International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:4, No:4, 2010

Generic Workload Management System Using
Condor-Based Pilot Factory in PanDA
Framework

Po-Hsiang Chiu, Torre Wenaus

Further, it is foreseeable that the conjoint effoftshared

Abstract—In the current Grid environment, efficient workloadand distributed resources will potentially extenglydnd the

management presents a significant challenge, fachwthere are
exorbitant de facto standards encompassing resodiseovery,
brokerage, and data transfer, among others. Irtiaddthe real-time
resource status, essential for an optimal rescalfoeation strategy,
is often not readily accessible. To address thesees and provide a
cleaner abstraction of the Grid with the potentifajeneralizing into
arbitrary resource-sharing environment, this pgp@poses a new
Condor-based pilot mechanism applied in the Panibohitcture,
PanDA-PF WMS, with the goal of providing a more gen yet
efficient resource allocating strategy. In thishétecture, the PanDA
server primarily acts as a repository of user jobsponding to pilot
requests from distributed, remote resources. Sdingddecisions are
subsequently made according to the real-time resoinformation
reported by pilots. Pilot Factory is a Condor-imedi solution for a
scalable pilot dissemination and effectively fuan8 as a resource
provisioning mechanism through which the user-jelvar, PanDA,
reaches out to the candidate resources only onriema

Keywords—Condor, glidein, PanDA, Pilot, Pilot Factory.

|. INTRODUCTION

boundaries of current dedicated clusters and cangpéarms,
as seen in the conventional Grid, to the inclusidrsensor
network, personal computers, mobile computers, asc
evidenced by the growth of Volunteer Computing [8jd
Opportunistic Computing [15]. Heterogeneity of distited
compute resources will thus become increasinglynprent.
Nevertheless, even with the current Grid environmeh
modest scale with mostly clouds of computing farthere
already exist highly diversified infrastructurestie aspects of
resource brokerage, data transfer, site serviges,r@source
access and sharing mechanisms, among many others

In light of the inherently complex and diversifieglsource-
sharing environment, perhaps a more generic frameve
necessary to accommodate potentially multiple forais
computing resources. The proposed new workload
management system (WMS) is therefore conceiveddoasen
the existing PanDA system [12] and further extenigd new
pilot mechanism, i.epilot factory. For the intent of later
discussion, the new WMS referenced above is coemdi

IN scientific_community, many research and engineerin[%rmed PanDA-PF WMS. The PanDA architecture istbuil

projects over the past few years have graduallyvedoto
large-scale collaborations from different orgariaag through
the use of geographically dispersed compute ressuover
the network. Projects that require such collabeeatindeavor
often involve cross-disciplinary settings with maesamount
of data exchanged for the purpose of simulation amalysis
such as Monte Carlo computing, large-scale optitiiaaand

mostly on top of the existing networking infrasture and
database technology with a user-friendly and umiforterface
to task submission and scheduling. The PanDA sysierks
naturally with general pilot mechanism [14], a nuethof
resource allocation where pilots are distributedcamdidate
resources to capture their real-time informatiorgppre and

pattern discovery. Examples can be observed in Ag | Avalidate the computing environment before requgstieal

experiment [1-2], Human Genome Project [3],
SERENDIP [4], etc. To harness the distributed caapenal
power, often the problem to solve is decomposeal setveral
subtasks, whether it be independent user jobs okflews
containing several interdependent tasks (e.g. DAGNA),
followed by allocations to the desired compute veses for
their results and feedback. Correspondingly, a-frirdly
interface for task submissions, output retrievald &ast turn-
around time are among the core issues to be coedide

Po-Hsiang Chiu is with the Department of ComputerieSce and
Engineering, University of Texas at Arlington, Ajton, TX 76019 USA
(e-mail: po-hsiang.chiu@mavs.uta.edu).

Torre Wenaus is with the PAS Group at the DepartntdnPhysics,
Brookhaven National Laboratory, Upton 11973 USA nai:
wenaus@bnl.gov)

andpayloads of pending user jobs. In this manner,suseed not

be concerned about the details and differences him t
underlying Grid infrastructure such as its asseciatcheduler
and brokerage system; meanwhile, the real-timeurescstatus
collected by pilots allows for a more robust jobestuling and
processing without unexpected failures resultednfrdor
example, inaccurate estimate of resource capaeity. {(oad
average, CPU time, remaining memory, etc), incoieple
software stack, or missing input datasets.

A. Cross-Domain Scheduling |Issues

An efficient resource allocation strategy often uiees
accurate resource status information, which noy amtludes
static attributes such as CPU speed, total menaomg, other
system-wise configurations but also time-varyingparties

404

International Journal of Business, Human and Social Sciences

ISSN:

2517-9411

Vol:4, No:4, 2010

with high dynamics such as current available CRukfiload

average, remaining disk space, etc. In additiois, itnperative
to ensure that the basic computing environmentrofehine is
well validated before injecting real job payloadsarder to
minimize unnecessary waste of computing resourogiiical

observations often indicate that a perfectly fuotig

compute resource can still fail to accomplish thsktas a
result of missing pieces of software, staging errof input

files and/or temporary unavailability of networknceection,

etc. However, the individual machine profile, benegnote to
the local administrative domain, is usually not edity

obtainable; that is, the external resource oftepeaps as a
black box to the local user. Without reliable réale status, it
is difficult to apply scheduling policies accuratéhilored for

the job requirements idiosyncratic to differenteash and
engineering projects.

B. High-level View of the Proposed Architecture

User A User E Other Users ..

