
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:5, 2010

959

Abstract—OpenMP is an API for parallel programming model of

shared memory multiprocessors. Novice OpenMP programmers often
produce the code that compiler cannot find human errors. It was
investigated how compiler coped with the common mistakes that can
occur in OpenMP code. The latest version(4.4.3) of GCC is used for
this research. It was found that GCC compiled the codes without any
errors or warnings. In this paper the programming aid tool is presented
for OpenMP programs. It can check 12 common mistakes that novice
programmer can commit during the programming of OpenMP. It was
demonstrated that the programming aid tool can detect the various
common mistakes that GCC failed to detect.

Keywords— parallel programming, OpenMP, programming aid

I. INTRODUCTION
INCE increasing the frequency of clock rate for the
performance improvement may reach the limit multi-core

architecture introduced. Multi-core processor takes advantage
of parallel processing, but it faces software challenges.
Especially programmer productivity may get worse with
parallel programming and it is very difficult to directly
compose the parallel program. OpenMP is an API for parallel
programming model of shared memory multiprocessors.
OpenMP enables the creation of shared-memory parallel
programs. It is comprised of a set of compiler directives that
describe the parallelism in the source code, along with a
supporting library of subroutines available to applications[1].
With the appearance of OpenMP directive programming with
directive is relatively easy when comparing to writing message
passing code[2]. But it is still not easy for the programmer who
only has experiences with sequential program using OpenMP
directives for enhancing performance. To deal with these
difficulties, the automation tools like CAPO[2] were
developed. They have some limitations such that they cannot
perform semantic analysis. Assume that the automation tool
encounters with ‘for loop’ like in Fig. 1. The func_A does not
have any dependency. If there exists some information
exclusively known to programmer such that when func_A is
used 5 times or less than that, internal fork and barrier produced

Jae Young Park, Seung Wook Lee, and Jong Tae Kim are with the

Department of Electrical and Computer Engineering, Sungkyunkwan
University, Suwon, South Korea(e-mail: jyp8389@gmail.com,
seungwooks@gmail.com, jongtkim@gmail.com)

to make parallel can harm the function, the automation tool
cannot cope with this. To alleviate this problem, programmer
should modify it like in Fig. 2. However, intervention of the
programmer may introduce other problems of occurring human
error. To easily correct the human programming error, it is
required to get the information about where and what kind of
problem happened.

#pragma omp parallel for
for(i=0;i<n;i++) {
func_A();
}

Fig. 1 Limitation of automation tool

#pragma omp parallel for if(n>5)
for(i=0;i<n;i++) {
func_A();
}

Fig. 2 Modified code by programmer

Generally, when a certain tool or language is used, possible

mistakes that programmer can commit are informed through
error or warning statements. For OpenMP, the compiler
supporting OpenMP takes this role, and programmer conducts
debugging to correct them. If the compiler supporting OpenMP
fails to inform programmers of possible errors and warning it
waste lots of time to find and amend them even for simple
mistakes. This kind of problem is gradually being solved with
development of the compiler supporting OpenMP, but there
still exists many shortcomings. Therefore the new
programming aid tool is developed to help detecting mistakes
which the compiler such as GCC fails to find. The tool can
produce the solution for common mistakes which OpenMP
programmers are easily committed. It is named as OPAT
(OpenMP Programming Aid Tool).

II. PROBLEM DEFINITION
S¨uß and Leopold studies the programming errors of

students who took the parallel programming course for 2 years,
along with the numbers frequency occurred like in Table 1[3].
There were total 84 students in 43 groups. Correctness Mistake
in Table 1 means the types of mistakes which can function
differently from the intention of the users and Num is number
of groups who committed the certain mistake. Investigated

Programming Aid Tool for Detecting Common
Mistakes of Novice Programmers in OpenMP

Code
Jae Young Park, Seung Wook Lee, and Jong Tae Kim

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:5, 2010

960

mistakes are the mistakes which students failed to find and
correct within the given hour. New mistakes such as (11) and
(12) that are not found in [3] are added. They are closely
connected with (7) and (9) respectively.

