
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:4, No:4, 2010

404

Abstract—In the current Grid environment, efficient workload

management presents a significant challenge, for which there are
exorbitant de facto standards encompassing resource discovery,
brokerage, and data transfer, among others. In addition, the real-time
resource status, essential for an optimal resource allocation strategy,
is often not readily accessible. To address these issues and provide a
cleaner abstraction of the Grid with the potential of generalizing into
arbitrary resource-sharing environment, this paper proposes a new
Condor-based pilot mechanism applied in the PanDA architecture,
PanDA-PF WMS, with the goal of providing a more generic yet
efficient resource allocating strategy. In this architecture, the PanDA
server primarily acts as a repository of user jobs, responding to pilot
requests from distributed, remote resources. Scheduling decisions are
subsequently made according to the real-time resource information
reported by pilots. Pilot Factory is a Condor-inspired solution for a
scalable pilot dissemination and effectively functions as a resource
provisioning mechanism through which the user-job server, PanDA,
reaches out to the candidate resources only on demand.

Keywords—Condor, glidein, PanDA, Pilot, Pilot Factory.

I. INTRODUCTION

N scientific community, many research and engineering
projects over the past few years have gradually evolved to

large-scale collaborations from different organizations through
the use of geographically dispersed compute resources over
the network. Projects that require such collaborative endeavor
often involve cross-disciplinary settings with massive amount
of data exchanged for the purpose of simulation and analysis
such as Monte Carlo computing, large-scale optimization, and
pattern discovery. Examples can be observed in ATLAS
experiment [1-2], Human Genome Project [3], and
SERENDIP [4], etc. To harness the distributed computational
power, often the problem to solve is decomposed into several
subtasks, whether it be independent user jobs or workflows
containing several interdependent tasks (e.g. DAGMan [7]),
followed by allocations to the desired compute resources for
their results and feedback. Correspondingly, a user-friendly
interface for task submissions, output retrievals and fast turn-
around time are among the core issues to be considered.

Po-Hsiang Chiu is with the Department of Computer Science and

Engineering, University of Texas at Arlington, Arlington, TX 76019 USA
(e-mail: po-hsiang.chiu@mavs.uta.edu).

Torre Wenaus is with the PAS Group at the Department of Physics,
Brookhaven National Laboratory, Upton 11973 USA (e-mail:
wenaus@bnl.gov)

Further, it is foreseeable that the conjoint effort of shared
and distributed resources will potentially extend beyond the
boundaries of current dedicated clusters and computing farms,
as seen in the conventional Grid, to the inclusion of sensor
network, personal computers, mobile computers, etc as
evidenced by the growth of Volunteer Computing [9] and
Opportunistic Computing [15]. Heterogeneity of distributed
compute resources will thus become increasingly prominent.
Nevertheless, even with the current Grid environment of
modest scale with mostly clouds of computing farms, there
already exist highly diversified infrastructures in the aspects of
resource brokerage, data transfer, site services, and resource
access and sharing mechanisms, among many others.

In light of the inherently complex and diversified resource-
sharing environment, perhaps a more generic framework is
necessary to accommodate potentially multiple forms of
computing resources. The proposed new workload
management system (WMS) is therefore conceived based upon
the existing PanDA system [12] and further extended by a new
pilot mechanism, i.e. pilot factory. For the intent of later
discussion, the new WMS referenced above is conveniently
termed PanDA-PF WMS. The PanDA architecture is built
mostly on top of the existing networking infrastructure and
database technology with a user-friendly and uniform interface
to task submission and scheduling. The PanDA system works
naturally with general pilot mechanism [14], a method of
resource allocation where pilots are distributed to candidate
resources to capture their real-time information, prepare and
validate the computing environment before requesting real
payloads of pending user jobs. In this manner, users need not
be concerned about the details and differences in the
underlying Grid infrastructure such as its associated scheduler
and brokerage system; meanwhile, the real-time resource status
collected by pilots allows for a more robust job scheduling and
processing without unexpected failures resulted from, for
example, inaccurate estimate of resource capacity (e.g. load
average, CPU time, remaining memory, etc), incomplete
software stack, or missing input datasets.

A. Cross-Domain Scheduling Issues

An efficient resource allocation strategy often requires
accurate resource status information, which not only includes
static attributes such as CPU speed, total memory, and other
system-wise configurations but also time-varying properties

Generic Workload Management System Using
Condor-Based Pilot Factory in PanDA

Framework

Po-Hsiang Chiu, Torre Wenaus

I

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:4, No:4, 2010

405

with high dynamics such as current available CPU time, load
average, remaining disk space, etc. In addition, it is imperative
to ensure that the basic computing environment of a machine is
well validated before injecting real job payloads in order to
minimize unnecessary waste of computing resource. Empirical
observations often indicate that a perfectly functioning
compute resource can still fail to accomplish the task as a
result of missing pieces of software, staging errors of input
files and/or temporary unavailability of network connection,
etc. However, the individual machine profile, being remote to
the local administrative domain, is usually not directly
obtainable; that is, the external resource often appears as a
black box to the local user. Without reliable real-time status, it
is difficult to apply scheduling policies accurately tailored for
the job requirements idiosyncratic to different research and
engineering projects.