‘,"/'Job Submission Interface , /" Job Submission Interface

Submission Side

Submission Interface

Payload
Host

Pilot Generator

PanDA Server % \

@Q—B

Fig. 1 High-level view of the PanDA architecture

The workload management architecture under the RanD

framework achieves resource allocation by systeaidyi
sending a series of precursor jobs, namely pikmtsprepare
candidate resources before fetching real payloz$anDA
server. Fig. 1 illustrates the PanDA system wheplieg to a
typical Grid environment with multiple participatinsites
contributing resources. As shown from the figudee user
submits jobs to PanDA server via a simple clienerfiace
where each job defines the associated input angubfites,
desired matching criteria, and secure channels TIPS,
GSIFTP, etc) from which job payloads can be obthiretc.
Note that the payload, in general, refers to angcatables
required for completing a task. These user jobs them

Under PanDA architecture, efficient job dispatchd an
resource utilization hinges upon timely resourcEavery, job
sandboxing, and impromptu status reporting of targe
machines. To this end, a more scalable and autdmatsion
of pilot generator, i.epilot factory, is developed based on
Condor’s glidein mechanism [5].

The rest of the paper is organized as follows: i8ec?
briefly introduces the design and current impleratonh of the
PanDA system. Section 3 covers an overview of Coffil
[7], [21] and discusses the role of Condor-bagitat factory
in resource allocation. Numerical results that carepregular
pilot dispatch using Condor-G and pilot-factory eggch

transmitted to the PanDA server via a secure HTTMSING Condor glidein is presented in section 4.tiGec5

authenticated using Grid proxy certificates, folelv by
returns of submission status information to thertlisoftware.
The pilot generator comes into the picture for efismating
pilots periodically to candidate compute resoureéth an
adjustable rate. Optionally, PanDA server commuegavith
one or more distributed data management systemis asic
ATLAS DDM [13] to pre-stage input data required fgiven
user jobs. Nonetheless, DDM and details of
movements are complex subjects in their own rigind are
not the primary focus of this paper.

As suggested in Fig. 1, PanDA architecture follothe
separation-of-concerns principle [17] by decouplifgp
submission, job retrieval, data management, andures
allocation to distributed components. In this manrthe
architecture has the advantage of higher adapsghttiat is,
users are free to choose locally-customized systems
preferable platforms for each role in the flow obrkload
processing, thereby achieving software interopétakas is
highly preferable in general and complex Grid sggi[16].
For instance, pilots can be distributed via Con@of5], a
Condor system extension that allows for jobs tcsblemitted
over the Grid through Globus-enabled gatekeepatshttidge
between sites across administrative domains.
contemporary batch systems such as Glite [24] éB8 [B]
are possible alternatives for pilot submissions.

describes the experience with the PanDA system ativea
scientific experiments. Section 6 outlines relagtddy and
open issues in workload management. Lastly, imiiina of
the PanDA-PF WMS and related future research asepied
in Section 7.

1. PANDA AND PILOT GENERATOR

its data

A. Terminology

Before proceeding to the details of the PanExnkwork, it
is helpful to elaborate some of the terminology duse
throughput the paper.

The current resource-sharing environment maimtjudes
two different categories: i) Grid Computing envinoent
where the compute resource generally refers tadduicated
computing farms affiliated with certain organizaiso- such as
companies, research labs, etc — that are mutuediguatable,
and ii) Volunteer Computing environment in whichbpa
processing and storage resources (typically P@sg@mbined
in an efficient way both architecturally and algomically as a
conjoint effort to support computational needs froomplex
projects. In a futuristic sense, the second cajegan be

othg¥tended to include any online computational devisach as

mobile computers, sensor network, etc. Since ttimate goal
of the PanDA-PF WMS is to adapt to a general rasour
sharing environment regardless the underlying reigdle, the
party that provides compute resources is generefgrred to

405

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:4, No:4, 2010

as aresource provider. This is analogous to tteite affiliated
with particular Virtual Organizations (or VOs) ime Grid
literature.

In a computational cluster, the particular servéatt

manages the backend compute resources is refared &

head node (or a front-end node) to be generic; it is analego

to, in Globus architecture, thgatekeeper machine which
typically has a batch system installed such as Goond PBS
in order to further schedule the jobs to the deslackend
resources. Such backend resources are sometinezsedefo
asworker nodes (WNs) in Grid Computing context [14], [19].

For conveniencegsource boundary is defined to refer to

the set of available compute resources that achadde from
the local administrative domain. Resource boundaoyphs as
the external resources join or leave the local doma

B. Brief Overview of PanDA Architecture

PanDA, Production ANd Distributed Analysis systdms
been developed since Fall 2005 to support petanaked and
data-driven production and distributed analysiscpssing in

the ATLAS experiment [19]. The main focus here @ t

introduce the important features of PanDA direditiked to
the architectural benefits as a general WMS arxibile, on-
demand access to distributed resources
mechanism.

To start with, there are four essential componémtshe
PanDA system as illustrated in Fig. 2:

Job Stream ..

“q—; Task Buffer
Brokerage
Data Service _Job
—~ Dispatcher
4 "I I~ |
; I /

Match- Making with S
Requirements !

PanDA Workloac
Manager

Priority ... etc ,"
%
Real-Time", /' Job Request
Profiing \ ,/ and Dispatch
Distributed Date Y
Manager Grid Scheduler
Sites
o Site Capability |
7 Service
:Edge Service Pilol
< 7 Generator
Data || !
Storage || ~N T
S J Condor PBS orLSF |

Fig. 2 Job stream flowing into the PanDA systenit &steracts with
the external data storage system to pre-stage eifpgired dataset
while pilots fetch appropriate jobs to their haestaurces

throught pilo

e Task Buffer represents a job repository containing
user job information including related input and
output files, various system requirements, job type
priority scheme, location of job’s payload, etc.

« Data Service interfaces with distributed data
management system (e.g. ATLAS DDM) that
performs stage-in and stage-out of the data ontwhic
the user job depends.

« Job Brokerage is a match-making component that

prioritizes and assigns tasks on the basis of known

static attributes such as job type, user-defined
priority, locality of input data, required resource

capacity (e.g. CPU speed, memory, disk space, etc),

and other VO- or site-specific brokerage critediab
Brokerage in combination with pilots, distributed

over candidate resources, completes the desired

match-making cycle where pilots further provides
dynamic, real-time resource attributes to help it
decision process of job assignments. Different
scheduling policies can be supported by Job
Brokerage, consistent with local site’s administet
requirements.

