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Abstract—This paper presents an adaptive feedback linearization 

approach to derive helicopter. Ideal feedback linearization is defined 
for the cases when the system model is known. Adaptive feedback 
linearization is employed to get asymptotically exact cancellation for 
the inherent uncertainty in the knowledge of the given parameters of 
system. The control algorithm is implemented using the feedback 
linearization technique and adaptive method. The controller 
parameters are unknown where an adaptive control law aims to drive 
them towards their ideal values for providing perfect model matching 
between the reference model and the closed-loop plant model. The 
converged parameters of controller would then provide good estimates 
for the unknown plant parameters.  

 
Keywords—Adaptive control, Helicopter, Feedback linearization, 

Nonlinear control.  
 

I. INTRODUCTION 
 ONTROL of nonlinear systems using the state feedback 
linearization method, or the exact linearization method, 

has received a great deal of attention in the nonlinear control 
theory [1-3]. Feedback linearization consists of finding a 
feedback control law and a state variable transformation 
(diffeomorphism), such that the closed-loop system model 
becomes linear in a new coordinate system. The applicability of 
feedback linearization, however, is somewhat limited due to the 
requirement of detailed knowledge of the system model. 
Moreover, along with stringent constraints that must be 
satisfied by the original nonlinear system in order to synthesize 
the nonlinear controller. In our study, to facilitate the use of the 
feedback linearization without a prior knowledge of the system 
nonlinearities, the twin rotor helicopter [4] is used in modeling 
the unknown nonlinear system. Since helicopters are difficult 
types of aircraft to control. Generally they exhibit complex   
behaviors and their dynamics are in general nonlinear, time 
varying and may be highly uncertain. 
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II. SYSTEM DESCRIPTION  

A. Modeling of Helicopter  
   Dynamics of the twin rotor system, are derived in [5] for the 
ETH helicopter process using Euler-Lagrange approach. A 
schematic of the helicopter process configuration is shown in 
Fig. 1. The helicopter consists of a vertical axle (A), on which a 
lever arm (L) is connected by a cylindrical joint. The helicopter 
has two degrees of freedom: the rotation of the vertical axle 
(angle) with respect to the fixed ground, and the pivoting of the 
lever arm (angle) with respect to the vertical axle. Two rotors 
are mounted on the lever arm: 1R , and 2R , with the resultant 
aerodynamic forces giving rise to moments in the B and q 
directions, respectively. The voltages 1u  and 2u to the rotor 
motors are the inputs of the system. 

The dynamics for ETH helicopter model are:  
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dt
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Fig.  1 Helicopter process configuration 

A. R. Nemati, M. Haddad Zarif, and M. M. Fateh 

Helicopter Adaptive Control with Parameter 
Estimation Based on Feedback Linearization 

C



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:5, 2007

239

 
 

 

 1
11

1
1

1
11 u
TkTdt

d
+−= ωω                           (5) 

                                                   

2
22

2
2

2
11 u
TkTdt

d
+−= ωω                         (6)                                                            

 
where: 
 

AcL JmhmlhJL ++−= θθθ 222
1 sincos2cos  

 

cL mlhJL θφθθθφθθ )cos(sin2sincos2 22
2 −−=  

 
mhL θφθθ cossin2 2

3 =  
 

22221114 coscos ωωθθωω ClDL +=  
 

mhJL L
2

5 =  
 

cL mlhJL 2222
6 )cossin(sincos φθθφθθ +−−−=  

 
mhmlgL c

22
7 cossincos φθθθ +−=  

 

22211118 sin ωωωωθ DClmghL ++=  

 
where 1D , 2D  are aerodynamic torque coefficient, 1C , 2C  

are Drag force coefficient , 1k , 2k are rotors constant, 1T , 
2T are rotors time constants and 1u  , 2u  are rotors input 

voltages. 
 

B. Simplification of the Model 
   The values of different parameters are given in [6]. Due to 
complexity of nonlinear terms, exact state feedback 
linearization of (1) to (6) is not possible. Therefore, the model is 
simplified by reducing the height of the pivot point to zero i.e. 
 h =0 . 
   After inserting values of various parameters, the resulting 
dynamics of twin rotor system are: 
 

 21 xx =                                       (7) 
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155 9091.909091.0 uxx +−=                    (11) 
 

266 21803.3 uxx +−=                         (12)                   

III. FEEDBACK LINEARIZING CONTROL OF HELICOPTER  

A. Feedback Linearizing Control  
   A brief review of nonlinear control using feedback 
linearization [7] is presented. Without loss of generality, the 
multi-input, multi-output nonlinear system with m-input, 
m-output is considered. 
 

pp uxguxgxfx )(...)()( 11 +++=  
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pp =

=
                                  (13) 

 
where  nx R∈   is state vector,  pu R∈   represents control 
inputs, py R∈   stands for outputs, f and g  are smooth 
vector fields, and h is a smooth scalar function. Now, 
differentiate the outputs jy  with respect to time to get  
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In (14) jf hL stands for the Lie derivative of jh with respect to 

f , similarly jgi hL . Note that if each of the 0))(( ≡xhL jgi , 

then the input do not appear in (14) . Define jγ  to be the 

smallest integer such that at least one of the inputs appears in 
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jy γ , i.e., 
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Then equation (15) may be written as 
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If ppRxA ×∈)(  is bounded away from singularity, the state 
feedback control law 
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Yields the closed-loop decoupled, linear system 
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where [ ]Tpvv1 are the new sets of inputs defined by the 

designer. 
   Once linearization has been achieved, any further control 
objective such as model latching, pole placement, tracking may 
be easily met. If )(xA  define in (16) is singular, linearization 
may still be achieved using dynamic state feedback. The 
development may be followed using integrators before some of 
the inputs; exact conditions under linearization may be 
achieved by given dynamic state feedback [8]. 
 