B. High-level View of the Proposed Architecture

The workload management architecture under the PanDA
framework achieves resource allocation by systematically
sending a series of precursor jobs, namely pilots, to prepare
candidate resources before fetching real payloads via PanDA
server. Fig. 1 illustrates the PanDA system when applied to a
typical Grid environment with multiple participating sites
contributing resources. As shown from the figure, the user
submits jobs to PanDA server via a simple client interface
where each job defines the associated input and output files,
desired matching criteria, and secure channels (e.g. HTTPS,
GSIFTP, etc) from which job payloads can be obtained, etc.
Note that the payload, in general, refers to any executables
required for completing a task. These user jobs are then
transmitted to the PanDA server via a secure HTTP,
authenticated using Grid proxy certificates, followed by
returns of submission status information to the client software.
The pilot generator comes into the picture for disseminating
pilots periodically to candidate compute resources with an
adjustable rate. Optionally, PanDA server communicates with
one or more distributed data management systems such as
ATLAS DDM [13] to pre-stage input data required for given
user jobs. Nonetheless, DDM and details of its data
movements are complex subjects in their own rights and are
not the primary focus of this paper.

As suggested in Fig. 1, PanDA architecture follows the
separation-of-concerns principle [17] by decoupling job
submission, job retrieval, data management, and resource
allocation to distributed components. In this manner, the
architecture has the advantage of higher adaptability; that is,
users are free to choose locally-customized systems or
preferable platforms for each role in the flow of workload
processing, thereby achieving software interoperability as is
highly preferable in general and complex Grid settings [16].
For instance, pilots can be distributed via Condor-G [5], a
Condor system extension that allows for jobs to be submitted
over the Grid through Globus-enabled gatekeepers that bridge
between sites across administrative domains. Other
contemporary batch systems such as Glite [24] and PBS [8]
are possible alternatives for pilot submissions.

Fig. 1 High-level view of the PanDA architecture

Under PanDA architecture, efficient job dispatch and

resource utilization hinges upon timely resource discovery, job
sandboxing, and impromptu status reporting of target
machines. To this end, a more scalable and automated version
of pilot generator, i.e. pilot factory, is developed based on
Condor’s glidein mechanism [5].

The rest of the paper is organized as follows: Section 2
briefly introduces the design and current implementation of the
PanDA system. Section 3 covers an overview of Condor [6],
[7], [21] and discusses the role of Condor-based pilot factory
in resource allocation. Numerical results that compare regular
pilot dispatch using Condor-G and pilot-factory approach
using Condor glidein is presented in section 4. Section 5
describes the experience with the PanDA system on active
scientific experiments. Section 6 outlines related study and
open issues in workload management. Lastly, implications of
the PanDA-PF WMS and related future research are presented
in Section 7.

II. PANDA AND PILOT GENERATOR

A. Terminology

 Before proceeding to the details of the PanDA framework, it
is helpful to elaborate some of the terminology used
throughput the paper.
 The current resource-sharing environment mainly includes
two different categories: i) Grid Computing environment
where the compute resource generally refers to the dedicated
computing farms affiliated with certain organizations – such as
companies, research labs, etc – that are mutually accountable,
and ii) Volunteer Computing environment in which public
processing and storage resources (typically PCs) are combined
in an efficient way both architecturally and algorithmically as a
conjoint effort to support computational needs from complex
projects. In a futuristic sense, the second category can be
extended to include any online computational devices such as
mobile computers, sensor network, etc. Since the ultimate goal
of the PanDA-PF WMS is to adapt to a general resource-
sharing environment regardless the underlying middleware, the
party that provides compute resources is generally referred to

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:4, No:4, 2010

406

as a resource provider. This is analogous to the site affiliated
with particular Virtual Organizations (or VOs) in the Grid
literature.

In a computational cluster, the particular server that
manages the backend compute resources is referred to as a
head node (or a front-end node) to be generic; it is analogous
to, in Globus architecture, the gatekeeper machine which
typically has a batch system installed such as Condor or PBS
in order to further schedule the jobs to the desired backend
resources. Such backend resources are sometimes referred to
as worker nodes (WNs) in Grid Computing context [14], [19].

 For convenience, resource boundary is defined to refer to
the set of available compute resources that are reachable from
the local administrative domain. Resource boundary morphs as
the external resources join or leave the local domain.

B. Brief Overview of PanDA Architecture

PanDA, Production ANd Distributed Analysis system, has
been developed since Fall 2005 to support petabyte-scaled and
data-driven production and distributed analysis processing in
the ATLAS experiment [19]. The main focus here is to
introduce the important features of PanDA directly linked to
the architectural benefits as a general WMS and flexible, on-
demand access to distributed resources through pilot
mechanism.

To start with, there are four essential components in the
PanDA system as illustrated in Fig. 2:

Fig. 2 Job stream flowing into the PanDA system as it interacts with
the external data storage system to pre-stage the required dataset
while pilots fetch appropriate jobs to their host resources

• Task Buffer represents a job repository containing
user job information including related input and
output files, various system requirements, job type,
priority scheme, location of job’s payload, etc.

• Data Service interfaces with distributed data
management system (e.g. ATLAS DDM) that
performs stage-in and stage-out of the data on which
the user job depends.

• Job Brokerage is a match-making component that
prioritizes and assigns tasks on the basis of known
static attributes such as job type, user-defined
priority, locality of input data, required resource
capacity (e.g. CPU speed, memory, disk space, etc),
and other VO- or site-specific brokerage criteria. Job
Brokerage in combination with pilots, distributed
over candidate resources, completes the desired
match-making cycle where pilots further provides
dynamic, real-time resource attributes to help with the
decision process of job assignments. Different
scheduling policies can be supported by Job
Brokerage, consistent with local site’s administrative
requirements.

• Job Dispatcher follows the secure link specified in
user jobs and sends job’s payloads to the designated
compute resources upon pilot requests.

