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Abstract—The study of non-equilibrium systems has attracted 

increasing interest in recent years, mainly due to the lack of 
theoretical frameworks, unlike their equilibrium counterparts. 
Studying the steady state and/or simple systems is thus one of the 
main interests. Hence in this work we have focused our attention on 
the driven lattice gas model (DLG model) consisting of interacting 
particles subject to an external field E. The dynamics of the system 
are given by hopping of particles to nearby empty sites with rates 
biased for jumps in the direction of E. Having used small two 
dimensional systems of DLG model, the stochastic properties at non-
equilibrium steady state were analytically studied. To understand the 
non-equilibrium phenomena, we have applied the analytic approach 
via master equation to calculate probability function and analyze 
violation of detailed balance in term of the fluctuation-dissipation 
theorem. Monte Carlo simulations have been performed to validate 
the analytic results. 
 

Keywords—Non-equilibrium, lattice gas, stochastic process 

I. INTRODUCTION 
N nature, an equilibrium state is an exception. In both real 
physical and biological systems, non-equilibrium situations 

are far more common in nature than equilibrium ones [1-3]. 
The development of a comprehensive theoretical 
characterization of non-equilibrium behavior is thus one of the 
key challenges of modern condensed matter and statistical 
physics. Undisputedly, it has grown rapidly in the past 
decades, mainly due to non-equilibrium extensions and 
applications to dynamical systems [4], molecular biology and 
bioinformatics [5], materials science [6], complex systems and 
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networks [7-8], digital communication and information theory 
[9-10], econophysics and other social sciences [11].  

Unlike its equilibrium counterpart, dealing with the task of 
predicting macroscopic behaviors from microscopic 
information for these non-equilibrium systems (NES), the 
familiar Gibbs-Boltzmann framework fails. Specifically, when 
studying systems in thermal equilibrium from statistical 
mechanics viewpoint, one utilizes the framework established 
by Gibbs, i.e., firstly specify the microscopic Hamiltonian of 
the system and then express the time-independent or 
stationary distribution over the configuration space in terms of 
the Boltzmann factor. The observable averages are then 
applied to calculate investigated quantities using this 
distribution provided. As a result, it allowed equilibrium 
statistical mechanics to reach a rather mature status and was 
applied to various problems and applications. In contrast, 
there is no sound foundation for studying non-equilibrium 
phenomena like equilibrium version, so these phenomena are 
far less understood and are generally much more difficult to 
study. In other words, up to now even there are large number 
of works concerning non-equilibrium phenomena [1-18], there 
is however no well-established systematic framework for 
investigating non-equilibrium systems. 

Part of the difficulty with NES is that the distributions 
associated with these systems are generally time dependent. 
To attack this kind of problem, one typically can start with a 
master equation [19]. In other words, the time evolution of 
such systems in configuration space is governed by a master 
equation. However, the master equation(s) derived for the real 
world system is (are) normally complicated and contains a 
large degree of freedom. It is consequently difficult to solve 
both analytically and numerically. From a theoretical point of 
view, instead, one can apply computational methods or 
analytic methods containing approximations such as mean-
field theory [20], renormalization group [21, 22], and so on. 
However, these methods are not suitable for the problem that 
needs the high accuracy as well as the quantity, the probability 
distribution that is too difficult to obtain from these methods. 
To have exact solutions for the problem via modeling, one 
could study very simplified models such as interaction-free or 
infinitely high temperature models. Due to the fact that an 
exact solution cannot be obtained by using a master equation 
approach since the many-particle system has too many degrees 
of freedom to allow for exact solution, one thus takes the 
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system size to be small enough, yet still describe the essential 
governing physics. Hence it would open up the way to attack 
the problem analytically. Especially, non-equilibrium steady 
state (NESS) models have been the cases of interest for 
research [23]. In our opinion, keeping the model simple to 
begin with seems to be one of the most important approaches 
to establish the framework of non-equilibrium research. 