B.  Nonlinear Control Design for Helicopter 
We can divide the dynamics in two subsystems. Subsystem 1 

contains equations (7) to (10) whereas subsystem 2 consists of 
(11) and (12). Subsystem 1 represents the position of twin rotor 
system whereas subsystem 2 represents the velocity of main 
and tail rotor. So, 
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The feedback linearization law is 

vxAxbxAu 11 )()()( −− +−=   
 
where )(xA  with 2=p  is given by 
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Thus, 
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For tracking of outputs the control inputs 1v  and 2v  are 
selected as: 
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1e  and 2e  are errors defined as: 111 dyye −=   and  

222 dyye −=  , where 21 , dd yy  are desired outputs. From 
(22), the error dynamics are given by: 
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                            (23) 

IV. ADAPTIVE FEEDBACK LINEARIZATION SCHEME 
   In practical implementations of exactly linearization control 
laws, the chief drawback is that they are based on exact 
cancellation of nonlinear terms. If there is any uncertainty in the 
knowledge of the nonlinear functions f  and g , the 
cancellation is not exact and the resulting input-output equation 
is not linear. we use the parameter adaptive control to get 
asymptotically exact cancellation.   
 

A. Adaptive Control of SISO Systems 
Consider a SISO system with 0)( ≠xhLg . Further, let 

)(xf and )(xg have the form 
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and the )(),( xgxf ii known functions.  Consequently, the 
control law u is replaced by 
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( )TTT 21 ,θθ , 21ˆ nnR +∈θ  the parameter estimate, and 

θθφ ˆ−=  the parameter error, then substituting (26) into (18) 
and after some calculation yields 
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The control law used for tracking is 
 

)( dd yyKyv −+=  
 
The following error equation is obtained relating  eyy d =−  

to the parameter error ( )TTT 21 φφφ += . 
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Along with the update law 

ew−=φ                                        (33) 
21 nnRw +∈  is define to be the concatenation of 21 , ww .  [9] 

 
B.  Adaptive Control of MIMO Systems 
From the preceding discussion it is easy to see how the 

feedback control law for square system can be adaptive by 
replacing the control law of  (18) by 
 

( ) ( ) ( ) vxAxbxAu ×+×−= −− 11 ˆˆˆ                   (34) 
 
Note that if )(ˆ xA is invertible, then the feedback linearization 
control law is also the decoupling control law. Thus, if 

( )xÂ and ( )xb̂  depend linearly on certain unknown 
parameters, the scheme of the previous section can be readily 
adapted. 

V. SIMULATION RESULTS FOR HELICOPTER MODEL 
Simulation results for both arrangements are shown. The 
performance of the adaptive feedback linearization controller is 
evaluated and compared with exact feedback linearization by 
computer simulation.  
 

A.  Feedback  Linearization with Known Parameter 
Fig. 2 shows the response of system using feedback 

linearization with known parameter. The Error between actual 
and desired outputs goes to zero as shown in Fig. 3. Fig. 4 
shows that all states of system are bounded. 

In this part of simulation we will see that when we have 
uncertain parameter in our system, feedback linearization is not 
due to get exact cancellation for the uncertainty of the given 
system parameters, and we have an error in our outputs. This 
fact is shown by Fig. 5 and Fig. 6. 

 
B.  Adaptive Feedback Linearization with Unknown 

Parameter 
In the last part of simulation we show that adaptive feedback 

linearization can get asymptotically exact cancellation for the 
inherent uncertainty in the knowledge of the given system 
parameters. The responses are shown by Fig. 7 and Fig. 8. 
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Fig. 2 Actual and desired outputs (known parameter control law) 

 

0 100 200 300 400 500 600 700
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

t(msec)

Tracking error

 

 
error2
error1

 
Fig. 3 Tracking error (known parameter control law) 
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Fig. 4 System states (known parameter control law) 
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Fig. 5 Actual and desired outputs (unknown parameter control law) 
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Fig.  6 Tracking error (unknown parameter control law) 
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Fig. 7 Actual and desired outputs (adaptive feedback linearization) 
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Fig. 8 Tracking error (adaptive feedback linearization) 

VI. CONCLUSION 
In this paper, we have developed feedback linearization 

strategy using the adaptive control of nonlinear systems with 
unknown parameter. In this design, the feedback linearization 
technique is used in an adaptive manner. Computer simulation 
on a nonlinear system with unknown parameters was 
performed, illustrating the effectiveness of the proposed 
feedback linearization-based adaptive control method. 

From these results, it is concluded that the online adaptive 
feedback linearization suggested in this paper is very effective 
in dealing with performance degradation problem of the 
trajectory following caused by insufficient information of 
system parameters. 
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