* Job Dispatcher follows the secure link specified in
user jobs and sends job’s payloads to the desiginate
compute resources upon pilot requests.

In a generic setting, PanDA Task Buffer functiors a
system-wide, attribute-rich job database that moboth
static and dynamic information on all jobs subnditte/er the
Grid. There is no inherent restriction on the tesgkresentation
and client interface to the PanDA’s Task Buffer. darrent
implementation, PanDA uses a LAMP stack in which jo
submission is accomplished via a simple Python- http-
based client without dependency on the underlyingd G
middleware. Job specifications are parsed and dtone
PanDA’s backend database. Other possible job alistna
schemes for the PanDA front-end client include XkHsed
job specification, UDDI framework [20], and ConddassAd
[7], etc.

While jobs are being uploaded to Task Buffer, thetpin
the meantime are running on the candidate resguitcebe
process of which, pilots then make requests tolispatcher
in order to obtain job payloads that match wittopilesident
hosts. Behind the scene, the best-fit job is deterth by
querying Job Brokerage that executes a given masiting
algorithm. The decision process is based in patheruser job
requirements and preferences and in part on thetinea
snapshots that pilots had taken from their hosliecation of
jobs is followed by the dispatch of correspondinguit data,
handled by Data Service, to those pilot-residerstd)aduring
this process, Data Service interfaces with DDMpoesible
for data movements, to obtain the desired datthdrnPanDA
framework, data pre-placement in target machinesngired
before the start of job execution to avoid failufesm data
staging, which usually in turn results in esotdaiture modes
and waste of available computing resource suchRid tine.
Data pre-staging is part of the schemes that impiheitine late-

406

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:4, No:4, 2010

binding policy used in the PanDA framework as farth
discussed in the following subsection.

C. Pilot

Resource sharing mechanism in the current landsciibe
Grid environment can be classified into two typese is the
push system where user tasks are allocated, oegush the
available resources via the task scheduler follgndertain
match-making policy; conversely, the other typeohgk to the
pull system where resources, often volunteer hdiis
personal computers, initiate connections to thégdesed task
servers, pulling jobs to the hosts where schedylblgies are
being executed from within volunteer's domain. Coonm
batch systems used nowadays (e.g. Condor, PBS,[LHF
etc) in the Grid community mostly falls into thespusystem
category. Volunteer computing systems such as BB @re
mostly considered as pull systems — compute reseuate
often precluded behind firewalls or NATs and henespurce
sharing requires initiations from the machine’s.end

The PanDA system, on the other hand, is a tHykystem
following so called late-binding strategy in thateu jobs are
eventually bound to best-fit resources by firsthpog pilots to
the candidate resources to perform computing enmiemt
provisioning, followed by pulling actual job paylisthrough
the PanDA server.

In the most generic use case, a pilot functions dight-
weight user job that validates the most rudimentasgource
properties such as shell environment, interpretenfiler
availability, basic software stacks, system configions and
network connectivity and additionally, performs Irtae
resource profiling such as the remaining memonacyp, etc.

These checks are performed to secure a basic wgorki

environment to the end-user and also provide asbmapof
various resource availability used to facilitate aptimal
match-making process.

In theory, pilot can be designed hierarchically hwia
generic layer that performs only a high-level systgise
validation prior to its immediate binding with tk#e-specific
service layers, which are implemented as a seppilatecore,
containing site’s local services such as methods file
transfer, security and sandboxing mechanisms,@tce the
computing environment checks are completed, pitben
proceed to the following job-specific routines [14]

1)
PanDA server, the pilot invokes Data Service tondira
the required input data from DDM using site’s prafde
copy tools (e.g. GSIFTP); pilot also transfers otitand

log files back to end users upon completion of th
implementatiJ

designated task. Depending on the
scheme, file stage-out can also be performed idsbya

DDM in response to pilot requests, conforming mor

strictly to separation-of-concerns principle.
2)

executes the job payload, transfers job outpus figsther

itself | i DDM hen finall
by itself or by delegating to) and then fina)ilé'ncreased since there is a continuously ongoingicerof

performs final clean-ups. Conversely, if no job

Data Transfer: After receiving the job payload fron{:

Job Execution: Pilot spawns a process as a jobperap
that copies input files, sets up runtime environtnen

received, the pilot simply cleans up the work diveg and
exits.

Monitoring: The pilot runs job monitor as a separat
thread that tracks the runtime states and packs the
information in terms of periodical heartbeat messag
back to the Job Dispatcher at the PanDA servedolf
Dispatcher does not receive the message after a pre
defined period, it will consider that the job haddéd and
thus notify the pilot to kill the job. Moreover, @ajob’s
runtime information is updated accordingly upon the
receipts of heartbeat messages.

Job Recovery: Temporary unavailability of the reseu
can often lead to job’s valid outputs being strahde
remote storage system or worse yet, being delefed b
clean-up operations from the resource providelfitSée
maintenance, system overhead, or job preemption
enforced by site’s local policy could all results such
temporary disconnect. The pilot in this scenaridl wi
attempt to rerun the entire file transfer mechanism
mentioned earlier; if failed, the same file-tramsfe
operation will then be executed by the successilasp
until a per-defined limit is reached.