In a generic setting, PanDA Task Buffer functions as a

system-wide, attribute-rich job database that records both
static and dynamic information on all jobs submitted over the
Grid. There is no inherent restriction on the task representation
and client interface to the PanDA’s Task Buffer. In current
implementation, PanDA uses a LAMP stack in which job
submission is accomplished via a simple Python- and http-
based client without dependency on the underlying Grid
middleware. Job specifications are parsed and stored in
PanDA’s backend database. Other possible job abstraction
schemes for the PanDA front-end client include XML-based
job specification, UDDI framework [20], and Condor classAd
[7], etc.

While jobs are being uploaded to Task Buffer, the pilots in
the meantime are running on the candidate resources, in the
process of which, pilots then make requests to Job Dispatcher
in order to obtain job payloads that match with pilot-resident
hosts. Behind the scene, the best-fit job is determined by
querying Job Brokerage that executes a given match-making
algorithm. The decision process is based in part on the user job
requirements and preferences and in part on the real-time
snapshots that pilots had taken from their hosts. Allocation of
jobs is followed by the dispatch of corresponding input data,
handled by Data Service, to those pilot-resident hosts; during
this process, Data Service interfaces with DDM, responsible
for data movements, to obtain the desired data. In the PanDA
framework, data pre-placement in target machines is ensured
before the start of job execution to avoid failures from data
staging, which usually in turn results in esoteric failure modes
and waste of available computing resource such as CPU time.
Data pre-staging is part of the schemes that implement the late-

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:4, No:4, 2010

407

binding policy used in the PanDA framework as further
discussed in the following subsection.

C. Pilot

Resource sharing mechanism in the current landscape of the
Grid environment can be classified into two types: one is the
push system where user tasks are allocated, or pushed, to the
available resources via the task scheduler following certain
match-making policy; conversely, the other type belongs to the
pull system where resources, often volunteer hosts like
personal computers, initiate connections to the designated task
servers, pulling jobs to the hosts where scheduling policies are
being executed from within volunteer’s domain. Common
batch systems used nowadays (e.g. Condor, PBS, LSF [10],
etc) in the Grid community mostly falls into the push-system
category. Volunteer computing systems such as BOINC [9] are
mostly considered as pull systems – compute resources are
often precluded behind firewalls or NATs and hence, resource
sharing requires initiations from the machine’s end.
 The PanDA system, on the other hand, is a hybrid system
following so called late-binding strategy in that user jobs are
eventually bound to best-fit resources by first pushing pilots to
the candidate resources to perform computing environment
provisioning, followed by pulling actual job payloads through
the PanDA server.

In the most generic use case, a pilot functions as a light-
weight user job that validates the most rudimentary resource
properties such as shell environment, interpreter/compiler
availability, basic software stacks, system configurations and
network connectivity and additionally, performs real-time
resource profiling such as the remaining memory capacity, etc.
These checks are performed to secure a basic working
environment to the end-user and also provide a snapshot of
various resource availability used to facilitate an optimal
match-making process.

In theory, pilot can be designed hierarchically with a
generic layer that performs only a high-level system-wise
validation prior to its immediate binding with the site-specific
service layers, which are implemented as a separate pilot core,
containing site’s local services such as methods for file
transfer, security and sandboxing mechanisms, etc. Once the
computing environment checks are completed, pilots then
proceed to the following job-specific routines [14]:

1) Data Transfer: After receiving the job payload from

PanDA server, the pilot invokes Data Service to draw in
the required input data from DDM using site’s preferable
copy tools (e.g. GSIFTP); pilot also transfers output and
log files back to end users upon completion of the
designated task. Depending on the implementation
scheme, file stage-out can also be performed instead by
DDM in response to pilot requests, conforming more
strictly to separation-of-concerns principle.

2) Job Execution: Pilot spawns a process as a job wrapper
that copies input files, sets up runtime environment,
executes the job payload, transfers job output files (either
by itself or by delegating to DDM) and then finally
performs final clean-ups. Conversely, if no job is

received, the pilot simply cleans up the work directory and
exits.

3) Monitoring: The pilot runs job monitor as a separate
thread that tracks the runtime states and packs the
information in terms of periodical heartbeat messages
back to the Job Dispatcher at the PanDA server. If Job
Dispatcher does not receive the message after a pre-
defined period, it will consider that the job had failed and
thus notify the pilot to kill the job. Moreover, each job’s
runtime information is updated accordingly upon the
receipts of heartbeat messages.

4) Job Recovery: Temporary unavailability of the resource
can often lead to job’s valid outputs being stranded at
remote storage system or worse yet, being deleted by
clean-up operations from the resource provider itself. Site
maintenance, system overhead, or job preemption
enforced by site’s local policy could all results in such
temporary disconnect. The pilot in this scenario will
attempt to rerun the entire file transfer mechanism
mentioned earlier; if failed, the same file-transfer
operation will then be executed by the successive pilots
until a per-defined limit is reached.

The PanDA system accomplishes match-making process

through not only the static job requirements stored in Task
Buffer but also the dynamic resource attributes published from
the pilots running at candidate machines. Under this modality,
the resource utilization would highly depend on the way pilots
are distributed and the functionality they offer. Apart from the
generic pilot and hierarchical pilot discussed above, another
possibility is to have pilot request multiple user jobs (hence,
their payloads) simultaneously once the computing
environment preparation is completed. Although such multi-
tasking pilot is theoretically possible to realize, it often results
in difficulty in maintaining fairness of resource share and
could potentially lead to machine overload. For reasons above,
achieving the optimal scheduling result is then being delegated
to the pilot submission mechanism – the pilot generator.

