
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

482

Abstract—Software metric is a measure of some property of a

piece of software or its specification. The aim of this paper is to
present an application of evolutionary decision trees in software
engineering in order to classify the software modules that have or
have not one or more reported defects. For this some metrics are used
for detecting the class of modules with defects or without defects.

Keywords—Evolutionary decision trees, decision trees, software

metrics.

I. INTRODUCTION
OFTWARE engineering describes the collection of
techniques that apply an engineering approach to the

construction and support of software products.
 Software engineering activities include managing, costing,

planning, modeling, analyzing, specifying, designing,
implementing, testing and maintaining software products.
Whereas computer science provides the theoretical
foundations for building software, software engineering
focuses on implementing software in a controlled and
scientific way [1].

Software metrics is a term that embraces many activities, all
of which involve some degree of software measurement [1]
such as: cost and effort estimation, productivity, measures and
models, data collection, quality models and measures,
reliability models, performance evaluation and models,
structural and complexity metrics, capability-maturity
assessment, management by metrics, evaluation of methods
and tools.

The paper present an application of evolutionary decision
trees in software engineering for reporting modules with
defects. In order to o this 5 different lines of code measure, 3
McCabe metrics, 4 base Halstead measures, a branch count
are used. Identified modules that have one or more defects can
be re-designed or tested and maintained more cautiously and
any other special care can be devoted to these modules.

The rest of this paper is organized as follows. Section 2
briefly discusses the software metrics used in this paper.
Section 3 introduces a brief description of decision trees.
Section 4 contains the experimental evaluation of this method.
Section 5 gives some conclusions and suggestion for future
work on this direction.

Manuscript received January 31, 2008.
M. Chiş is with Avram Iancu University Cluj-Napoca, Romania

(e-mail: monicachis@clicknet.ro).

II. SOFTWARE METRICS
In order to frame our contribution in the proper context we

begin with a review of the concept of software metrics and
introduction on the related work.

Software metrics is a term that embraces many activities, all
of which involve some degree of software measurement [1]
such as: cost and effort estimation, productivity, measures and
models, data collection, quality models and measures,
reliability models, performance evaluation and models,
structural and complexity metrics, capability-maturity
assessment, management by metrics, evaluation of methods
and tools.

In this section, the software metrics problem is presented. A
classification of software metrics is presented. The most used
software metrics are analyzed.

The product software metrics deal with the characteristics
of source code for a software project. Product software
metrics are subdivided in: Size Metrics, Complexity Metrics,
Halstead’s Software Metrics.

A. Size Metrics
Size Metrics are represented by a number of metrics attempt

to quantify software “size”.
For a software application is easy to measure the number of

lines of codes for quantify software size. We discuss here a
little bit about some aspects of software size [1]. Each
product of software development is a physical entity. In this
acceptation, it can be described in terms of its size. Ideally, the
idea was to define a set of attributes for software size
analogous to human height and weight. Each attribute
captures a key aspect of software size. Fenton [1] suggest the
following software size aspects:
1) length: physical size of the product
2) functionality: functions supplied by the product to the

user
3) complexity
4) problem complexity: the complexity of the underlying

problem
5) algorithmic complexity: efficiency of the algorithm
6) structural complexity: algorithm structure
7) cognitive complexity: understandability of software

The most commonly used measure for the length of a code
source of a program is the number of lines of code (LOC) [1].
The abbreviation NCLOC is used to represent a non-
commented source line of code. NCLOC is also sometimes
referred to as effective lines of code (ELOC). NCLOC is
therefore a measure of the uncommented length.

The commented length is also a valid measure, depending

Evolutionary Decision Trees and Software
Metrics for Module Defects Identification

Monica Chiş

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

483

on whether or not line documentation is considered to be a
part of programming effort. The abbreviation CLOC is used to
represent a commented source line of code [1]

By measuring NCLOC and CLOC separately we can
define:

() CLOCNCLOCLOClengthtotal += (1)

It is useful to separate comment lines and other lines

(NCLOC). KLOC is used to denote thousands of lines of
code.

Generally, is better to address how the followings are
handled:
1) blank lines
2) comment lines (CLOC)
3) data declarations or other commands
4) lines that contains several separate instructions
5) lines programs generated by a tool

The entity CLOC/LOC is then a measure of the density of
comments in a program.

The purpose of software is to provide certain functionality
for solving some specific problems or to perform certain tasks.
Efficient design provides the functionality with lower
implementation effort and fewer LOCs. Therefore, using LOC
data to measure software productivity is like using the weight
of an airplane to measure its speed and capability. In addition
to the level of languages issue, LOC data do not reflect no
coding work such as the creation of requirements,
specifications, and user manuals. The LOC results are so
misleading in productivity studies that Jones states "using
lines of code for productivity studies involving multiple
languages and full life cycle activities should be viewed as
professional malpractice" [3],[4],[5],[6],[7],[8],[9].