3)

4)

The PanDA system accomplishes match-making process
through not only the static job requirements stoiredrask
Buffer but also the dynamic resource attributeslipoed from
the pilots running at candidate machines. Under ritodality,
the resource utilization would highly depend onweey pilots
are distributed and the functionality they offepakt from the
generic pilot and hierarchical pilot discussed ahoanother

ossibility is to have pilot request multiple ugebs (hence,
heir payloads) simultaneously once the computing
environment preparation is completed. Although soaliti-
tasking pilot is theoretically possible to realitegften results
in difficulty in maintaining fairness of resourcénase and
could potentially lead to machine overload. Fosoes above,
achieving the optimal scheduling result is thembealelegated
to the pilot submission mechanism — the pilot getoer

D. Pilot Generator

In the PanDA framework, pilots are distributed tmote
resources via an independent system tied to anrlyide
scheduler (e.g. Condor), as can be seen from hgthlFand
ig. 2. An advantage of this scheme, particulady the
Interactive analysis in research projects wherémahlatency
from job submission to launch is expected, is tihat pilot
dispatch mechanism bypasses any latency betweeat pil
gubmission and execution — the user obtains, fl@mrémote
esource, an interactive session within a shoratitum so long
as that there is at least one pilot, out of theutatn running

gver active resources, presents a valid computiwgement

or the job’s payload at the time of need.

In this manner, the pilot mechanism isolateskioad jobs
from compute resources and batch system failureesodthat
a workload job is assigned if and only if the piotccessfully
launches on a candidate resource. Throughput ofjobs is

resource provisioning from distributed pilots rummi in

407

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:4, No:4, 2010

parallel as jobs are submitted. As a result, macshéffectively
appear available on-demand for end users. In additihe
pilot service layer isolates the PanDA system fr@rd
heterogeneities, being encapsulated in the pilat) $hat from
the perspective of end users, the Grid or the resesharing
environment in general appears homogeneous.

The following stepwise description briefly outlindoow
Condor works using the aforementioned componetssers
submit tasks to the job queue (i.e. schedd) infthmat of
ClassAds containing matching criteria ii) the sah@dblishes
all task information to the pool database (i.elexbr) while,
in the mean time, Condor virtual machines (i.ertdjabeing

The PanDA framework places no restrictions on thdistributed over all the available compute resosircalso

mechanism by which pilots are disseminated. In, féis
highly depends on resource provider’'s preferablécha
system, which is part of the heterogeneous faataresource-
sharing landscape. Where PanDA was originally thioed,
the US ATLAS production has been primarily usingh@or-G
to schedule pilots across site boundaries [19], €endor-G
encounters scalability issues at Globus-controfjatékeepers
as a result of high GRAM traffic in response tothiglume of
user jobs. GRAM [26] refers to the Grid Resourcéoédtion
and Management protocol that supports the submissio
remote job requests and their subsequent monitoaing
control. With an increase in user job demands,noffeen in
complex projects (e.g. ATLAS experiment), a highglot
flow is expected accordingly, which in turn leadsheavier

advertise their associated machine profiles to dblector
including system configurations, machine runtimatest, and
matching preferences (over user jobs), etc iii)hwihe
collector receiving information from both the jolneye and
resources, the Condor negotiator then executesnégh-
making algorithm based on the scheduling policiefinéd in
both the job and the resource (in terms of requéras and
preferences) and finally determines the best match.

A. Condor Glidein

A basic Condor-managed resource pool consists ef th
following building blocks: i) thejob submitter with one or
more job queues (i.e. schedds) containing submitsed jobs,

ii) the job executor consisting of one or more distributed
virtual machines (i.e. startds) that representttal available

GRAM traffic (i.e. channel between Condor and Gbucompute resources, and iii) thentral manager (i.e. collector

software). To achieve a more scalable pilot diseation, a
distributed scheduling approach based on Condditieig
mechanism is therefore conceived. Details areet@dvered
in the next section following a brief overview dfet Condor
system.

Il. CONDOR AND PILOT FACTORY

Condor [7] is a distributed workload managementesys
developed primarily for integrating distributed oasces to
ultimately achieve both high-throughput computira®] and
opportunistic computing. Similar to other batch teyss,
Condor provides the following major functionality:
job/machine monitoring and management, fault repgve
checkpointing, customizable scheduling polices amatch-
making mechanisms that reflect job/machine requér@smand
different priority schemes [23]. Fig. 3 presenis thndamental
structure of Condor system. The core logical conepts) also
known as Condor kernel [7], include job queue (fiomally
represented by the Condor schedd daemon), virtaghime
(startd daemon), match maker (negotiator daemany, ia-
memory database (collector daemon).

ab-

User

Job Queue (schedd

W
(startd)

Compute
Resources

) 4
—
-
§
Za 2h
38 3b

Central '
Manager |

Matcl - maker
(negotiator)

i f
Pool DB
(collector)

Fig. 3 Condor kernel

and negotiator) primarily responsible for collegtipool-wise
status information and performing match-making atbo.
Each role mentioned above runs independently amdbea
deployed on different machines. Condor system, gein
structurally decentralized in its design, makegadssible to
dynamically deploy partial Condor functionality demand
(i.e. subset of Condor daemons) across the netwdr&reby
expands the local resource on the fly. The ideaywfamic
deployment gives rise tglidein. A Condor glidein generally
refers to the startd and its functionally-dependdaemons —
altogether serving as a virtual machine — thatdgreamically
installed and executed on a remote resource. @lidirtd
creates an abstraction of the hosting machinermsef the
Condor representation and advertises itself toldleal-pool
database (collector) such that the remote resoeifeetively
joins the local pool and become visible to the lacszr.

B. Schedd Glidein

The schedd-based glidein, similar to the dynanyeall
deployed Condor virtual machines mentioned preWous
accomplished by remotely install and execute a etulo$
Condor daemons altogether functioning as a job gugtis
remote schedd effectively “glides into” the locasource pool
by advertising itself to the local collector, simariexactly the
same mechanism as the startd glideins.

Fig. 4 illustrates the Condor glidein mechanism and
compares the two different glidein types with onerking
effectively as distributed virtual-machines and titker as a
dynamic job queue. Typically, the schedd glideiéployed
on a remote Globus-enabled machine where the glidei
operates as a medium that redirects Condor joltketsite’s
native batch system. Contrary to the job flow ie @lobus
model, user jobs now flow through the schedd gfidei the
remote batch system rather than through the Glohis
Manager, a set of processes that perform monitoangd
control over Grid jobs. The downstream flow remathe

408

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:4, No:4, 2010

same as the Globus model where the remote battbnsys representations are inherently different in the d@wnand
responsible for eventual match-making for the initgnjobs. Globus systefh

While Condor-G fits the needs of regular user jabsjay
be excessive for the pilot mechanism since pilotaggregate
work as a light-weight service layer on top of fble payloads.