Handling error or warning is an important indicator for the
performance of compiler. To examine the performance of
compiler supporting OpenMP, latest version of GCC(4.3.3)[4]
which is one of the most widely used compiler was used. Using
it, it was investigated how to deal with the problems in 12
situations in Table 1 and the result showed that there were no
errors or any warning messages when compiling had been
done. Table 1 indicates the types of mistakes and shows how to
deal with the mistakes in GCC. None mean that compiler
cannot detect the error during the compiling process. X
indicates the case that mistake is automatically corrected and
nothing happened during actual operation. The case of read of
shared variable without flush is excluded from our tool because
it would not be a problem for structurally potential flush. As
shown in Table 1, GCC does not generate warning and error
messages for programmers’ mistakes. Therefore it is very
difficult to debug the code because it is hard to find out where
and what the problem happens with GCC. In this work the
programming aid tool for OpenMP programs is developed. It
detects 12 common mistakes that novice programmer commits
during the programming of OpenMP.

Fig. 3 shows an example of C code that calculates
mathematical constant π. First one is the original code which is

the sequential code to be handled with single thread. Second
code is the OpenMP code with a shared variable protection
mistake. GCC produces the compiled code without any error or
warning messages, but executed code generates wrong value.
OPAT checks the shared variable protection mistake and
generates a warning report. OPAT found that the shared
variable sum is being used without protection at line 13.
Programmer pays attention the warning error from OPAT and

corrects the mistake. The corrected code is the third code in Fig.
3 and finds the correct value of mathematical constant π. (It is
desirable to use reduction rather than critical in this specific
example.)

Original code

for (i=0; i<num;i++) {
 x= (i+0.5) * step;
 sum + = 4.0/(1.0 + x*x) ;}

�
 printf(“PI = %.8f(sum = %.8f)\n, step*sum, sum);
Original result
PI = 3.14159265 (sum = 3.141592653.59213972)

Mistakes code checked with OPAT
#pragma omp parallel for private(x)

for (i=0; i<num;i++) {
 x= (i+0.5) * step;
 sum + = 4.0/(1.0 + x*x); }

�
 printf(“PI = %.8f(sum = %.8f)\n, step*sum, sum);

 �
/* Warning Report
LINE_13:Access to shared variables not protected
*/
Compiled result in GCC with mistakes
PI = 1.18051801 (sum = 1180518011.76885509)

Corrected code
#pragma omp parallel for private(x)

for (i=0; i<num;i++) {
 x= (i+0.5) * step;

#pragma omp critical {
 sum + = 4.0/(1.0 + x*x); }
 }

�
 printf(“PI = %.8f(sum = %.8f)\n, step*sum, sum);
 �
/* Warning Report
*/
Corrected result
PI = 3.14159265 (sum = 3.141592653.59027195)

Fig. 3 Comparing example GCC with OPAT

III. FUNCTIONALITY OF OPAT
In this section the flow of OPAT and the functionality of

OPAT with examples are presented.

A. Flow of OPAT
The way to inspect file with OPAT is pretty simple as shown

in Fig. 4. It receives input C code file with the command word
of OPAT. It performs the phrasing and starts to analyze the
code. If the code section is not the area applying OpenMP it
send the corresponding section to new file, and if it is the area
applying OpenMP, it inspects the mistakes by applying the
checking rule and saves the problem with the reason. After file
inspection is over it prints out warning report message and line
number