Among the simple models studied, major focuses are on the 
driven lattice gas model (DLG model) introduced by Katz, 
Lebowitz, and Spohn [24]. The study of the DLG model has 
attracted growing attention due to its interesting far-from-
equilibrium behavior. The dynamics of the system are given 
by hopping of particles to nearby empty sites with rates biased 
for jumps in the direction of E (see Fig. 1). This interacting 
DLG, driven into NESS mainly by an external field, exhibits 
remarkable properties such as its non-Hamiltonian nature, the 
violation of the fluctuation-dissipation theorem (FDT-
violation), and  the occurrence of anisotropic critical behavior 
[25-27]. In term of application, DLG model is often used to 
model fast ionic conductors [28-30]. 

 

 
Fig. 1 A half-filled 6x6 lattice system based on the periodic boundary 
condition in the heat-bath of constant temperature T. (a) If there is no 
driving force, then the system is in an equilibrium state. On the other 
hand, (b) if there is a driving force, then the system is driven into a 

non-equilibrium state.    
 

Motivated by the above mentioned details, we study the 
very small system sized DLG model to understand non-
equilibrium phenomena and their stochastic properties. Our 
aim is to obtain analytic exact solutions of the model as well 
as find out what the possible patterns and non-equilibrium 
dynamic behavior are in stationary states of the system. In 
addition, Monte Carlo simulations are used to generate results 
of the same model but of large system size to compare the 
results and make connections between physical properties of 
small and large systems. 

II. MODEL AND FORMULATION 
In this section, we aim to formulate the model dynamics of 

the DLG model [24] by setting up the master equation. We 
consider a very small system (2x4) with four particles (half-
filled configuration). Each lattice site consists of two states 
(ni): ni = 1 (occupied cell or particle), and ni = 0 (unoccupied 
cell or vacancy). The external field results in a biased hopping 
of the particles along one of the lattice directions. For a 
particle, the field favors jumps along its direction, and 
suppresses jumps in the opposite direction. Imposing periodic 
boundary conditions (PBC) in both directions, translational 
invariance is obtained. Conservation of particle numbers and 

the hard-core constraints (multiple occupancy being 
forbidden) are also imposed (see Fig. 1). 

Based on the Ising model for lattice gas analogy, without an 
external field,   the Harmiltonian can be given by 
 
 ∑−=

ij
jinnJCH ][  (1), 

where the constant J is the interaction energy having 
dimensions of energy. Positive and negative J corresponds to 
attracting and repelling particles, respectively. C represents 
the configuration of the system specified by a set of 
occupation numbers {ni}. The symbol <ij> denotes a nearest-
neighbor pair of spins. There is no difference between <ij> 
and <ij>. 

Typically, an exact solution of the model would correspond 
to the knowledge of the full time-dependent distributions 
P(C,t), the probability of finding configuration C at time t, for 
given  initial condition. The dynamics is described by a master 
equation: 

( ) [ ] ( ) [ ] ( ){ }
{ }
∑

′

′→−′→′=∂
C

t tCPCCWtCPCCWtCP ,,,  (2) 

where W[C→C'] is the transition rate from one configuration 
C to other configurations C'. In the absence of the field, One 
can assume that this process satisfies detailed-balance 
condition and results in (3): 
 [ ] [ ] )'(/)('/' CPCPCCWCCW eqeq

∗∗=→→   (3) 

Here, *
eqP  represents the probability distribution at equilibrium 

state. The transition rates depending only on the difference 
between the energy of configurations, i.e., W[C→C'] = 
w(βΔH), where ΔH = H[C']−H[C]. One of solutions of 
w(βΔH) is well-known in most simulations of statistical 
physics and called “the Metropolis rate” [31]. It can be 
illustrated that w(βΔH) = e−βΔH when e−βΔH<1 and w(βΔH) = 1 
when e-βΔH >1.With the driving force, it will create the work 
done on the particles when they move through the distance L 

and the work done is E L⋅ . This yields the transition rate: 
                 [ ]'CCW →    =  ]).[( LEHw −Δβ   
 =  )]).(exp[,1( LEHMin −Δβ  (4) 