’L | Job Glidein Job Glidein VM L
ocal Job Quee dein Job Quee e The schedd glidein can thus achieve higher scélahir the
Local VMs Headnode pilot mechanism by treating pilot jobs as a “homumes job
‘ " stream,” requiring no separate job monitoring aodt®l. In
‘ R Jobmznfger addition, a glidein by definition is only deployed a service-
| F\ q on-demand basis and thus can be removed when soajeb
v = intended to use the resource pool. The next setitooduces
N ‘ Batch System (Condor etc] an application of the schedd glidein used in pilot
: Manager % Grid Nodes disseminations.
H’ ‘ — .. O3 C. Pilot Factory
DD The Pilot Factory (PF) represents an independent an
starte . —— — automatic system for t_he pilot dispatch and contﬂ_alis
developed in parallel with PanDA system and fortdmisal
Local Domain Remote Site reasons, Pilot Factory took its name to differdatia from a

regular pilot generator (or pilot submitter) usedlyoas a
component in the factory. The factory first deplay&ein
schedds to the head nodes of the sites, followedthisy
The glidein schedd communicates with the nativectbat Packend pilot generator submitting pilots directly these
system through the related GAHP server processndépgon 9lideins, from which these pilots are then rediecto the
the native batch system type (e.g. Condor, PBS, k®fy. For native baich system. _ _
the purpose of presenting the glidein-based apprémcpilot ~ The Pilot Factory consists of three major compasieijta
dispatch, here it is assumed that the remote tsystem type 9lidein launcher, responsible for the dynamic dgmient of
is Condor, in which case the glidein relays jobingighe 9lideins to eligible sites ii) a glidein monitorathdetects any
Condor-C mechanism [25]. Condor-C stands for Coror failure or removal of the running glideins due taliime
Condor, designed to interconnect two or more indepet IMits or temporary site downtimes, upon which thenitor
Condor-managed resource pools. Using Condor-C, jobs then invokes the glidein launcher to deploy newdeh
submitted to a job queue (i.e. client schedd) ame ginstances and iii) a _pllpt gene_rator that distrisutpilots
subsequently forwarded to another job queue (iezves through the schedd glideins running on remote messu The
schedd). The client schedd is typically an instanzeing on core of the glidein launcher and monitor lies ie thechanism
a machine within the local resource domain (i.e. ltrcal job {0 Submit glidein requests, which is accomplishgdnitiating
submitter) whereas the server schedd runs in theigio Condor-G jobs to configure, install and executeates
resource domain. When the server schedd is theeiglid 9@emon set on the target head node of the foreign Ehe
instance, remote jobs can effectively be allotecatforeign Pilot generator is built upon Condor schedd, tockhpilots

Fig. 4 Glidein schematic

computational cluster while being treated almost $ame as &€ Submitted. Given that all factory componente ar

local jobs. In this manner, multiple clusters asros€Ssentially complex wrappers over Condor, they ten
administrative domains are virtually merged togetieereby distributed, like the majority of Condor daemorts different
expanding the resource boundary. machines without locality constraint.

The glidein schedd works similarly to the role loé Globus ~ 1he current implementation of schedd glideil selies
Job Manager in the sense that the glidein alsoeseas a UPON the service of Globus software for its inigatup in that
resource broker connecting different resource dosaarhe the glidein de:\ployment is achieved via two conseeut
fundamental difference is that the jobs dispatofiach glidein €ondor-G jobs: the setup and the startup. The systup job
schedd no longer go through the Globus GRAM channdpcates and installs platform-dependent, schediteel
Compared to the Condor-G using GRAM protocol, ejth binaries on the designated head node, generateedb@ed
either in active or wait state, is monitored andtoalled by a configuration file and a startup script to be usedhe next
Globus jobmanger process (a primary component of theoha_lse. The startup job then e>_<ecutes the s_cr@ed;t(_aarller to
Globus Job Manager), leading to higher resourcswoption activate Condor daemons. Using the glidein as ajjahue for
upon heavier job flow. In the Condor-G model, soekrhead pilots, Globus software only serves occasionalajfidequests
due to job monitoring activities is amelioratedibyoducing a
Grid Monitor that temporarily shuts down thiebmanager

process while the associated job is not running. [@bwever, N) " i
the source of the overhead still exists due to réraainin Condor-G converts the job description to RSL (Rese Allocation
9 Language) format used by GRAM. The Globus Job Matigen parses the

monitoring activities in active jobs, which are wé®d Rs| that specifies the binary to be executed ahdrgbb requirements such
considering that each user job is unique and thatjbb as CPU time, number of processors, etc, some afhwaie further used to
construct the job submit file for the native basgistem.

409

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:4, No:4, 2010

and thus is fully decoupled from the pilot traffar as long as TABLE |
the glidein remains active. PILOT-SPECIFIC PARAMETERS
As alluded to earlier, Condor schedd suppoite t Parameter Value

interfacing with multiple widely-used batch systefesy. PBS)
in addition to Condor itself with the proper configtion and

Number of job slots 8
in the target cluster

the requir(_ed _GAH_P server binary. Using the feaabeye, the Pilot queue depth 20

schedd glidein mirrors the external resource dojmhiereby Pilot runtime Minimum: 5 seconds
hiding the heterogeneity of site infrastructure.eThesult ‘ Maximum: 180 seconds
effectively presents the pilot generator with a fomn Sampling rate of 15 samples per miniute

resource usage

submission portal yet without the burden of constgnb
control/monitoring as in Condor-G, which allows foruch
higher pilot flow. The Pilot Factory approach tHere has g 5 compares the resource usage in terms oEptage
great potential to lift the performance bottlenétkhe PanDA cpy time while Fig. 6 compares memory usage. W t
architecture in light of its higher scalability aitd flexibility same pilot load, the result indicates that thetMéctory mode

in the on-demand deployment. The next sectionfiestthis 155 |ower resource consumption on average and lower

modality with empirical results. sampling errors. Since a glidein only serves asoaduit
between the submitter host and the remote scheduler
IV. EXPERIMENTAL RESULTS AND ANALYSIS computing resource is only allocated for running gthedd