D. Pilot Generator

In the PanDA framework, pilots are distributed to remote
resources via an independent system tied to an underlying
scheduler (e.g. Condor), as can be seen from both Fig. 1 and
Fig. 2. An advantage of this scheme, particularly for the
interactive analysis in research projects where minimal latency
from job submission to launch is expected, is that the pilot
dispatch mechanism bypasses any latency between pilot
submission and execution – the user obtains, from the remote
resource, an interactive session within a short duration so long
as that there is at least one pilot, out of the population running
over active resources, presents a valid computing environment
for the job’s payload at the time of need.
 In this manner, the pilot mechanism isolates workload jobs
from compute resources and batch system failure modes in that
a workload job is assigned if and only if the pilot successfully
launches on a candidate resource. Throughput of user jobs is
increased since there is a continuously ongoing service of
resource provisioning from distributed pilots running in

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:4, No:4, 2010

408

parallel as jobs are submitted. As a result, machines effectively
appear available on-demand for end users. In addition, the
pilot service layer isolates the PanDA system from Grid
heterogeneities, being encapsulated in the pilot, such that from
the perspective of end users, the Grid or the resource-sharing
environment in general appears homogeneous.

The PanDA framework places no restrictions on the
mechanism by which pilots are disseminated. In fact, this
highly depends on resource provider’s preferable batch
system, which is part of the heterogeneous factor on resource-
sharing landscape. Where PanDA was originally introduced,
the US ATLAS production has been primarily using Condor-G
to schedule pilots across site boundaries [19]. Yet, Condor-G
encounters scalability issues at Globus-controlled gatekeepers
as a result of high GRAM traffic in response to high-volume of
user jobs. GRAM [26] refers to the Grid Resource Allocation
and Management protocol that supports the submission of
remote job requests and their subsequent monitoring and
control. With an increase in user job demands, often seen in
complex projects (e.g. ATLAS experiment), a higher pilot
flow is expected accordingly, which in turn leads to heavier
GRAM traffic (i.e. channel between Condor and Globus
software). To achieve a more scalable pilot dissemination, a
distributed scheduling approach based on Condor’s glidein
mechanism is therefore conceived. Details are to be covered
in the next section following a brief overview of the Condor
system.

III. CONDOR AND PILOT FACTORY

Condor [7] is a distributed workload management system
developed primarily for integrating distributed resources to
ultimately achieve both high-throughput computing [22] and
opportunistic computing. Similar to other batch systems,
Condor provides the following major functionality:
job/machine monitoring and management, fault recovery,
checkpointing, customizable scheduling polices and match-
making mechanisms that reflect job/machine requirements and
different priority schemes [23]. Fig. 3 presents the fundamental
structure of Condor system. The core logical components, also
known as Condor kernel [7], include job queue (functionally
represented by the Condor schedd daemon), virtual machine
(startd daemon), match maker (negotiator daemon), and in-
memory database (collector daemon).

Fig. 3 Condor kernel

The following stepwise description briefly outlines how
Condor works using the aforementioned components: i) users
submit tasks to the job queue (i.e. schedd) in the format of
ClassAds containing matching criteria ii) the schedd publishes
all task information to the pool database (i.e. collector) while,
in the mean time, Condor virtual machines (i.e. startd), being
distributed over all the available compute resources, also
advertise their associated machine profiles to the collector
including system configurations, machine runtime states, and
matching preferences (over user jobs), etc iii) with the
collector receiving information from both the job queue and
resources, the Condor negotiator then executes its match-
making algorithm based on the scheduling policies defined in
both the job and the resource (in terms of requirements and
preferences) and finally determines the best match.

A. Condor Glidein

A basic Condor-managed resource pool consists of the
following building blocks: i) the job submitter with one or
more job queues (i.e. schedds) containing submitted user jobs,
ii) the job executor consisting of one or more distributed
virtual machines (i.e. startds) that represent all the available
compute resources, and iii) the central manager (i.e. collector
and negotiator) primarily responsible for collecting pool-wise
status information and performing match-making algorithm.
Each role mentioned above runs independently and can be
deployed on different machines. Condor system, being
structurally decentralized in its design, makes it possible to
dynamically deploy partial Condor functionality on-demand
(i.e. subset of Condor daemons) across the network, whereby
expands the local resource on the fly. The idea of dynamic
deployment gives rise to glidein. A Condor glidein generally
refers to the startd and its functionally-dependent daemons –
altogether serving as a virtual machine – that are dynamically
installed and executed on a remote resource. Glidein startd
creates an abstraction of the hosting machine in terms of the
Condor representation and advertises itself to the local-pool
database (collector) such that the remote resource effectively
joins the local pool and become visible to the local user.

B. Schedd Glidein

The schedd-based glidein, similar to the dynamically-
deployed Condor virtual machines mentioned previously, is
accomplished by remotely install and execute a subset of
Condor daemons altogether functioning as a job queue. This
remote schedd effectively “glides into” the local resource pool
by advertising itself to the local collector, sharing exactly the
same mechanism as the startd glideins.

Fig. 4 illustrates the Condor glidein mechanism and
compares the two different glidein types with one working
effectively as distributed virtual-machines and the other as a
dynamic job queue. Typically, the schedd glidein is deployed
on a remote Globus-enabled machine where the glidein
operates as a medium that redirects Condor jobs to the site’s
native batch system. Contrary to the job flow in the Globus
model, user jobs now flow through the schedd glidein to the
remote batch system rather than through the Globus Job
Manager, a set of processes that perform monitoring and
control over Grid jobs. The downstream flow remains the

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:4, No:4, 2010

409

same as the Globus model where the remote batch system is
responsible for eventual match-making for the incoming jobs.