For each metrics program is better to establish exactly what
enter the LOC. Because the confusion existing according with
the types of lines of code that are counting in LOC, could be a
variation until 500%). LOC has the disadvantage that could be
calculated exactly only in a very advanced phase of project.
Programming Languages have different expressiveness that
this metric depend a lot the language used [10]. A source line
of code (SLOC) is a term used in the most of software metrics
program.

B. Complexity Metrics
The cyclomatic complexity metrics [11] are described

below. For any given computer program, its control flow
graph, G, could be draw. Each node of G corresponds to block
of sequential code and each arc corresponds to a branch of
decision in program. The cyclomatic complexity of such a
graph can be computed by a simple formula from graph
theory, as:

2)(−−= neGv (2)

where

♦ e is the number of edges

♦ n is the number of nodes .
McCabe [11] proposed that)(Gν could be used as a

measure of program complexity.
Halstead metric are described below. Halstead [12]

proposed a unified set of metrics that apply to several aspects
of programs, as well as to the overall software production
effort.

Some of this product metrics are: program vocabulary
metrics (n), program length metrics (N), program volume
metrics (V).

According to Halstead [12] computer programs can be
visualized as a sequences of tokens, each token being
classified as either an operator or operand.

He has defined the program vocabulary (n), of a program
as:

21 nnn += (3)

where:
♦ 1n is the number of unique operators in the

program;
♦ 2n is the number of unique operands in the

program;
♦ n is the total numbers of unique tokens from

which the program has been constructed [12].
Program length (N) is the count of the total number of

operators and operands in the program

21 NNN += (4)

where:
♦ 1N is the total number of operators in the

program;
♦ 2N is the total number of operands in the

program
N represents a clearly measure of the program’s size.

Halstead considers 'N an estimated value for N calculated
with the formula presented below:

222121
' loglog nnnnN += (5)

Program Volume (V) is a measurement of program size. V

is the measure of the storage volume required to represent the
program.

nNV 2log⋅= (6)

Between LOC, N and V there is a linearly related.

III. DECISION TREES
Inductive inference is the process of moving from concrete

examples to general models, where the goal is to learn how to
classify objects by analyzing a set of instances (already solved
cases) whose classes are known. Instances are typically

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

484

represented as attribute-value vectors. Learning input consists
of a set of such vectors, each belonging to a known class, and
the output consists of a mapping from attribute values to
classes. This mapping should accurately classify both the
given instances and other unseen instances.

Decision tree learning, used in data mining and machine
learning, uses a decision tree as a predictive model which
maps observations about an item to conclusions about the
item's target value. More descriptive names for such tree
models are classification trees or regression trees. In these tree
structures, leaves represent classifications and branches
represent conjunctions of features that lead to those
classifications.

In decision theory and decision analysis, a decision tree is a
graph or model of decisions and their possible consequences,
including chance event outcomes, resource costs, and utility.
It can be used to create a plan to reach a goal. Decision trees
are constructed in order to help with making decisions. A
decision tree is a special form of tree structure. Another use of
trees is as a descriptive means for calculating conditional
probabilities.

Decision trees [12] is formalism for expressing such
mappings and consists of tests or attribute nodes linked to two
or more sub-trees and leafs or decision nodes labeled with a
class which means the decision. A test node computes some
outcome based on the attribute values of an instance, where
each possible outcome is associated with one of the sub-trees.
An instance is classified by starting at the root node of the
tree. If this node is a test, the outcome for the instance is
determined and the process continues using the appropriate
sub-tree. When a leaf is eventually encountered, its label gives
the predicted class of the instance.

Evolutionary algorithms are adaptive heuristic search
methods which may be used to solve all kinds of complex
search and optimization problems. They are based on the
evolutionary ideas of natural selection and genetic processes
of biological organisms. Evolutionary algorithms are able to
evolve solutions to real-world problems, if they have been
suitably encoded. They are often capable of finding optimal
solutions even in the most complex of search spaces or at least
they offer significant benefits over other search and
optimization techniques.

The traditional decision trees' induction methods contain
several disadvantages. In this paper the power of evolutionary
algorithms to induct the decision trees is used. Evolutionary
decision support model that evolves decision trees in a multi-
population genetic algorithm SAEDT: self-adapting
evolutionary decision trees [13] is used.