Since PanDA was introduced, the US ATLAS productioand the GAHP server process without additional gssing
has been primarily using Condor-G to schedule pilmtross time required for the per-job monitoring/controliaghe case
site boundaries. At times of peak usage, larget pittffic is of Condor-G.
often required to cope with high demand of usersjobo
alleviate the correspondingly high GRAM traffic@ondor-G-
based pilot dispatch, the Pilot Factory approacteigeloped 30
as an alternative method that substantially redtieesieed of
Globus brokerage by deploying Condor’'s schedd gl&léo
the front-end nodes of the remote clusters. Pdo¢sthen flow
through the glideins to the native scheduling systghere
glideins function as tunnels that connect the pd#obmitter
host with the remote scheduler.

35

N N
=] a

CPU Usage (%)
=
]

10
A. Resource Usage Comparison

In this section, an experiment is presented to @mphe
resource usage in Condor-G-based pilot dispatdh thvt Pilot 0
Factory approach in terms of percentage CPU timd an ' " Time (Hours)
memory consumption. The experiment was conductedtest
computational cluster (OSG-'TB test bed) with 1 cheede Fig. 5 Percentage CPU times during a 6-hour timeér
and 8 worker nodes (i.e. backend compute resoyrces)
configured with 8 job slots; that is, a maximum®&fobs is <10'

allowed to be in the ru_nning state on thejqb queue _ Lo ;
To ensure a continuous supply of pilot jobs, thétpi] N R R I~ 1 _i|——ociden |,

generator was configured to maintain a queue deptRO

pilots on the submitter host so that ultimatelye &job slots
on the remote cluster are filled most of the timéthough
theoretically, a persistence of approximately &tpjbbs (or
less) should suffice. To simulate the fact thawtgilin practice
should remain active for as long as their assatiater jobs
of varying execution times, each pilot is configlite have a
runtime determined by the bounded Gaussian disipibwvith

an appropriate lower and upper limit (see Tabl&Uyther, the

Memory Usage (KBytes)

w

N
o

| | | |
resource usage metrics (e.g. percentage CPU timethe 2 1 l l j
cluster-head node are sampled on a predefined vitter S ey P
perturbed by a Gaussian noise. The irregular sagpiiterval
is inCOprfated here with the intent of m|n|m|2|rh1_1;ased Fig. 6 Memory usage during a 6-hour time frame

measurements from any possible “synchronizatiortiveen

hidden temporal patterns in the scheduling proeess$ the Note that the experiment focuses on relatively tegobs
sampling process itself. The specification for theyith life spans within the order of a few minut@nginutes at
experimentation is summarized in Table I. maximum in this experiment). Theoretically speakirbe

410

International Journal of Business, Human and Social Sciences

ISSN:

2517-9411

Vol:4, No:4, 2010

shorter the jobs, the higher the overhead in tlse ch Condor-
G since each job requiresj@bmanager process being active
during the phase of job submission, file stagingd @he
cleanup upon job completion. Consequently, as kmghorter
jobs are in the majority, the resource usage wiifher
workload is expected to be similar to (if not higtlean) the
empirical results presented here. Lastly, singebmanager
and its child processes appear at various staga<ahdor-G
job prior to its completion, both the CPU and meynosage
tend to fluctuate more than those in the PF subomsmode,
resulting in higher sampling errors.

V. EXPERIENCE

The development of the PanDA system dates badiettate
2005 to meet ATLAS requirements for efficient prssiag
and management of large-scaled production tasks
distributed scientific analysis. The PanDA arcHitiee gives
rise to a dynamic workload management system {biinzes
resource utilization through data-driven scheduéing just-in-
time resource allocation with the pilot mechanisirhe
benefits of PanDA'’s architecture have led to itdening use
in OSG [27] and EGEE [18], etc. In particular, Panbas
processed more than 70 million jobs as of late 2@0&ently
at a typical rate of about 1M jobs per week forduation at
approximately 120 sites around the world, and aB0it jobs
per day for distributed analysis. In view of thetepuiality of
combining broader forms of compute
geographic boundaries, the PanDA architecture ishdu
extended to a more generic framework that adaptsh¢o
heterogeneity of Grid infrastructures, thereby mimg a
uniform job-management service layer
optimization of resource allocations with a latading
strategy as emphasized in this paper. These effeats to a
collaborative research with the Condor

team and thsnsistent

such as BOINC [9], SETI@home [4], and Distributed j29].
In these systems, each volunteer host is attach#eetservers
from which tasks can be downloaded. Various CPlédaling
schemes on the level of work-fetch policy, CPU tistieing,
estimate of completion time, etc, are then enforbgdthe
client agent running on the volunteer host [30]e ®tquired
tasks, as a result, can be tightly matched with-thew
machine properties of the volunteer host. Suchemtebkerver
model also exists in the form of the pilot mechamis the
PanDA architecture; yet the pilot approach workighsly
differently in that there is no pre-defined agreamé¢hat
associates user tasks with the target machinesevilets are
injected. Consequently, the real-time resource rinégion
collected by pilot jobs is sent back to the Pan@Aser where
scheduling strategy is dynamically determined Hgating the
best-fit user task mutually agreeable to the targeburce. In

amls manner, scheduling algorithms are then deeoljflom

the client agent (i.e. the pilot) that initiategjuests for user
jobs.

