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Abstract— This paper describes a probabilistic method for 

three-dimensional object recognition using a shared pool of surface 
signatures. This technique uses flatness, orientation, and convexity 
signatures that encode the surface of a free-form object into three 
discriminative vectors, and then creates a shared pool of data by 
clustering the signatures using a distance function. This method 
applies the Bayes’s rule for recognition process, and it is extensible 
to a large collection of three-dimensional objects. 
 

Keywords—Object recognition, modeling, classification, 
computer vision.  

I. INTRODUCTION 
HREE-DIMENSIONAL model-based object 
representation [1] uses the geometry of an object for 

modeling. In this method, an object’s geometric properties and 
relations are extracted and stored as a model of that particular 
object. During the matching process, the same procedure is 
applied to the test object, and its geometric properties and 
relations are compared against the models for identification 
purposes. The main goal of all modeling techniques is to 
extract sufficient object features to enable reliable object 
recognition during the matching process.  

Recently, due to the decreasing cost of 3D scanners, more 
complex methods that use patches created from dense images 
have been introduced in the literature. These methods include 
variety of different techniques such as spin images [2], surface 
point signatures [3], surface splash [4], harmonic shape 
contexts [5], flatness and orientation signatures [6], and the 
tensor method, which models and recognizes 3D objects in 
cluttered environments [7]. A good survey of different 
techniques can be found in [8] and [9].  

The size of the model created by all the above mentioned 
modeling techniques increases linearly as more objects are 
added to the list of the model library. As a result, the 
efficiency still remains as one of the main problems with these 
modeling techniques. This problem increases the size of the 
library model, and makes the recognition process too costly.  

In this paper it will be shown that the flatness, orientation, 
and convexity signatures (FOC signatures) [10] can be shared 
by different objects in a pool of discriminative signatures. A 
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probabilistic method then can be used to accurately recognize 
and match the objects on the scene with the library of the 
models. The size of the model created by clustered signatures 
is substantially smaller than the original models used in [10], 
and the recognition results are better.  

The rest of this paper is organized as follows: In Section II, 
the FOC signatures are explained, and set of models used in 
this paper are described. Section III describes details of the 
proposed modeling technique. In Section IV, the results and 
analysis of the experiments are presented and compared with 
the original method and spin images, and in section V the 
conclusion and suggestion for further investigation are 
discussed.  

II. BACKGROUND 
This paper uses FOC signatures for modeling three-

dimensional rigid objects by encoding the fluctuation of the 
surface and the variation of its normal around an oriented 
surface point, as the surface expands. In this method, the 
surface of an object is encoded into three discriminating 
vectors on each oriented point on the surface of the object 
termed the flatness, orientation, and convexity signatures. The 
collection of these three signatures is then used to model and 
recognize the object. 

A. Review 
The basic element used to model and recognize an object in 

[10] is referred to as oriented point. An oriented point is a 
point (P) on the surface of an object along with its normal (N) 
at point P.  

Consider an oriented point, P, on the surface of an object 
(please refer to the left-hand column of Fig. 1). Now, assume 
a sphere with radius R, centered on P. If S is the total area of 
the object circumscribed inside the sphere, and A is the 
projection of S on a plane Π, normal to N, then  

10 ≤≤= F
S
AF           (1) 

F specifies the flatness of the area around an oriented point, 
P, on the surface. For a flat surface, F is equal to 1; for a 
curved surface, F is less than one. The more curved the 
surface is, the lower the value of F would be. 

As R increases, the ratio of A/S changes, creating a graph 
that is the flatness signature of the surface around point P. The 
flatness signature of a flat area is a horizontal line. Similarly, 
the angle of the normal, θ , which is equal to the average of 
the normal of the patches enclosed in the sphere, also 
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fluctuates from its original position, N, as R increases, 
creating another curve, the orientation signature. For a 
symmetric surface, the orientation signature is a horizontal 
line if P is set on the symmetrical point on the surface. The 
combination of orientation signature and flatness signature 
models the object on point P on the surface of an object. The 
collection of the signatures is used to model the entire object. 
Each signature is a vector of d elements, in which d is the 
number of intervals used to generate the signature. For each 
interval, the radius of the sphere is set to RRR ii Δ+= −1 .. 