Many experiments have shown the advantages of such
approach over the traditional heuristic approach for building
decision trees, which include better generalization, higher
accuracy, possibility of more than one solution, efficient
approach to missing and noisy data, etc.

In SAEDT algorithm [13] individuals are presented like
directly as decision trees. All intermediate solutions are
feasible, no information is lost because of conversion between

internal representation and the decision tree, and the fitness

TABLE I
CLASSIFICATION TREE MODEL

Classification Tasks Number of
classification task

Training observation 1904
Test Observations 205
Predictors 21
Classes 2

Majority Class False – Module has no
defects

% misclassified if
Majority Class is used
as Predicted Class

14 %

function can be straightforward. The decision trees may be
seen as a kind of simple computer programs (with attribute
nodes being conditional clauses and decision nodes being
assignments) genetic operators similar to those used in genetic
programming where individuals are computer program trees.

For the selection purposes a slightly modified linear ranking
selection was used. The ranking of an individual decision tree
within a population is based on the local fitness function.

Crossover works on two selected individuals as an
exchange of two randomly selected sub-trees. In order to
determine paths by finding a decision through the tree, a
randomly selected training object is used. An attribute node is
randomly selected on a path in the first tree and an attribute is
randomly selected on a path in the second tree. The sub-tree
from a selected attribute node in the first tree is replaced with
the sub-tree from a selected attribute node in the second tree
and in this manner an offspring is created which is put into a
new population.

Mutation consists of several parts: 1) one randomly selected
attribute node is replaced with an attribute, randomly chosen
from the set of all attributes; 2) a test in a randomly selected
attribute node is changed, i.e. the split constant is mutated; 3)
a randomly selected decision (leaf) node is replaced by an
attribute node; 4) a randomly selected attribute node is
replaced by a decision node.

With the combination of presented crossover, which works
as a constructive operator towards local optimums, and
mutation, which works as a destructive operator in order to
keep the needed genetic diversity, the searching for the
solution tends to be directed toward the global optimal
solution, which is the most appropriate decision tree regarding
our specific needs. As the evolution repeats, more qualitative
solutions are obtained regarding the chosen fitness function.
The evolution stops when an optimal or at least an acceptable
solution is found or if the fitness score of the best individual
does not change for a predefined number of generations.

IV. DETECTING MODULE DEFECTS USING DECISION TREES
In order to test decision trees in predicting potentially

modules that contain defects a real dataset are used the dataset
[14] contains 2109 software modules. A set of 21 attributes,
containing various software complexity measures and metrics

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

485

have been used for each software module.
The paper analyzed the decision trees build with this

software metrics.
The 21 attributes are described in the theoretical chapter of

the paper. These attributes are:

1. loc - number of McCabe's line count of code
2. v(g)- number of McCabe "cyclomatic complexity"
3. ev(g) - number of McCabe "essential complexity"
4. iv(g) - number of McCabe "design complexity"
5. n - number of Halstead total operators + operands
6. v - Halstead "volume"
7. l - Halstead "program length"
8. d - Halstead "difficulty"
9. i - Halstead "intelligence"
10. e - Halstead "effort"
11. b - Halstead
12. t - Halstead's time estimator
13. lOCode - Halstead's line count
14. lOComment - Halstead's count of lines of comments
15. lOBlank - Halstead's count of blank lines
16. lOCodeAndComment – Number of code e comment
17. uniq_Op - number of unique operators
18. uniq_Opnd – number of unique operands
19. total_Op - total operators
20. total_Opnd - total operands
21. branchCount of the flow graph

From all 2099 modules 2089 have been randomly selected
for the training set, and the remaining 529 modules has been
selected for the testing set. Several decision trees have been
induced for predicting modules with defects. The results of
classification using induced decision tree is presented below:

TABLE II

TREE INFORMATION

Tree Information Number

Number of Nodes 74
Leaf Nodes 38
Levels 20
 % Misclassified

 On Training Data
% Misclassified
 On Test Data

10.92 %
17.56 %

Confusion Matrix for training data is listed below for

training and validation:

 TABLE III

TRAINING DATA CONFUSION MATRIX

True class

Predicted
Class
False

Predicted
Class
False

Total

FALSE 1607 4 1611
TRUE 204 89 293
TOTAL 1811 93 1904

Confusion Matrix for test data is listed below for training

and validation.