Efficient cross-domain resource allocation is a lkepect
for minimizing heterogeneity of the
environment. This subject has been addressed by retated
research including Condor-G, BDIl [31], and othalge
services such as MDS (Monitoring and Discovery Bejv
from the Globus project [11]. Condor-G now incomes a
site-level resource allocation mechanism by whiskruyobs
are matched to the desirable sites without havingxplicitly

resources acroseglect the target site. Grid resources identifymedves by

advertising their available services, requiremerasd
preferences over jobs in the form of ClassAds whder jobs

also specify the likes; a match occurs when theradlve
and achievingquirements between a job and a Grid resource are

compatible with each other. However, achieving thigh-
level brokerage requires the sites to cooperatgrboyiding
and pre-defined

development of applications glidein technology such as the accurately reflect the capacity of their managesoueces.

Pilot Factory as described in Section 3.

VI. RELATED WORK

BDII, on the other hand, periodically polls resauattributes,
such as free CPUs, supported Virtual Organizaticets,
through LDAP servers gathering information

The late-binding strategy used in PanDA for reseurccOmputational clusters. However, using the BDIlmpagh for

allocation is realized in two contexts: data-drivaaineduling,
and just-in-time match-making. In the PanDA framawdoth
the aforementioned services are in part delegatedhé
distributed pilots at the candidate resources & dbnse that
pilots can be configured to initiate data movemamts collect
real-time resource profile for match-making purmos&he
concept of the pilot mechanism, in its late-bindimigh data,
can be traced back to the experience in DIRAC [2&]d for
the LHCb experiment. DIRAC provides several arddtiiee-
level solutions for reliable data distribution, a@amtegrity and
access in order to minimize waste of resource dufaiture
modes during data staging process. Once the refjsets of
data become available and are validated, the wadkément in
DIRAC then submits to the Grid the jobs that hawerb
waiting for these data.

From the prospective of the late-binding betwgsbs and
resources, the pilot identity is analogous to thle of remote
client agents (or workers) in Volunteer Computingtems

resource allocation still requires an agreementcamsistency
over the resource profiles from their providersadtdition, the
real-time resource information is obtained througinstant
polling (e.g. using periodical cron jobs) to théated servers
in the target site domain. This architecture, whempared to
the pilot mechanism, would require dedicated sarper site
and thus, may not generalize as well to the gemeslurce-
sharing environment such as the network of volurtiests.

VIl. CONCLUSION AND FUTURE WORK

Abstraction of the resource-sharing infrastructdoe a
homogeneous representation has been one of thargrgoals
in the Grid computing community. The PanDA-PF aetture
is presented here to achieve a uniform view of Gl and
better resource utilization through the layer o$trlbuted
pilots and their efficient dispatch. The pilot manism
accelerates distant resource discovery and, throlagg:
binding between tasks and their target machinesjmiies

resource-shgrin

resource descriptionat th

from

411

International Journal of Business, Human and Social Sciences

ISSN:

2517-9411

Vol:4, No:4, 2010

computing resource wasted
Concurrently, pilots gather real-time resource prtips so as

in various failure modethank the PAS and RACF Groups at the Physics Degattin

Brookhaven National Laboratory for their feedbagkidance

to make achievable a seamless match-making proeeduand assistance in the required software systems@mguting

Heterogeneity of the Grid is encapsulated in thyerdaf the
distributed pilots so that users do not have tol deth the
differences in the underlying schedulers and osipecifics in
the fabric layer [16] of the Grid. Further, the BP#&nPF
architecture also aims to generalize resourcezatitin to a
broader form of distributed resources such as ve&rng
computing nodes across the Internet where pilots az as
client agents that initiate requests for user jobs.

The Pilot Factory is a glidein-based solutiana more
scalable pilot dispatch than the conventional Gotul-
approach. In the Pilot Factory mode, the glideissignamic
job queues are first installed at the target ctubEad nodes
prior to pilot dispatch. This is mainly accomplishthrough
appropriately configured Condor-G jobs using Consttitedd
and its related daemons as executables. Subsequénl
light-weight repetitive jobs such as pilots willeth flow
through glideins to the native scheduler withoutessive
monitoring/control on the per-job basis. Treatiracte pilot
individually as a Grid job often leads to scaldbiissues due
to the correspondingly large GRAM traffic, whichrequired
in pilot disseminations to cope with large and ¢ant job
flow. In particular, heavy workload is often expsattduring
the course of large-scale and complex scientif@gmts such
as the ATLAS experiment.

The PanDA-PF WMS provides users with an architettur
foundation for resource acquisition, validation ailbcation
with user jobs. However, there are other dimensiims
harnessing distributed resources not yet fully stigated
within the PanDA framework such as the followingstrategic
expansion of resource boundary (i.e. increasing sbe of
available resources) by distributing Condor glide{for VMs
in general) on compute resources fitted for usbs,jand ii)
adaptive match-making policy that improves itsdifough
learning the dynamics of jobs and computing resesirc

In support of the preceding objectives, glideinWNER]
can be used to expand the resource boundary bijulikil
distributing Condor glideins at the target compotal
clusters as locally-accessible virtual machinesitheamore,
the decision-making process that integrates reiefoent
learning with the cluster-based conceptual modg] f8ovides
an initial effort towards solving the
optimization problem characterized by morphing uese
boundary formed by distributed pilots or glideinBhese
techniques could potentially increase the proditgtiof the
PanDA-PF WMS by several magnitudes through a sgfiate
pilot dispatch with the Pilot Factory in additiom the optimal
resource allocation within the PanDA framework.

ACKNOWLEDGMENT

match-making

facilities.

REFERENCES

[1] K. Harrison, R.W.L. Jones, D.Liko, C.L. Tan, “Disuted Analysis in
the ATLAS Experiment,” in Proc. AHM Conf., 2006.

[2] S. Kolos et al., “Online Monitoring software framernk in the ATLAS
experiment”, CHEP 2003, La Jolla, California, US803.

[3] Akihiko Konagaya, “The Grid as a ‘Ba’ for BiomedicKnowledge
Creation,” Grid Computing in Life Science, LSGR2D05, pp. 1-10.