Fig. 4 Glidein schematic

The glidein schedd communicates with the native batch

system through the related GAHP server process depending on
the native batch system type (e.g. Condor, PBS, LSF, etc). For
the purpose of presenting the glidein-based approach for pilot
dispatch, here it is assumed that the remote batch system type
is Condor, in which case the glidein relays jobs using the
Condor-C mechanism [25]. Condor-C stands for Condor to
Condor, designed to interconnect two or more independent
Condor-managed resource pools. Using Condor-C, jobs are
submitted to a job queue (i.e. client schedd) and are
subsequently forwarded to another job queue (i.e. server
schedd). The client schedd is typically an instance running on
a machine within the local resource domain (i.e. the local job
submitter) whereas the server schedd runs in the foreign
resource domain. When the server schedd is the glidein
instance, remote jobs can effectively be allotted to a foreign
computational cluster while being treated almost the same as
local jobs. In this manner, multiple clusters across
administrative domains are virtually merged together, thereby
expanding the resource boundary.

The glidein schedd works similarly to the role of the Globus
Job Manager in the sense that the glidein also serves as a
resource broker connecting different resource domains. The
fundamental difference is that the jobs dispatched via a glidein
schedd no longer go through the Globus GRAM channel.
Compared to the Condor-G using GRAM protocol, each job,
either in active or wait state, is monitored and controlled by a
Globus jobmanger process (a primary component of the
Globus Job Manager), leading to higher resource consumption
upon heavier job flow. In the Condor-G model, such overhead
due to job monitoring activities is ameliorated by introducing a
Grid Monitor that temporarily shuts down the jobmanager
process while the associated job is not running [25]. However,
the source of the overhead still exists due to the remaining
monitoring activities in active jobs, which are required
considering that each user job is unique and that the job

representations are inherently different in the Condor and
Globus system1.

While Condor-G fits the needs of regular user jobs, it may
be excessive for the pilot mechanism since pilots in aggregate
work as a light-weight service layer on top of the job payloads.
The schedd glidein can thus achieve higher scalability for the
pilot mechanism by treating pilot jobs as a “homogenous job
stream,” requiring no separate job monitoring and control. In
addition, a glidein by definition is only deployed on a service-
on-demand basis and thus can be removed when no jobs are
intended to use the resource pool. The next section introduces
an application of the schedd glidein used in pilot
disseminations.

C. Pilot Factory

The Pilot Factory (PF) represents an independent and
automatic system for the pilot dispatch and control. It is
developed in parallel with PanDA system and for historical
reasons, Pilot Factory took its name to differentiate it from a
regular pilot generator (or pilot submitter) used only as a
component in the factory. The factory first deploys glidein
schedds to the head nodes of the sites, followed by the
backend pilot generator submitting pilots directly to these
glideins, from which these pilots are then redirected to the
native batch system.

The Pilot Factory consists of three major components: i) a
glidein launcher, responsible for the dynamic deployment of
glideins to eligible sites ii) a glidein monitor that detects any
failure or removal of the running glideins due to walltime
limits or temporary site downtimes, upon which the monitor
then invokes the glidein launcher to deploy new glidein
instances and iii) a pilot generator that distributes pilots
through the schedd glideins running on remote resources. The
core of the glidein launcher and monitor lies in the mechanism
to submit glidein requests, which is accomplished by initiating
Condor-G jobs to configure, install and execute related
daemon set on the target head node of the foreign site. The
pilot generator is built upon Condor schedd, to which pilots
are submitted. Given that all factory components are
essentially complex wrappers over Condor, they can be
distributed, like the majority of Condor daemons, to different
machines without locality constraint.
 The current implementation of schedd glidein still relies
upon the service of Globus software for its initial setup in that
the glidein deployment is achieved via two consecutive
Condor-G jobs: the setup and the startup. The system-setup job
locates and installs platform-dependent, schedd-related
binaries on the designated head node, generates the required
configuration file and a startup script to be used at the next
phase. The startup job then executes the script staged earlier to
activate Condor daemons. Using the glidein as a job queue for
pilots, Globus software only serves occasional glidein requests

1 Condor-G converts the job description to RSL (Resource Allocation

Language) format used by GRAM. The Globus Job Manger then parses the
RSL that specifies the binary to be executed and other job requirements such
as CPU time, number of processors, etc, some of which are further used to
construct the job submit file for the native batch system.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:4, No:4, 2010

410

and thus is fully decoupled from the pilot traffic for as long as
the glidein remains active.
 As alluded to earlier, Condor schedd supports the
interfacing with multiple widely-used batch systems (e.g. PBS)
in addition to Condor itself with the proper configuration and
the required GAHP server binary. Using the feature above, the
schedd glidein mirrors the external resource domain, thereby
hiding the heterogeneity of site infrastructure. The result
effectively presents the pilot generator with a uniform
submission portal yet without the burden of constant job
control/monitoring as in Condor-G, which allows for much
higher pilot flow. The Pilot Factory approach therefore has
great potential to lift the performance bottleneck in the PanDA
architecture in light of its higher scalability and its flexibility
in the on-demand deployment. The next section justifies this
modality with empirical results.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Since PanDA was introduced, the US ATLAS production
has been primarily using Condor-G to schedule pilots across
site boundaries. At times of peak usage, large pilot traffic is
often required to cope with high demand of user jobs. To
alleviate the correspondingly high GRAM traffic in Condor-G-
based pilot dispatch, the Pilot Factory approach is developed
as an alternative method that substantially reduces the need of
Globus brokerage by deploying Condor’s schedd glideins to
the front-end nodes of the remote clusters. Pilots are then flow
through the glideins to the native scheduling system where
glideins function as tunnels that connect the pilot submitter
host with the remote scheduler.