Because the particle moves one time step per site, we define 
L  to represent a unit vector pointing from the particles to the 
hole in configurations. In our particular model, the direction 
of the driving force is assumed to be downward along the 
vertical axis of the rectangular lattice. The particles favor to 
hop along the direction of the external field and restrained to 
hop against it. The external field does not affect those in the 
transverse direction. From the master equations, at least in 
principle one can find P* by solving the system of linear 
master equations at steady state. In practice, this task is 
insurmountable, with two exceptions. The first is the system 
with J = 0, i.e., biased diffusion of particles with no 
interactions other than  excluded volume,  then P* ∝ 1 [32], 
though there are some non-trivial time-dependent effects. For 
J>0 models, the other solvable case involves very small 
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systems, e.g. 2x3 and 2x4 [33-34]. While it is difficult to bring 
together reliable information on collective behavior and 
singularities in thermodynamic functions (without 
thermodynamic limit satisfaction), exact solutions to such 
systems do provide insight into some of the remarkable 
differences between equilibrium and non-equilibrium steady 
states. 

 

 
Fig. 2 Mapping nonlinear data to a higher dimensional feature space 
All possible configurations of a 2×4 system. The yellow cells are the 

particles and the white cells are the vacant states. gi represents the 
number of members in the ith group and Hirepresents the internal 

energy of the ith group. 
 
To meet our goal of building a better understanding about 

non-equilibrium, we choose to consider a suitable 2x4 driven 
diffusive system.  Since there are 4 particles of 8 lattice sites, 
we will have altogether 8P4 = 70 possible configurations. If the 
translational invariance condition due to periodic boundary 
condition (PBC) is applied, the 70 possible configurations fall 
into 12 groups. The members and energy of each group 
without the external field can be obtained from each other by 

a translation as shown in Fig.2. Next, we derive the master 
equations describing the dynamics of this system. To set up a 
set of master PDEs of a time-dependent distribution P(C,t), a 
set of transition rates between the configurations will need to 
be specified. This chosen rate is constrained to drive P(C,t) 
asymptotically toward the desired equilibrium. To do so, we 
begin by drawing the diagrams of the probability flow where 
the gain is represented by incoming arrows and the loss is 
represented by outgoing arrows as shown in Fig. 3-4.  

 

 
 
Fig. 3 Schematics of the configuration probability flowing into or out 
of each configuration of the 2×4 system. The number inside a circle 
is the group number. The direction of the arrow represents direction 
of probability flow, the “gain” and “loss” terms. Each configuration 
can change alternately with a couple configurations, e.g. the 
configuration of group 1 can exchange the probabilities with the 
configuration of group 5. Sometimes, the net probability flow is 
called “the net probability current” where they are zero at 
equilibrium state and non-zero at non-equilibrium state. 

 

 
Fig. 4 The flow pattern of the configuration probability. The 

notations are the same as in Fig. 2-3. The dash-line represents the 
interchange of the probabilities between two circles. The probability 
flow can be determined by the effect of the direction of the external 
filed, i.e. for our system with external field, the direction of 
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probability flow prefers to change into the configurations that a 
particle hops along the direction of the external field. 

 
We next calculate the transition rate W[C→C'] by using (4). 

With the convention:  where a = e−βJ, b = e−2βJ, c = e−3βJ, x = 
e−β|Ē|, d = Min{1,e−βJ+β|Ē|}, q = Min{1,eβJ−β|Ē|}, r = 
Min{1,e−2βJ+β|Ē|}, s = Min{1,e2βJ−β|Ē|}, t = Min{1,e−3βJ+β|Ē|}, 
and u = Min{1,e−3βJ−β|Ē|}.  