To find the signature for each oriented point on a vertex, 
the normal of the vertex, N, is first calculated by averaging the 
normal of the surfaces around the vertex. To decrease noise 
effect, the normal of the patches is averaged inside a sphere 
with a specific radius called the base radius. By finding the 
normal, N, and Π , the plane normal to N, the two vectors 

[ ]di sssS ,...,0 1≥=  

        [ ]di aaaA ,...,0 1≥=                     (2) 

can be calculated.   
The flatness signature, [ ]di fffF ...,01 1≥≥= , of the 

oriented point P is then calculated from )/( ε+= SAF . Here, 
ε is added to each element of S to avoid division by zero. 

Concurrently, the oriented signature 
[ ]di oooO ,...,0 1≥=  is found. The collection of F and O 

signatures models the surface of the object at the selected 
vertex. This method is called accumulative method [6].  

The main problem with this method is that as R increases, 
the signatures reach a relatively steady state. Consequently, 
the disparity of the signatures decreases as R increases. To 
overcome this problem, instead of using the surface of the 
object circumscribed inside a sphere as R increases, two co-
centered spheres are used, as shown in the middle column of 
Fig. 1. The area circumscribed between two spheres within 
radius R2-R1 is then used for signature creation. This method is 
called differentiated method [10]. The flatness signature in 
this method is calculated by )/( ε+= SAF  where  

[ ]diiii ssssssS ΔΔ≥Δ−=Δ= − ,...,0, 11   

[ ]diiii aaaaaaA ΔΔ≥Δ−=Δ= − ,...,0, 11       (3) 

 
Fig. 2 Convexity and concavity of a sample surface 

Experiments show that the signatures created by 
differentiated method are sensitive to noise. When isΔ and 

iaΔ are too small, a small perturbation on the surface of the 
object caused by noise affects the flatness signature. To 
remedy this problem, the flatness signatures are smoothed 
with a high-pass half a bell-shape filter with parameters 

)(Smean=μ and )( μδ <Δ= isallforSstd  for all the 

values of S<µ. 

B. Convex and Concave Surfaces 
The method introduced so far creates identical signatures 

for both concave and convex surfaces. To distinguish between 
concave and convex surfaces, the surface is divided into 
positive and negative patches (convex and concave surfaces 
respectively) based on the direction of their normal relative to 
an oriented point. Consider the cross-section of surface S in 
Fig. 2. O1 is a point on the surface, and N1 is its normal.  Let 
us assume we are interested in finding the signatures of the 
surface relative to oriented point O1. To find the convexity 
and concavity of the surface on points O2 and O3 relative to 
O1, connect O1 to O2 and O1 to O3 to create two vectors, O1O2 
and O1O3. Then find the projection of N2 and N3 on O1O2 and 
O1O3, T2 and T3, respectively. If the direction of O1Ox and Tx 
are the same, then the surface at point Ox is convex relative to 
point O1. If the direction of O1Ox and Tx are opposite, then the 
surface at point Ox is concave relative to O1. For example, 
relative to the oriented point O1, the surface at O2 and O3 are 
convex and concave, respectively.  

In addition to flatness and orientation signatures, the total 
convex and concave area at each step of signature creation are 

 
 

Fig. 1 Modeling. Left: Accumulated method. Middle: Differentiated method. Right: Sample signatures 
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stored separately. The calculation of convex and concave 
areas has no major effect on processing time since the same 
procedures are used for calculating flatness and orientation 
signatures.  

The convexity signature is calculated by dividing the 
convex area to the total area at each step of signature creation. 
The convexity can hold a value between one and zero. A 
value of one for convexity means that the area being 
considered for signature creation is a complete convex area. A 
value of zero means that the area is a complete concave or a 
flat area. Convexity signatures, along with flatness and 
orientation signatures, are used to model the surface around an 
oriented point. A similar filter used to smooth fatness 
signatures is applied to convexity signatures to reduce the 
noise effect. Please refer to the right-hand column of Fig. 1 for 
sample FOC signatures on the surface of an object.  

C. Models and Setting 
The Princeton benchmark [11] models (Fig. 10) were 

chosen as experimental models to test our approach. The 
models were scaled to have a maximum dimension equal to 
200 units for consistency. Normal noise with standard 
deviation equal to 1 was added to each vertex in the normal 
direction of the surface of the models to create noisy test 
models (please refer to the left-hand column of Fig. 3). 