A. Resource Usage Comparison

In this section, an experiment is presented to compare the
resource usage in Condor-G-based pilot dispatch with the Pilot
Factory approach in terms of percentage CPU time and
memory consumption. The experiment was conducted in a test
computational cluster (OSG-ITB test bed) with 1 head node
and 8 worker nodes (i.e. backend compute resources),
configured with 8 job slots; that is, a maximum of 8 jobs is
allowed to be in the running state on the job queue.

To ensure a continuous supply of pilot jobs, the pilot
generator was configured to maintain a queue depth of 20
pilots on the submitter host so that ultimately, the 8 job slots
on the remote cluster are filled most of the time; although
theoretically, a persistence of approximately 8 pilot jobs (or
less) should suffice. To simulate the fact that pilots in practice
should remain active for as long as their associated user jobs
of varying execution times, each pilot is configured to have a
runtime determined by the bounded Gaussian distribution with
an appropriate lower and upper limit (see Table I). Further, the
resource usage metrics (e.g. percentage CPU time) on the
cluster-head node are sampled on a predefined interval
perturbed by a Gaussian noise. The irregular sampling interval
is incorporated here with the intent of minimizing biased
measurements from any possible “synchronization” between
hidden temporal patterns in the scheduling process and the
sampling process itself. The specification for the
experimentation is summarized in Table I.

Fig. 5 compares the resource usage in terms of percentage

CPU time while Fig. 6 compares memory usage. With the
same pilot load, the result indicates that the Pilot Factory mode
has lower resource consumption on average and lower
sampling errors. Since a glidein only serves as a conduit
between the submitter host and the remote scheduler,
computing resource is only allocated for running the schedd
and the GAHP server process without additional processing
time required for the per-job monitoring/control as in the case
of Condor-G.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

5

10

15

20

25

30

35

Time (Hours)

C
P

U
 U

sa
ge

 (
%

)

Condor-G

Glidein

Fig. 5 Percentage CPU times during a 6-hour time frame

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

4

Time (Hours)

M
em

or
y

U
sa

ge
 (

K
B

yt
es

)

Condor-G

Glidein

Fig. 6 Memory usage during a 6-hour time frame

Note that the experiment focuses on relatively shorter jobs

with life spans within the order of a few minutes (3 minutes at
maximum in this experiment). Theoretically speaking, the

TABLE I
PILOT-SPECIFIC PARAMETERS

Parameter Value

Number of job slots
in the target cluster

8

Pilot queue depth 20

Pilot runtime Minimum: 5 seconds
Maximum: 180 seconds

Sampling rate of
resource usage

15 samples per miniute

.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:4, No:4, 2010

411

shorter the jobs, the higher the overhead in the case of Condor-
G since each job requires a jobmanager process being active
during the phase of job submission, file staging, and the
cleanup upon job completion. Consequently, as long as shorter
jobs are in the majority, the resource usage with higher
workload is expected to be similar to (if not higher than) the
empirical results presented here. Lastly, since a jobmanager
and its child processes appear at various stages of a Condor-G
job prior to its completion, both the CPU and memory usage
tend to fluctuate more than those in the PF submission mode,
resulting in higher sampling errors.

V. EXPERIENCE

The development of the PanDA system dates back to the late
2005 to meet ATLAS requirements for efficient processing
and management of large-scaled production tasks and
distributed scientific analysis. The PanDA architecture gives
rise to a dynamic workload management system that optimizes
resource utilization through data-driven scheduling and just-in-
time resource allocation with the pilot mechanism. The
benefits of PanDA’s architecture have led to its widening use
in OSG [27] and EGEE [18], etc. In particular, PanDA has
processed more than 70 million jobs as of late 2009, currently
at a typical rate of about 1M jobs per week for production at
approximately 120 sites around the world, and about 20K jobs
per day for distributed analysis. In view of the potentiality of
combining broader forms of compute resources across
geographic boundaries, the PanDA architecture is further
extended to a more generic framework that adapts to the
heterogeneity of Grid infrastructures, thereby providing a
uniform job-management service layer and achieving
optimization of resource allocations with a late-binding
strategy as emphasized in this paper. These efforts lead to a
collaborative research with the Condor team and the
development of applications in glidein technology such as the
Pilot Factory as described in Section 3.

VI. RELATED WORK

The late-binding strategy used in PanDA for resource
allocation is realized in two contexts: data-driven scheduling,
and just-in-time match-making. In the PanDA framework, both
the aforementioned services are in part delegated to the
distributed pilots at the candidate resources in the sense that
pilots can be configured to initiate data movements and collect
real-time resource profile for match-making purposes. The
concept of the pilot mechanism, in its late-binding with data,
can be traced back to the experience in DIRAC [28] used for
the LHCb experiment. DIRAC provides several architecture-
level solutions for reliable data distribution, data integrity and
access in order to minimize waste of resource due to failure
modes during data staging process. Once the required sets of
data become available and are validated, the workload agent in
DIRAC then submits to the Grid the jobs that have been
waiting for these data.
 From the prospective of the late-binding between jobs and
resources, the pilot identity is analogous to the role of remote
client agents (or workers) in Volunteer Computing systems

such as BOINC [9], SETI@home [4], and Distributed.net [29].
In these systems, each volunteer host is attached to the servers
from which tasks can be downloaded. Various CPU scheduling
schemes on the level of work-fetch policy, CPU time-slicing,
estimate of completion time, etc, are then enforced by the
client agent running on the volunteer host [30]. The acquired
tasks, as a result, can be tightly matched with real-time
machine properties of the volunteer host. Such a client-server
model also exists in the form of the pilot mechanism in the
PanDA architecture; yet the pilot approach works slightly
differently in that there is no pre-defined agreement that
associates user tasks with the target machines where pilots are
injected. Consequently, the real-time resource information
collected by pilot jobs is sent back to the PanDA server where
scheduling strategy is dynamically determined by selecting the
best-fit user task mutually agreeable to the target resource. In
this manner, scheduling algorithms are then decoupled from
the client agent (i.e. the pilot) that initiates requests for user
jobs.