 
From (2) and the transition rates W[C→C'], we now write 

down the system of partial differential equations (PDEs)  for 
the probability of the group i (Pi). We have 

 
∂tP1 = P8 

∂tP2 = −(6 + 8a + 6bx)P2 + 6xP4 + 6P5 + 8P7 
∂tP3 = −(6x + 6r + 8a)P3 + 6P4 + 6sP5 + 8P8 
∂tP4 = −(6x + 6r + 8a)P3 + 6P4 + 6sP5 + 8P8 
∂tP5 = 4bP1 + 6bxP2 + 6rP3 −(18 + 4b + 6s) + 8P10 + 4P12 
∂tP6 = 8P4 −(8 + 6d + 6ax)P6 + 6P7 + 6qP8 
∂tP7 = 8aP2 + 6axP6 − (17 + 3u + 3ax + 3ac)P7 + 3tP9 + 3P10 
           3axP11 + 3P12 
∂tP8 = 8aP3 + 6dP6 − (11 + 3d + 3t + 3q)P8 + 3cxP9 + 3qP10 
           3dP11 + 3uP12 
∂tP9 = 3uP7 + 3P8 − (3t + 3ax)P9 
∂tP10 = 8P5 + 3axP7 + 3dP8 − (11 + 3q)P10 
∂tP11 = 8P5 + 3axP7 + 3dP8 − (11 + 3q)P10 
∂tP12 = 4bP5 + 3cxP7 + 3tP8 − (7 + 3u)P12 (5) 
 

This is the system of 12 linear first-order homogeneous 
PDEs. We can also view this system as an eigenvalue 
problem. It may be convenient to write (5) in matrix form ∂tP 
= WP where W is the stochastic transition matrix and P is the 
evolutionary eigenvector (data not show). 

 

III. EXACT ANALYTIC RESULTS  
First of all we consider (5) that has a unique stationary 

solution, Pi
* ≡ limt→∞Pi(t) or ∂tPi = 0 if Pi→Pi

*.  We thus set 
the left-hand side of (5) to zero independent of the initial 
conditions. This implies that Pi

* is a right eigenvector of W 
matrix with eigenvalue zero. This eigenvalue is non-
degenerate so that Pi

* spans the null space of the matrix W. In 
general, Pi

* depends on the chosen rates. When simulating 
systems in thermal equilibrium, the challenge is to specify a 
set of rates such that the resulting stationary state equals the 
desired equilibrium distribution, Pi

eq. Since the analytic 
solutions for symbolic problem solving) for general case is 
very complicated even though it is straightforward (with the 
help of Mathematica software [http://support. 
wolfram.com/mathematica]. Thus we analyze the solution to 
gain insight into non-equilibrium properties of the model 
under various conditions. The controlled parameters to the 
steady state: (1) the external field E, (2) Temperature T = 1/β, 
and (3) spin interaction J. However, for the sake of brevity, 
we only show some results which are enough to explain the 

non-equilibrium phenomena. 
Firstly, we consider the steady state total probability 

distribution functions. Having known from the base line Ising-
like model, at an infinitely high temperature (β = 0), the 
energy of particles is then very large.  Both the interaction 
from external field and the nearest-neighbors interaction are 
defeated by the energy of particles. Hence the interaction J no 
longer plays a role. The configurations of ensembles of the 
systems will be formed with the same probability. They are 
equally likely to occur.  When the temperature is sufficiently 
decreased or the system is cooled down (β > 0), both the 
interaction from external field and the particle interaction will 
start to affect to the system. Now, the correlation is finite 
which implies that the particle can “communicate” with each 
other throughout the system. Therefore, the probability 
distribution of possible configurations is controlled by the 
parameters, β, J, and E. 