To demonstrate the robustness of the signatures to clutter, a 
large portion of the noisy test models were removed by 
selecting a random patch as seed patch on the surface of the 
test object, and surface patches totaling up to 50 percent of the 
total surface of the object were removed. This is a valid 
assumption for cluttered surfaces, since subtracting and 
adding extra surface have similar effect on the signatures 
created by the proposed method.  

 
The right-hand column of Fig. 3 shows sample test objects 

that their surfaces were removed up to 50 percent of their total 
surface area. 

Signatures created with the proposed modeling technique 
depend on two parameters that limit the modeling area of a 
surface around an oriented point. The supporting distance 

limits the value of R. Small values of R model the local 
deformation around point P, and large values of R model the 
global deformation of the surface relative to the oriented point 
P. Due to occlusion, the entire object cannot be seen from a 
single viewpoint. It is logical to assume that if the normal of a 
patch makes an angle greater than a threshold angle with the 
orientation of point P, it cannot be seen from the same angle 
that sees point P. Therefore, those patches cannot be used for 
modeling the object from that viewpoint. These two 
parameters are called support distance and support angle, 
respectively [12]. 

The direction of the normal of the patches is an important 
factor in creating the signatures. The normal should point to 
outside of the object to create consistent signatures. We 
determined the direction of the normal of the patches by 
assuming different view-points far from the object, and then 
the directions were calculated by a method similar to ray 
tracing method [13]. 

D. Effect of Sampling Intervals on Signatures 
It was shown in [10] that FOC signatures are robust to 

scale, orientation, occlusion and clutter, patch resolution 
(sampling rate), and they tolerate noise. Our experiments 
indicate that FOC signatures are also robust to sampling 
intervals ( RΔ ).  

Different sampling intervals ( RΔ ) create different flatness 
and concavity signatures. To deal with this problem, instead 
of storing flatness and concavity signatures, their components 
were stored as modeling parameters, and then the signatures 
were calculated from these components. Flatness and 
convexity signatures are calculated as  

concaveconvex

concaveconvex

SS
AA

S
AFlatness

+
+

==  

and  

concaveconvex

convex

SS
SConvexity

+
=  

where Aconvex , Aconcave , Sconvex ,  and Sconcave are A and S 
components of convex and concave surfaces. Fig. 4 shows the 
four components of a sample vertex on the surface of M48.  

In turn, A and S components of differentiated signatures can 
be calculated from A and S components of accumulative 
signatures (please refer to equations 2 and 3). As a result,  

Fig. 3 Left: Test objects. Right: Surface of the test objects removed form 10% up to 50% of their total surface 
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Fig. 4 Components of flatness and convexity signatures of a sample 

vertex on the surface of M48 
 
instead of storing flatness and convexity signatures, four 
discriminative vectors of the accumulative method, Aconvex , 
Aconcave , Sconvex ,  and Sconcave were stored as components of the 
signature of the model on each oriented point. Since the 
values of the components increases continuously, they can be 
re-sampled accurately within any intervals. The flatness and 
convexity signatures of both accumulative and differentiated 
methods are then calculated from these components. The 
components of orientation signatures cannot be stored. 
However, experiments indicated that orientation signatures 
can be down-sampled safely.  Note that orientation signatures 
cannot be up-sampled. 

III. PROPOSED METHOD 
The authors in [10] used normalized cross correlation to 

compare signature of the models. However, the experiments 
indicate that the simple proposed distance measurement works 
much faster and provide better measurement to compare the 
signatures of the models. 

The distance of two signatures (S1 and S2) is calculated as 
their normalized Euclidean distance 

2121
1),( SS
d

ssdis −=              (4) 

where d is the dimension of the vectors S1 and S2. 
The dissimilarity of the oriented points is calculated from; 

2/12
21

2
21

2
21 )),(),(),(( ccdisoodisffdisitydissimilar ++=        (5) 

where fx, ox, and cx are the FOC signatures of the oriented 
point x. 

A. Discriminatory Power of the Signatures  
To study discriminatory power of the signatures, random 

vertices were selected on the surface of the test objects, and 
then their signatures were compared with the signatures of the 
original model on the same oriented points using equation (5). 
For comparison purposes, random vertices were also selected 
on the surface of the library models and their signatures were 
compared with the signatures of other randomly selected 
vertices.   