Efficient cross-domain resource allocation is a key aspect
for minimizing heterogeneity of the resource-sharing
environment. This subject has been addressed by many related
research including Condor-G, BDII [31], and other edge
services such as MDS (Monitoring and Discovery Service)
from the Globus project [11]. Condor-G now incorporates a
site-level resource allocation mechanism by which user jobs
are matched to the desirable sites without having to explicitly
select the target site. Grid resources identify themselves by
advertising their available services, requirements and
preferences over jobs in the form of ClassAds while user jobs
also specify the likes; a match occurs when the overall
requirements between a job and a Grid resource are
compatible with each other. However, achieving this high-
level brokerage requires the sites to cooperate by providing
consistent and pre-defined resource descriptions that
accurately reflect the capacity of their managed resources.
BDII, on the other hand, periodically polls resource attributes,
such as free CPUs, supported Virtual Organizations, etc,
through LDAP servers gathering information from
computational clusters. However, using the BDII approach for
resource allocation still requires an agreement and consistency
over the resource profiles from their providers. In addition, the
real-time resource information is obtained through constant
polling (e.g. using periodical cron jobs) to the related servers
in the target site domain. This architecture, when compared to
the pilot mechanism, would require dedicated servers per site
and thus, may not generalize as well to the general resource-
sharing environment such as the network of volunteer hosts.

VII. CONCLUSION AND FUTURE WORK

Abstraction of the resource-sharing infrastructure for a
homogeneous representation has been one of the primary goals
in the Grid computing community. The PanDA-PF architecture
is presented here to achieve a uniform view of the Grid and
better resource utilization through the layer of distributed
pilots and their efficient dispatch. The pilot mechanism
accelerates distant resource discovery and, through late-
binding between tasks and their target machines, minimizes

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:4, No:4, 2010

412

computing resource wasted in various failure modes.
Concurrently, pilots gather real-time resource properties so as
to make achievable a seamless match-making procedure.
Heterogeneity of the Grid is encapsulated in the layer of the
distributed pilots so that users do not have to deal with the
differences in the underlying schedulers and other specifics in
the fabric layer [16] of the Grid. Further, the PanDA-PF
architecture also aims to generalize resource utilization to a
broader form of distributed resources such as volunteering
computing nodes across the Internet where pilots can act as
client agents that initiate requests for user jobs.
 The Pilot Factory is a glidein-based solution to a more
scalable pilot dispatch than the conventional Grid-job
approach. In the Pilot Factory mode, the glideins as dynamic
job queues are first installed at the target cluster head nodes
prior to pilot dispatch. This is mainly accomplished through
appropriately configured Condor-G jobs using Condor schedd
and its related daemons as executables. Subsequently, the
light-weight repetitive jobs such as pilots will then flow
through glideins to the native scheduler without excessive
monitoring/control on the per-job basis. Treating each pilot
individually as a Grid job often leads to scalability issues due
to the correspondingly large GRAM traffic, which is required
in pilot disseminations to cope with large and constant job
flow. In particular, heavy workload is often expected during
the course of large-scale and complex scientific projects such
as the ATLAS experiment.

The PanDA-PF WMS provides users with an architectural
foundation for resource acquisition, validation and allocation
with user jobs. However, there are other dimensions in
harnessing distributed resources not yet fully investigated
within the PanDA framework such as the following: i) strategic
expansion of resource boundary (i.e. increasing the set of
available resources) by distributing Condor glideins (or VMs
in general) on compute resources fitted for user jobs, and ii)
adaptive match-making policy that improves itself through
learning the dynamics of jobs and computing resources.

In support of the preceding objectives, glideinWMS [32]
can be used to expand the resource boundary by skillfully
distributing Condor glideins at the target computational
clusters as locally-accessible virtual machines. Furthermore,
the decision-making process that integrates reinforcement
learning with the cluster-based conceptual model [33] provides
an initial effort towards solving the match-making
optimization problem characterized by morphing resource
boundary formed by distributed pilots or glideins. These
techniques could potentially increase the productivity of the
PanDA-PF WMS by several magnitudes through a strategic
pilot dispatch with the Pilot Factory in addition to the optimal
resource allocation within the PanDA framework.

ACKNOWLEDGMENT

This work was completed using resources provided by the
Open Science Grid, which is supported by the Office of
Science, U.S. Department of Energy, SciDAC program under
Contract DE-FC02-06ER41436 and the National Science
Foundation Cooperative Agreement, PHY-0621704. We also

thank the PAS and RACF Groups at the Physics Department in
Brookhaven National Laboratory for their feedback, guidance
and assistance in the required software systems and computing
facilities.

REFERENCES

[1] K. Harrison, R.W.L. Jones, D.Liko, C.L. Tan, “Distributed Analysis in
the ATLAS Experiment,” in Proc. AHM Conf., 2006.

[2] S. Kolos et al., “Online Monitoring software framework in the ATLAS
experiment”, CHEP 2003, La Jolla, California, USA, 2003.

[3] Akihiko Konagaya, “The Grid as a ‘Ba’ for Biomedical Knowledge
Creation,” Grid Computing in Life Science, LSGRID 2005, pp. 1-10.