We firstly focus on two specific extreme steady state cases, 
i.e. E = 0 (equilibrium) and E→∞ (non-equilibrium). In 
equilibrium state: E = 0, then x = 1. It is found that P1

* = P2
* = 

P3
* = P4

* = P6
* = P11

* , P7
* = P8

* = aP1
* , P5

* = P10
* = a2P1

* , 
a2P9

* = P1
*  and P12

*  = a4P1
*, while, when E→∞, then x = 0. It 

gives 
 

( ) ∗∗

++
+++

= 12

322

2 132005207250683
580882283762064299 P

aa
aaaaP , 

( ) ∗∗

++
+++

= 12

322

3 132005207250683
7392121883528061095 P

aa
aaaaP , 

( ) ∗∗

++
++++

= 12

4322

4 132005207250683
21128272175604338044631 P

aa
aaaaaP , 

∗∗ = 1
2

5 PaP , 

( ) ∗∗

++
++++

= 12

4322

6 132005207250683
369610120245594770029880 P

aa
aaaaaP , 

( ) ,
132005207250683

580812584338915346010212
12

4322

117
∗∗∗

++
++++

== P
aa

aaaaaPP

( ) ,
132005207250683

580811528312515502012348
12

4322

98
∗∗∗

++
++++

== P
aa

aaaaaPP

 
( ) ∗∗

++
++++

= 12

4322

10 132005207250683
15843144181235287640228 P

aa
aaaaaP , and 

( ) ∗∗

++
++++

= 12

4322

12 132005207250683
100323469642355235805292 P

aa
aaaaaP .(6) 

 
From the statistical viewpoint, it is common question to ask 

what the most likely configuration is for given circumstances. 
To answer this question and gain more insight into this 
probability function, we present the histogram of how an 
event occurs configuration-wise as shown in Fig. 5-Fig. 8. 
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Fig. 5 The histograms of the total probability (giPi

*) of each group in 
equilibrium state E = 0 and J = 1. It is dominated by group 9. The 
typical configuration of group 9 is also shown on the graph. At 
infinite temperature (β = 0) the probability (Pi

*) is the same for all 
groups so that the total probability of each group depends on the 
number of members (gi) of each group or the degeneracy of each 
group. 

 
In Fig 5, E = 0 for the selected interaction energy J = 1, we 

show a chart of the total probability of each group (giPi
*), 

hereafter referred to as Pi
*, where gi represents the number of 

members of the group i, versus β for E = 0, J = 1. It is found 
that as β increases or temperature decreases, the total 
probability of group 9 (P9

*) becomes more and more 
dominated and finally reaches the highest value among others. 
While the total probabilities of groups 5, 7, 8, 10, and 12 
monotonically decrease to zero, it appears that the total 
probabilities of groups 1, 2, 3, 4, 6, and 11 do not change 
monotonically. They instead increase at relative low β until 
they reach the maximum value and then decrease to zero 
eventually. These behaviors can be explained as follows. With 
E = 0, i.e. diffusion without biased or driven force, the 
dynamics is under the influence of particle interactions and the 
excluded volume. Hence, we recover the “standard model” 
which is in the absence of the field. We should expect the 
usual Ising lattice gas like behavior, but using particle 
language in stead of spin language. It is noted that the 
conservation law is a crucial factor responsible for a number 
of exciting phenomena. The interactions of the particle system 
with its surroundings are represented by a coupling to a heat 
bath at the given temperature. As a result, all steady states 
which are in equilibrium can be computed by weighting with 
the canonical distribution: Peq

*= exp(−βH)/Z where Z is the 
partition function. It is commonly known that for a large 
enough system (thermodynamic limit) in two dimensional 
cases, the Ising lattice gas exhibits the second order phase 
transition at about 0.5673J/kB [35]. As seen once again in Fig. 
5 that the most likely dominated group is shifted to group 9 in 
which the particles organize in cluster or aggregate like form 
as temperature is lowered. It is quite to be expected because 
all critical properties are universal, belonging to the “Ising 
universality class” [36]. This phenomenon corresponds to the 
phase transition from the high temperature disordered phase to 
the low temperature ordered phase, 

 
Fig. 6 The special case of non-equilibrium state E→∞ and J = 1. It is 
completely dominated by group 1.  The typical configuration of 
group 1 is also shown on the graph. 
 