Fig. 5 shows the incremental histogram of the dissimilarity 
of the oriented point where Noisy Signatures are the 

signatures of the noisy-test models compared with the 
signatures of the original models, and Random signatures are 
the signatures of randomly selected vertices and compared 
with other randomly selected signatures. 

As indicated in the figure, the dissimilarity creates a 
distinctive measurement for comparison.  For example, while 
about 80% of the signatures of the noisy models compared 
with the signatures of the original models have a dissimilarity 
less than a threshold value, only about 0.7% of the Random 
signatures have a dissimilarity less than the same threshold 
value. 

B. Sharing Signatures 
Experiments indicate that oriented points close to each 

other on the surface of an object have similar FOC signatures.  
Furthermore, similar surfaces have similar FOC signatures. As 
a result, FOC signatures can be shared to model a variety of 
objects. The signatures were clustered by using a method 
similar to BIRCH [14]. Since we do not know the number of 
the clusters, we set a threshold for grouping similar signatures 
in a cluster. To calculate the threshold value, we referred to 
our experiments in the previous Section. The threshold value 
to cluster the signatures was set to the median distance of the 
noisy signatures compared with the original signatures for 
each set of F, O, and C signatures.  

))_,_(( signaturesoriginalsignauresnoisydismedianthreshold =  
The threshold was used as the maximum inter-cluster 

distance between the signatures of the clusters [15]. 
Here the common covariance matrix ( Σ ) was used for the 

clusters. The shared covariance matrix was calculated by the 
following equation 

( )0)det(| ≠∀=Σ
∑

∑
ii

i
i

i
ii

n

n
σσ

σ
 

where iσ  is the covariance matrix of cluster i, and ni is the 
number of the signatures in the cluster. 

The top-row of Fig. 6 shows the number of the clusters 
versus the number of the signatures for each set of F, O, and C 
signatures. As indicated in the figure, the number of clusters 
does not increase linearly as more signatures are added to the 
list of the signatures.  

 
Fig. 5 Dissimilarity of the oriented points 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1582

 

 

The middle-row of the figure shows the histogram of the 
signatures per clusters. As indicated in the figure, half of the 
signatures were grouped in clusters with 22 signatures and 
more, and another half of the signatures were grouped into 
clusters with 22 signatures per cluster or less. In our 
experiments, since objects were symmetrical, clusters with 
one signature were deleted as outliers.  

Finally, the bottom-row of the figure shows the number of 
the clusters versus number of the distinctive models in each 
cluster. For example, as shown in the figure, there were 2482 
clusters that each cluster was shared by signatures of four 
different models.  

C. Object Recognition 
The probability of an object given signature s from a list of 

n models is calculated by Bayes’ rule: 

∑
=

n
nn

nn
n OPOsP

OPOsPsOP
)()|(

)()|()|(        (6) 

Since each signature may come from any cluster, then 
∑=

i
iin CPCsPOsP )()|()|(  

where Ci is cluster i, and  

⎥⎦
⎤

⎢⎣
⎡ −Σ−−

Σ
= −Τ )()(

2
1exp

)2(
1)|( 1

212 iidi ssCsP μμ
π

 

m

mi
i N

rCP =)(   

rmi is the number of the signatures of model m in cluster i, and 
Nm is the total number of the signatures of model m in all 
clusters. Since the same probability can be assumed for all 
objects, then equation (6) becomes 

∑∑
∑

=

n i
ii

i
ii

n CPCsP

CPCsP
sOP

)()|(

)()|(
)|(            (7) 

Since there are three different types of signatures and 
clusters, the probability of model On given signature foc is 
equal to  

)|(log)|(log)|(
3

1
jn

ks
jnjn sOPsOPfocOP ∑∏ ==

=

            (8) 

where sj is one of the f, o, and c signatures of sample j. 
Since one outlier with the probability equal to zero in 

equation (8) affects all further calculations, the zero 
probability was substituted by the lowest probability 
calculated for all clusters in equation (8). 

For N sample points selected on the surface of the test 
object, the probability of object On given signature set foc is 
equal to 

∑∏
−

=

==
j

jn

N

j
jnn focOPfocOPOP ))|(log()|(log)(

1

1

 

Since the lowest probable sample point was eliminated as a 
possible outliner for each model, the number of the sample 
points reduced to N-1. The model with the highest probability 
was chosen as the possible candidate model. 