[4] W. T. Sullivan, III, D. Werthimer, S. Bowyer, J. Cobb, D. Gedye, D.
Anderson. A New Major SETI Project Based on Project SERENDIP
Data and 100,000 Personal Computers. Astronomical and Biochemical
Origins and the Search for Life in the Universe, Proc. of the Fifth Intl.
Conf. on Bioastronomy. 1997.

[5] J. Frey, T. Tannenbaum, M. Livny, “Condor-G: A Computation
Management Agent for Multi-Institutional Grid”, Cluster Computing,
Springer Netherlands, 2004, pp. 237-246.

[6] D. Thain, T. Tannenbaum, and M. Livny. Condor and the Grid. In Grid
Computing: Making the Global Infrastructure a Reality. John Wiley &
Sons Inc., 2002.

[7] T. T. Douglas Thain and M. Livny. Distributed Computing in Practice:
The Condor Experience. Concurrency and Computation: Practice and
Experience, 2004.

[8] Papakhian, M. Comparing Job-Management Systems: The User's
Perspective. IEEE Computational Science & Engineering, (April-June)
1998. Available: http://pbs.mrj.com

[9] D.P. Anderson. “BOINC: A System for Public-Resource Computing and
Storage,” 5th IEEE/ACM International Workshop on Grid Computing,
Pittsburgh, PA, 2004, pp. 365-372.

[10] Zhou, S. LSF: Load Sharing in Large-Scale Heterogeneous Distributed
Systems. Proceedings of the Workshop on Cluster Computing, 1992.

[11] Foster, I. and Kesselman, C. The Globus Project: A Status Report. In
Proc. Heterogeneous Computing Workshop, IEEE Press, 1998, pp. 4-18.

[12] P.Nilsson, J.Caballero, K.De, T. Maeno, M.Potekhin and T.Wenaus,
“The PanDA system in the ATLAS experiment,” ACAT 2008
Conference Proceedings.

[13] Klimentov A., “ATLAS Distributed Data Management Operations.
Experience and Projection,” Journal of Physics: Conf. Series, 2007.

[14] Nilsson P., “Experience from a Pilot based system for ATLAS, “ Journal
of Physics: Conference Series, 2008

[15] M. Avvenuti, P. Corsini, P. Masci, A. Vecchio, “Opportunistic
Computing for Wireless Sensor Network,” IEEE Intl Conf. on Mobile
Adhoc and Sensor Systems,” 2007, pp. 1-6

[16] Foster, I., Kesselman, C., and Tuecke, S., “The Anatomy of the Grid:
Enabling Scalable Virtual Organizations,” Intl. J. Supercomputer
Applications, 2001

[17] B. DeWin, F. Piessens, W. Joosen, T. Verhanneman, “On The
Importance of the Separation-Of-Concerns Principle in Secure Software
Engineering,” In ACSA Workshop on the Application of Engineering
Principles to System Security Design, 2003, pp. 1-10.

[18] Enabling Grids for E-science. Available: www.eu-egee.org
[19] T Maeno, “PanDA: Distributed Production and Distributed Analysis

System for ATLAS,” Journal of Physics: Conference Series, 2008.
[20] Organization for the Advancement of Structured Information Standards,

“Introduction to UDDI: Important Features and Functional Concepts,”
2004.

[21] M. Litzkow, M. Livny, and M. Mutka. Condor - A Hunter of Idle
Workstations. In Proc. 8th Intl Conf. on Distributed Computing
Systems, 1988, pp.104-111.

[22] Jim Basney, Miron Livny, and Todd Tannenbaum, "High Throughput
Computing with Condor," HPCU news, Volume 1(2), June 1997.

[23] Rajesh Raman, Miron Livny, and Marvin Solomon, "Matchmaking:
Distributed Resource Management for High Throughput Computing,"
Proc. of the 7th IEEE International. Symposium on High Performance
Distributed Computing, July 28-31, 1998, Chicago, IL

[24] gLite, Lightweight Middleware for Grid Computing. Available:
http://glite.web.cern.ch/glite/

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:4, No:4, 2010

413

[25] Condor manual, development release version 7.0. Available:
http://www.cs.wisc.edu/condor/manual/

[26] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W.
Smith, S. Tuecke, “A Resource Management Architecture for
Metacomputing Systems,” Proc. IPPS/SPDP ’98 Workshop on Job
Scheduling Strategies for Parallel Processing, 1998.

[27] Open Science Grid. http://www.opensciencegrid.org
[28] A. Tsaregorodtsev, V. Garonne, I. Stokes-Rees, "DIRAC: A Scalable

Lightweight Architecture for High Throughput Computing," Fifth
IEEE/ACM International Workshop on Grid Computing (GRID'04),
2004, pp.19-25.

[29] Distributed.net: The First General-Purpose Distributed Computing
Project. Available: http://www.distributed.net

[30] Derrick Kondo, David P. Anderson and John McLeod VII.
“Performance Evaluation of Scheduling Policies for Volunteer
Computing,” 3rd IEEE International Conference on e-Science and Grid
Computing. Bangalore, India, December 10-13, 2007.

[31] CERN Twiki. http://twiki.cern.ch/twiki/bin/view/EGEE/BDII
[32] Igor Sfiligoi. Structural Overview of the GlideinWMS. Available:

http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/
[33] Chiu P, Huber M, “Clustering Similar Actions in Sequential Decision

Processes,” in Proc. of the 8th Intl Conf. on Machine Learning and
Applications (ICMLA'09), Miami Beach, FL. 2009, pp. 776-781.