Fig. 6, presents the similar data histogram of the above case 
for E→∞ which is now in the case of typical non-equilibrium 
steady state corresponding to x = 0. It is found that initially at 
infinitely high temperature, the probabilities of all groups are 
equal. Indeed the “random walk drive” out-performs the bias 
drive.   As we lower the temperature the total probability of 
the group 1 increases to about one when β increases and it 
becomes the most dominated configuration, while the total 
probabilities of other groups decrease to zero. This quite 
makes sense because the field tends to line up the particles in 
the field direction. Specifically, the field biases the jump rates, 
favoring jumps along its direction while leaving jumps in the 
transverse directions unaffected. Due the PBC used, it does 
not permit the global energy flux to become zero resulting in 
non-equilibrium steady state. When the particles “feel” each 
other’s interaction or non-zero β, the correlation then plays the 
role of correlating all particles to lower the energy. In this 
case, since the field is so large, it thus becomes dominated 
quite rapidly as long as the particles are interacting with each 
other. 

 
Fig. 7 The result of interest in case of E = J = 1 that has two 
dominations. The first is group 9 and the second is group 1. It can be 
seen that the system starts to change its main configuration from 
group 9 to 1 at this point. 
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Fig. 8 For E = 1.5, the configuration of the group 1 replaces the 
configuration of group 9 to become the most dominant one at large β  
while  group 9 and others  descents to zero probability after reaching 
the maximum value. 

 
Fig. 9 The distinct plots of the total probability of each group in non-
equilibrium state condition E = 1.5 and J = 1. 

 
In Fig. 7, the distribution functions for finite temperature 

are plotted for each group of configurations. We consider an 
intermediate value of E, 0 < E = 1 < ∞ (the rest has also been 
done, but the data are not shown). The interesting result is that 
this condition gives two most likely groups, namely the most 
dominant group 9 and the second most dominant group 1. As 
E is increased further, for example E = 1.5 as in Fig. 8 and 
Fig. 9, the configuration group 9 becomes less dominant and 
in turn is replaced by group 1 that takes over and becomes 
solely dominant as group 9’s probability decays to zero at 
larger β.  It should be pointed out that for the finite field 
especially at low β or large T, other groups like groups 2, 3, 
and 4 also contribute to the collective behavior of the whole 
system. It should be noted that the net probability flow 
(KC'→C): KC'→C ≡ W[C'→C]P(C')−W[C→C']P(C), such that at 
steady state 0

'

*
' =∑

≠
→

CC
CCK .  

For our problem the total probability of all groups will be 
according to the assumption of net probability flows at steady 
state  

0
'

*
' =∑

≠
→

CC
CCK .Hence, in any condition, the probability flows 

are a constant, i.e., if  W[C'→C] is large, W[C→C'] then is 
small. 

Next we turn to the violation of fluctuation-dissipation 
theorem (FDT-violation) of non-equilibrium system. Known 
in statistical physics, the fluctuation dissipation theorem is a 
powerful tool for predicting the non-equilibrium behavior of a 
system from its reversible fluctuations in thermal equilibrium. 
The fluctuation dissipation theorem relies on the assumption 
that the response of a system in thermodynamic equilibrium to 
a small applied force is the same as its response to a 
spontaneous fluctuation. Therefore, there is a direct relation 
between the fluctuation properties of the thermodynamic 
system and its linear response properties. In other words, in 
non-equilibrium system FDT is violated, the so called “FDT-
violation”. We thus here aim to illustrate how our analytic 
results of the small system could be used to distinguish 
between equilibrium and non-equilibrium. 

