parallel Misalignment 0.00197 0.01436 0.00369 0.01559 0.00254 0.01943 0.00201 0.02694 
Angular Misalignment 0.00498 0.02352 0.00215 0.01370 0.00206 0.01117 0.00259 0.03828 

Unbalance 0.00215 0.01311 0.00388 0.01449 0.00241 0.02224 0.00205 0.02899 
ABSD = Absolute Standard Deviation, RMSE = Root Mean Square Error   
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APPENDIX - A 

SPECIFICATIONS FOR FORWARD CURVED CENTRIFUGAL 
BLOWER 

 
Outer diameter: 135 mm 
Inner diameter: 110 mm  
Number of blades: 36  
Chord length: 25 mm 
Blade width: 71 mm 
Blade thickness: 1.3 mm 
Blade inlet angle: 1120 
Blade outlet angle: 1290 
Blade channel width: 10.20 mm 
Diameter ratio: 0.815 
Blower end exit duct area: 0.00295 m2 
Weight of blower: 2 kg 
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