 
 

 

 

 
Fig. 6 Top: Number of the clusters versus number of the signatures. 
Middle: Histogram of number of the signatures per clusters. Bottom: 
Number of the clusters vs. number of the models shared each cluster 
 

D. Geometric Verification 
Because geometric consistency between the object and the 

candidate model is not being checked, there is possibility that 
the positive candidate model selected in the previous section 
may not be the correct match. To make the recognition more 
flexible, the top M most probable candidates were selected 
and passed on for geometric verification. 

For the geometric verification process, corresponding 
oriented points on the surface of the candidate models are 
needed for each set of foc signatures. Since the flatness 
signatures are more descriptive than the orientation and 
convexity signatures, the corresponding oriented points were 
selected from the two most probable clusters of the flatness 
signatures. In this way, there may be a handful of 
corresponding points (rmi may be large) for each candidate 
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model, so the corresponding oriented points were clustered 
based on their distance and the angle of their oriented points 
for geometric verification process. This process is necessary 
to limit number of the samples particularly if the models were 
sampled with a fine resolution. The clustering process reduces 
the number of the sample points to a manageable number. In 
our experiments, we have clustered the sample points only if 
their distance was less than 5 units and their angle was less 
than 18/π . 

To verify the oriented points geometrically, the same 
method used to verify spin images [16] is used. Assume that 
sx and my represent a match between the point x on the scene 
to the point y on the surface of a model. Now, let ],[ 111 msC =  
and ],[ 222 msC =  be two correspondences between the scene 
and the model. The geometric consistency between two sets of 
the matches is calculated as follows: 

)()(

)()(
)(

11

11
2,1

22

22

sSmS

sSmS
PPd

sm

sm

+

−
=   

where  

( ))(,))((||),()( 22 qpnqpnqpqS p −⋅−⋅−−== βα  

where p and q are two points in 3D, and n is normal at point p.  
Since d is not symmetric, the maximum of the d(p1, p2) is 

used to define the geometric consistency, D. 
))(),(max( 1,22,1 PPdPPdD =  

When D is small, P1 and P2 are geometrically consistent 
that scene and model points in P1 and P2 are the same distance 
apart, and their surface normal form the same angle with each 
other.  

All the matched oriented points with their D greater than a 
threshold, k, were eliminated as outliners. In our experiments 
k was set from 0.25 to 0.11. 

E. Registration 
For registration process, only three oriented points are 

needed to estimate the transformation matrix, since three 
points and three independent normal are enough to calculate 
transformation [17]. 

The remaining matches between test object and model were 
then triangulated using their D value from the previous 
section. Since, this is a simple look-up table, the process is 
fast and efficient. The oriented points, which are triangulated, 
are sorted based on their D value. 

231312 DDDD edtriangulat ++=  

Several random triangulated matches with lowest D values 
were selected and used for initial estimation of transformation 
matrix. Since calculation of transformation while keeping 

1=R and 1=τRR is a known problem, quaternion [18] was 

used to calculate the rotation matrix, R. From there, the k-
nearest neighbor method [19] was used to register the test 
object on the scene to the model. 
 
 

 

 
Fig. 7 Average of recognition results for noisy test models. Top: 
Positive candidate selection.  Bottom: True-positive recognition 

rate 

 

 
Fig. 8 Average of recognition results for cluttered objects. Top: 

Positive candidate selection.  Bottom: True-positive recognition rate
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IV. EXPERIMENTS 
In our experiments the support distance was set from 20 to 

100 with intervals of 10, the support angle was set to 3/π , 
and the base-radius was set to 10. Then six random oriented 
points were selected on the surface of the noisy models, and 
their FOC signatures were created. The signatures were then 
compared and matched to the library models shown in Fig. 10 
that consists of 69 toys including 55406 vectors for each F, O, 
and C descriptive signatures. The signatures were grouped 
into 9906, 7060, and 2523 clusters for F, O, and C signatures 
respectively. Each noisy model was tested for 50 recognition 
times for each support distance.  