From the results on section 3.1 of probability functions, we 
calculate an internal and associated fluctuations (1st and 2nd 
moments): To calculate the energy fluctuation ΔU ≡ <U2> − 
<U>2, we  first calculate the average internal energy according 
to 

 

∑

∑

=

== n

i
n

n

i
nn

P

Pu
U

1

1  (7) 

 
Explicit calculation of <U> for E = 0and E→ ∞ are given 

by 
 

( )
( ) J

aaaa
aaaU 6432

432

68182
26112

++++
+++−

= , when E = 0, 

...159096012264485207250683
...135690010693505207250683(4

32

32

++++
++++

−=
aaa
aaaU  

       = J
aaa

aaa
654

654

100320299440738502...
)82896249016617733...

+++
+++ , when E → ∞. 

 
Naturally, one can also find the second moment of the 

energy, it gives the corresponding <U2>: 
 

( )
( )

2
6432

432
2

68182
31234 J

aaaa
aaaU
++++

+++
= , when E = 0, 

...159096012264485207250683
...25591202000310104144101336(8

32

32
2

++++
++++

−=
aaa

aaaU  

         = 2
654

654

100320299440738502...
)1642084933041186983... J

aaa
aaa

+++
+++ , when |Ē|→∞. 

 
Hence, the explicit form of energy fluctuations for E = 0 

and  |Ē|→∞ are  
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At this point we can gain more understanding about <U>  

and <U2> by plotting the 3d profile of U−E−β (see Fig. 10) 
and  ΔU−E−β diagram (see Fig. 11). There is a phase 
transition at E = J = 1. At low temperature the system tends to 
keep the ordered configuration. Thus, it is seen that the 
internal energy for (β>2) is stable at any external field. 
However, at very high temperature (β→0) the internal energy 
will be the same in any external field again because the energy 
of particles as a function of temperature can absolutely 
overcome both interactions, i.e. the particles interaction and 
the external field. For the intermediate temperature (0<β<2) 
the influence of the temperature is not sufficient to break the 
interactions.   In Fig. 11, it is clearly seen that there is no 
fluctuation of energy except at E = J = 1 because at E = 1 
there are two main possible configurations which are groups1 
and 9. 

 
Fig. 10 Phase diagram of U−E−β. 

 
Fig. 11 Phase diagram of ΔU−E−β. 

 

To investigate the FDT-violation phenomenon of non-
equilibrium, we calculate the quantity corresponding to how a 
system in thermodynamic equilibrium responds to a small 
applied force.  To calculate −∂U/∂β, one obtains 
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It is found that ΔU = −∂U/∂β, when E = 0, and ΔU  ≠ 

−∂U/∂β, when E→∞.Therefore, without a driving field 
present (E = 0), i.e. in the equilibrium case, the FDT is 
satisfied, but in the presence of a driving field (E→∞), FDT is 
violated. In fact the FDT-violation is found for all non-zero 
field cases of DDS or lattice gas system. 

To have a better understanding of collective behavior of the 
system dynamics, we turn to simulations. We demonstrate 
how one can alternatively understand the driven diffusive 
lattice gas system by means of numerical Monte Carlo 
simulations. The system is in contact with a heat reservoir, 
which keeps the temperature T constant. During one Monte 
Carlo step, which is our time unit, each particle on average 
could move to an empty neighbor site. The dynamics is 
governed by the Metropolis algorithm. A jump is realized with 
a probability of 1 if the new location is energetically 
favorable; otherwise, it is demonstrated by the probability 
Min(1,exp[−β(ΔH− LE. )]). We then present an extensive 
numerical study that supports the theoretical predictions. We 
performed the simulations according to the update rule and 
then compared the simulation results with those analytical 
results obtained from the previous section. 

 

 



International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:5, No:6, 2011

494

 

 

 
Fig. 13 Typical configurations of a 30×60 system along the inverse 
temperature (β) and the external field (E). The right-side of each 
typical configuration presents the representative configuration of any 
groups of the 2×4 system on the same conditions. In some case, the 
2×4 system has more than one obviously dominant configuration. It 
is necessary to indicate the level of observable configuration, i.e. the 
1st represents the highest probability of finding those configurations 
then 2nd and 3rd most likely configurations. An empty lattice means 
that there are no dominant configurations. 