[4] W. T. Sullivan, lll, D. Werthimer, S. Bowyer, J. B, D. Gedye, D.
Anderson. A New Major SETI Project Based on Projs&RENDIP
Data and 100,000 Personal Computers. AstronomizélBiochemical
Origins and the Search for Life in the Universepd?rof the Fifth Intl.
Conf. on Bioastronomy. 1997.

[5] J. Frey, T. Tannenbaum, M. Livny, “Condor-G: A Cartgtion
Management Agent for Multi-Institutional Grid”, Giter Computing,
Springer Netherlands, 2004, pp. 237-246.

[6] D. Thain, T. Tannenbaum, and M. Livny. Condor ane rid. In Grid
Computing: Making the Global Infrastructure a Rigallohn Wiley &
Sons Inc., 2002.

[7] T.T. Douglas Thain and M. Livny. Distributed Contimg in Practice:
The Condor Experience. Concurrency and Computaffvactice and
Experience, 2004.

[8] Papakhian, M. Comparing Job-Management Systems: Wker's
Perspective. IEEE Computational Science & Engimegr{April-June)
1998. Available: http://pbs.mrj.com

[9] D.P. Anderson. “BOINC: A System for Public-Resou@mmputing and
Storage,” 5th IEEE/ACM International Workshop onids€omputing,
Pittsburgh, PA, 2004, pp. 365-372.

[10] Zhou, S. LSF: Load Sharing in Large-Scale Heteregan Distributed
Systems. Proceedings of the Workshop on ClusterpDting, 1992.

[11] Foster, I. and Kesselman, C. The Globus ProjecBt#us Report. In
Proc. Heterogeneous Computing Workshop, IEEE P1€88, pp. 4-18.

[12] P.Nilsson, J.Caballero, K.De, T. Maeno, M.Potekhimd T.Wenaus,
“The PanDA system in the ATLAS experiment,” ACAT)
Conference Proceedings.

[13] Klimentov A., “ATLAS Distributed Data Management @ptions.
Experience and Projection,” Journal of Physics:fC8aries, 2007.

[14] Nilsson P., “Experience from a Pilot based systenAfTLAS, “ Journal
of Physics: Conference Series, 2008

[15] M. Avvenuti, P. Corsini, P. Masci, A. Vecchio, “Ompunistic
Computing for Wireless Sensor Network,” IEEE Intr@. on Mobile
Adhoc and Sensor Systems,” 2007, pp. 1-6

[16] Foster, 1., Kesselman, C., and Tuecke, S., “Thetémg of the Grid:
Enabling Scalable Virtual Organizations,” Intl. Bupercomputer
Applications, 2001

[17] B. DeWin, F. Piessens, W. Joosen, T. Verhannem#®n The
Importance of the Separation-Of-Concerns Prindipl8ecure Software
Engineering,” In ACSA Workshop on the Applicatioh Bngineering
Principles to System Security Design, 2003, pp01-1

[18] Enabling Grids for E-science. Available: www.eu-egeg

[19] T Maeno, “PanDA: Distributed Production and Distitibd Analysis
System for ATLAS,” Journal of Physics: Conferenegi&s, 2008.

[20] Organization for the Advancement of Structured fimfation Standards,
“Introduction to UDDI: Important Features and Fuaotal Concepts,”
2004.

[21] M. Litzkow, M. Livny, and M. Mutka. Condor - A Huet of Idle
Workstations. In Proc. 8th Intl Conf. on DistribdteComputing
Systems, 1988, pp.104-111.

[22] Jim Basney, Miron Livny, and Todd Tannenbaum, "Hffroughput
Computing with Condor," HPCU news, Volume 1(2), du997.

This work was completed using resources providedhiey [23] Rajesh Raman, Miron Livny, and Marvin Solomon, "Mahaking:

Open Science Grid, which is supported by the Offide
Science, U.S. Department of Energy, SciDAC progtader

Distributed Resource Management for High Through@amputing,”
Proc. of the 7th IEEE International. Symposium dgtHPerformance
Distributed Computing, July 28-31, 1998, Chicagdo, |

Contract DE-FC02-06ER41436 and the National Scienggs) gLite, Lightweight Middleware for Grid Computing. vAilable:

Foundation Cooperative Agreement, PHY-0621704. \lge a

http://glite.web.cern.ch/glite/

412

[25]

[26]

[27]
[28]

[29]

[30]

[31]
[32]

[33]

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:4, No:4, 2010

Condor manual, development release version 7.0. ilghle:
http://mww.cs.wisc.edu/condor/manual/

K. Czajkowski, I. Foster, N. Karonis, C. Kesselm&, Martin, W.
Smith, S. Tuecke, “A Resource Management Architectdor
Metacomputing Systems,” Proc. IPPS/SPDP '98 Worgslo Job
Scheduling Strategies for Parallel Processing, 1998

Open Science Grid. http://www.opensciencegrid.org

A. Tsaregorodtsev, V. Garonne, |. Stokes-Rees, AQIRA Scalable
Lightweight Architecture for High Throughput Compmg," Fifth
IEEE/ACM International Workshop on Grid ComputinGRID'04),
2004, pp.19-25.

Distributed.net: The First General-Purpose Distédu Computing
Project. Available: http://www.distributed.net

Derrick Kondo, David P. Anderson and John McLeodl. VI
“Performance Evaluation of Scheduling Policies fMolunteer
Computing,” 3rd IEEE International Conference o8aence and Grid
Computing. Bangalore, India, December 10-13, 2007.

CERN Twiki. http://twiki.cern.ch/twiki/bin/view/EGE/BDII

Igor Sfiligoi. Structural Overview of the GlideinWwMS. Available:
http://mww.uscms.org/SoftwareComputing/Grid/WMSdglinWMS/
Chiu P, Huber M, “Clustering Similar Actions in Smmtial Decision
Processes,” in Proc. of the 8th Intl Conf. on MaehiLearning and
Applications (ICMLA'09), Miami Beach, FL. 2009, pp76-781.

413