A. Results 
The top-row of Fig. 7 shows the average of positive 

candidate selection from first to fourth candidates. As 
indicated in the figure, by extending the candidate selection to 
second and more, the positive recognition rate increases. The 
bottom-row of the figure shows average true-positive 
recognition results when the average alignment error after 
registration process falls below a threshold value which was 
set to 10 units in our experiments. The false-positives are the 
cases where similar objects were recognized as the target 
model. 

Fig. 8 shows the same results for cluttered objects. The top-
row of the figure shows the average of positive candidate 
selection for different levels of clutter, and the bottom-row of 
the figure shows the average true-positive recognition results 
when the alignment error falls below 10 units. As indicated in 
the figure, by increasing clutter, the recognition rate 
decreases.  

Since sample points near the cluttered area are not reliable 
for matching purposes, in recognition experiments of the 
cluttered objects, nine sample points were selected randomly 
to eliminate the effect of the sample points selected near the 
cluttered area.  

In our experiments parameter M was set to 4. By increasing 
value of M, the recognition rate of the cluttered objects 
significantly improves.  

B. Comparison 
Since spin images and original differentiated method were 

used by a similar approach for matching and recognition 
process (pleaser refer to [10] and [12]), the spin images of the 
test objects and models were created with exactly the same 
parameters for both modeling techniques.  The support 
distance was set to 3/π , and the bin of spin images set to 

RΔ . Each spin image was a histogram of 20 x 40 bins.  
The recognition results of the proposed method were 

compared with the recognition results of the original 
differentiated method and those of spin images. The sample 
points selected were the same in all experiments, and 
experiments conducted with exactly the same parameters.  

The top-row of Fig. 9 shows the recognition rate gained by 
the proposed method comparing with the original 
differentiated method and the method used by spin images. 

 

 

 

 
Fig. 9 Top-row: Recognition gained by clustered signatures. Second-
row: comparing recognition rate of the proposed technique and spin 

image for different level of cluttering. Third-row: comparing 
recognition rate of the proposed technique and the original model for 
different level of cluttering. Bottom-row: Comparing model size used 

by different modeling techniques 
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Each graph is the result of subtracting the recognition rate of 
the differentiated method and spin images from recognition 
rate of the proposed method. The solid curve in the figure 
shows gained achieved in recognition rate comparing with the 
recognition rate of the original differentiated method, and the 
dotted-curve shows the recognition rate gained by proposed 
method comparing with the recognition rate of the spin 
images.  

The figure in the second-row shows difference of the true-
positive recognition rate between the proposed method and the 
spin image for different level of clutter. As indicated in the 
figure, the recognition rate of the proposed method is 
considerably better than the recognition rate of the spin image 
for low clutter level and for small support distances. However, 
the recognition rate of the spin image is better for higher 
clutter level and large support distance. The reason is that, the 
FOC signatures created near cluttered area are not descriptive 
enough for matching purpose. One possible solution is to 
select sample points far from cluttered area rather that random 
selection.  

The figure in the third-row shows difference of the true-
positive recognition rate between the proposed method and the 
original method for different level of cluttering.  As indicated 
in the figure, the proposed method shows better recognition 
rate for cluttered area than the original differentiated method. 

Finally, the bottom-row of the Fig. 9 compares the model 
size created and used by each method. As indicated in the 
figure the size of the original differentiated method was 7.5% 
of the size of the spin image, and the size of the clustered 
signatures was only 0.88% of the size of the spin image. 
However, the recognition rates of the clustered signatures are 
better than the recognition rates of the differentiated method 
and those of the spin image.  

V. CONCLUSION 
In this paper it is shown that a variety of 3D objects can be 

modeled with shared data, and that objects can be recognized 
reliability during the matching process. We chose only six 

sample points on the surface of the test object and nine sample 
points on the surface of the cluttered objects for recognition 
process. By increasing the number of the sample points on the 
surface of the test objects recognition rate increases.  

The method presented in this paper is suitable for multiple 
object recognition. However, if the target object is known, 
then the recognition results increases further than the results 
shown in this paper. Our experiments indicate that by adding 
more objects to the library models, the number of the clusters 
increases as a polynomial of order 2, in which tends to reach 
to a saturated level as number of the signatures tends to 
infinity. 

Our experiments also indicate that the FOC signatures are 
suitable for rigid object classification. However, this finding 
needs further investigation.  
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