 
Fig. 14 The internal energy versus β  for E = 0, E = 1.5, and E = ∞.  
The standard deviations (S.D.) of the data from exact solution and 
simulation are shown on the figures. 
 

Fig. 14 shows typical configurations of a 30x60 system for 
various β and E. The right-side of each typical configuration 
presents the representatives of the most likely configuration of 
the 2x4 systems on the same conditions. It is seen that the 
system tends towards the ordered phase with decreasing 
temperature. Hence, we can approximate the critical point 
temperature to be between 0.5 and 1. Overall, it was found 
that the results on large systems agree surprisingly well with 
those on small systems. 

Fig.14 presents a comparison between simulation and 
analytical results of the internal energy vs. β for E = 0 (see 
Fig.17a), E = ∞ (see Fig. 17b) and E = 1.5 (see Fig. 17c). In 
each case of the external field, we compare the simulation 
results of those from the ensemble average over 5000 and 
50,000 samples (for case of E = 1.5, 5000 50,000 100,000 and 

200,000 samples) to see the deviation of the predicted results 
from the theoretical values. It was found that the simulation 
results are in good agreement with analytical results especially 
for the large ensemble average. The internal energy is 
inversely proportional to β or is directly proportional to the 
temperature as expected. The measured standard deviation 
consistently decreases with the sample size. 

An example of a bigger sized system which is closely 
related to our systems has been studied by Katz, Lebowitz and 
Spohn [24]. They investigated the phase transitions in 
stationary non-equilibrium states of a lattice gas system via 
Monte-Carlo simulation. Their systems contained two species, 
particles and holes, of states. The particle-vacancy exchanges 
follow the Kawasaki dynamics [20] with periodic boundary 
condition and the number of particles is conserved. They 
found that for a non-equilibrium steady state, the systems 
went into the ordered state, namely strips configurations, that 
consistent with our prediction.  It should also be pointed out 
that, with a finite temperature, the correlation will play a 
greater role in contrast with the infinite temperature situation. 
This is mainly due to how each moving particle interacts with 
its environment.  As seen that even though the considered 
small model is simple, allowing the analytical solution to be 
obtained, it provides a basis for the description of a variety of 
larger systems. 

IV. CONCLUDING REMARKS 
The study of non-equilibrium systems has attracted 

increasing interest in recent years, mainly due to the lack of 
theoretical frameworks, unlike their equilibrium counterparts. 
In this work, we used DLG model to investigate non-
equilibrium phenomena and their stochastic properties. The 
stochastic physical properties at non-equilibrium steady state 
were particularly focused upon. Our aim was to find out about 
the possible patterns and dynamics in stationary states. The 
study used the master equation and solved for the probability 
distribution function as well as violation of detailed balance in 
term of the fluctuation-dissipation theorem using the small 
system via analytical method and simulating the large system 
by Monte Carlo simulations to validate the analytic results 

Our overall results show that the probability distributions 
are controlled by such interactions via parameters including 
particle interaction, field strength, temperature and excluded 
volume. As analytically seen the interactions, which 
influences over others, also determine its state on the system. 
We support our analytic results by means of computer 
simulations of a two-dimensional lattice with nearest-neighbor 
interactions. We simulated the dependence of the 
configuration changes, energy, and energy fluctuation on 
various conditions of temperatures and fields. All simulation 
results are well consistent with analytical ones. 

Finally, we would like highlight that the studied interacting 
lattice gas, driven into non-equilibrium steady states by an 
external field, exhibits remarkable properties such as its non-
Hamiltonian nature, the violation of the fluctuation-dissipation 
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theorem, the occurrence of anisotropic critical behavior. 
Because of the model’s simplicity and yet enough realisticity, 
its stochastic mathematics and its predictions of physical 
properties make it a valuable part of statistical mechanics 
research. 
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