TABLE IV
TEST DATA CONFUSION MATRIX

True class

Predicted
Class
False

Predicted
Class
False

Total

FALSE 166 6 172
TRUE 30 3 33
TOTAL 196 9 205

The accuracy of test data is 83.44 %. The accuracy of

training data is 89.08 %.
The decision rules are:

Rule0 Problems = FALSE
Rule1 IF loComment >= 22
 THEN Problems = TRUE
Rule2 IF loComment < 22
 AND uniq_op >= 29
 THEN Problems = TRUE
Rule3 IF Loc >= 286
 THEN Problems = TRUE

Rule4 IF Loblank >= 35
 THEN Problems = TRUE
Rule5 IF unq_oper >= 60
 THEN Problems = TRUE
Rule6 IF v(g) >= 19
 THEN Problems = FALSE
Rule7 IF b >= 0.74
 THEN Problems = TRUE
Rule8 IF d >= 38.54
 THEN Problems = TRUE
Rule9 IF unq_oper >= 59
 THEN Problems = TRUE
Rule10 IF LOCEC >= 4
 THEN Problems = FALSE
Rule11 IF unq_oper < 24
 THEN Problems = FALSE
Rule12 IF d >= 27.42
 THEN Problems = TRUE
Rule13 IF d >= 27.12
 THEN Problems = TRUE
Rule14 IF uniq_op >= 21
 THEN Problems = TRUE
Rule15 IF v(g) >= 15
 THEN Problems = TRUE
Rule16 IF loCode >= 4
 THEN Problems = FALSE
Rule17 IF i >= 32.63
 AND n < 176
 THEN Problems = FALSE
Rule18 IF tot_op >= 197
 THEN Problems = TRUE
Rule19 IF n >= 176
 THEN Problems = TRUE
Rule20 IF loCode < 4
 THEN Problems = FALSE

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

486

Rule21 IF Loblank >= 1
 THEN Problems = FALSE
Rule22 IF Loblank >= 16
 THEN Problems = TRUE
Rule23 IF uniq_op >= 22
 THEN Problems = TRUE
Rule24 IF n < 10
 THEN Problems = FALSE

Rule25 IF Loc < 39
 AND Loc >= 7
 THEN Problems = FALSE

Rule26 IF loCode >= 86
 THEN Problems = TRUE

Rule27 IF tot_oper >= 68
 THEN Problems = TRUE

Rule28 IF loComment >= 16
 THEN Problems = TRUE
Rule29 IF Loc >= 59
 THEN Problems = FALSE

The term Problems is false if module has defects and is true
if the module has not defects.

V. CONCLUSION AND FUTURE WORK
In this paper some results with software metrics used for

detecting if a software module has or not has defects are
presented. The proposed approach is considered to be useful
in order to detecting defects in other data set. The decision
rules are useful for develop new rules in software defect
identification.

The future work will be to use another software metrics for
detecting defects and for quality evaluation of a software
metrics using decision trees.

The application of the rules to another data set can classify
the module.

Decision trees are very powerful tools for classifying the
software module using software metric. We develop new
algorithm in order to classify using some new metrics.

REFERENCES
[1] N.E. Fenton and S.L Pfleeger, (1997), “Software Metrics, A Rigorous &

Practical Approach”, International Thomson Computer Press, London
1997, 638 pp.

[2] B. W. Boehm,. Software Engineering Economics, Englewood Cliffs,
N.J.: Prentice-Hall, 1981.

[3] C. Jones, Programming Productivity, New York: McGraw-Hill, 1986.
[4] C. Jones, Critical Problems in Software Measurement, Burlington,

Mass.: Software Productivity Research, 1992.
[5] C. Jones, Assessment and Control of Software Risks, Englewood Cliffs,

N. J.: Yourdon Press, 1994.
[6] C. Jones, Applied Software Measurement, Assuring Productivity and

Quality, 2nd ed., New York: McGraw-Hill, 1997.
[7] C. Jones, Estimating Software Costs, McGraw Hill, 1998.
[8] C. Jones, Software Assessments, Benchmarks, and Best Practices,

Boston: Addison-Wesley, 2000.

[9] S. H. Kan, Software Quality Metrics, Addisson Wesley Professional,
2002.

[10] L. Buglione, Misurarea il software, 2nd edition, Franco Angeli, 2003.
[11] T. J. McCabe, “A Complexity Measure”, IEEE Transactions on

Software Engineering, SE-2, 4, 1976, pp. 308-320.
[12] M. H. Halstead, Elements of Software Science. New York: Elsevier

North-Holland, 1977.
[13] V. Podgorelec, and P. Kokol, "Self-adapting evolutionary decision

support model", Proceedings of the 1999 IEEE International Symposium
on Industrial Electronics ISIE'99, Bled, Slovenia, IEEE Press, 1999, pp.
1484-1489.

[14] Promise Software Engineering Repository,
http://promise.site.uottawa.ca/SERepository/