TABLE I

LIST OF COMMON MISTAKES

Type Problem Correctness Mistake Num GCC

(1) Access to shared variables not protected 18 None

(2) Use of locks without flush 18 X

(3) Read of shared variable without ordered
construct 15 X

(4) Forget to mark private variable without
ordered construct 11 None

(5) Use of ordered clause without ordered
construct 4 None

(6) Declare loop variable in #pragma omp
parallel for as shared 3 X

(7) Forget to put down for in #pragma omp
parallel for 2 None

(8) Try to change number of thread in
parallel region after start region 2 X

(9) omp_unset_lock() called from
non-owner thread 2 None

(10) Attempt to change loop variable while in
#pragma omp for 2 None

(11)
Use of for directive without parallel
construct New None

(12) Using lock as a barrier New None

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:5, 2010

961

Fig. 4 Flow chart of OPAT

B.Access to Shared Variable not Protected
Because specified data are shared by many threads, when

‘shared’ is used without protection, it influences the data value
which is supposed to be used for other threads, so it cannot
secure the variable value. It arises when task code accesses
shared data non-atomically. It is necessary to generate the
warning message. But OPAT does not generate the warning
message if variable is declared as private and is accessed only
one thread at a time.

Fig. 5 is a full code of the example used in Fig. 3. As a result
of using OPAT, it indicates the problem of approaching at line
number 13 without protecting the shared variable.

Fig. 5 Access to shared variables not protected

C.Forget to Mark Private Variables as Such
Private variable is used when many threads take one variable

independently. When the value of variable is changed in
parallel region, special protection method should be taken or
the variable should be designated as private, last private or first
private. If variable is not apparently designated as private in
sharing construct, compiler considers it as private and there is
no warning.

The code in Fig. 6 is an example of OpenMP example
distribution fig. 4.36[5] which can be obtained from OpenMP
web page. Variables i and a are designated as private. It is
compiled normally without any problem in GCC, but the value
of a_shared is equal to 4 that is the wrong value. OPAT
generates the warning messages of not designating variable as
private. By correcting the mistake, the right value for a_shared
was achieved.

//private(i) private(a)
#pragma omp parallel for shared(a_shared)

for (i=0; i<n;i++) {
 a = i + 1;
 printf(“Thread %d has a value of a = %d for I =

%d\n”,omp_get_thread_num(),a,i);
 if (I == n-1) a_shared = a;

}
�

/* Warning Report
LINE_66:Forget to mark private variables as such
LINE_68:Forget to mark private variables as such
LINE_71:Access to shared variables not protected
*/

Fig. 6 Forget to mark private variables as such

D. Use of Ordered Clause without Ordered Construct
The code in Fig. 7 is from the OpenMP example distribution

fig. 4.74 [5]. It indicates the case which declares the directive
#pragma omp parallel for ordered, but ordered is not used in
the for loop. It means that there are some parts of code which
should be processed in order. Therefore it can be considered
as a mistake not putting the part of code that should be ordered.
A warning is generated.

#pragma omp parallel for ordered schedule(runtime)\
 Private(I,TID) shared(n,a)
for (i=0; i<n; i++) {
 �
//#pragam omp ordered
 {
 printf(“Thread %d prints value of a[%d] = %d\n”,TID,I,a[i]);
 }
 �
/* Warning Report
LINE_70:Use of ordered clause without ordered construct
 */

Fig. 7 Use of ordered clause without ordered construct

E. Forget to Put Down for in #pragma omp parallel for
This is the problem occurring when the parallel area is

designated but for directive is not used as shown in Fig. 8.
When it encounters a for loop, it does not divide the loop and
process them in parallel. Several threads execute the same loop
separately. Compiler does not find it as an error or a warning,
but it should be considered as a mistake. OPAT generates a
warning.

#pragma omp parallel shared(n) private(i)
//#pragma omp for
for (i=0; i<n; i++){
 printf(“Thread %d executes loop iteration %d\n”,
omp_get_thread_num(),i);

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:5, 2010

962

 }
/* Warning Report
LINE_66:Forget to put down for in #pragma omp parallel for
 */

Fig. 8 Forget to put down for in #pragma omp parallel for

F. Use of for Directive Without Parallel Construct
Fig. 9 show the case that does not designate parallel area but

use for directive. Compiler ignores pragma omp directive and
treat it as single thread. The code is not executed in parallel
and there is no speed up. It is hard to aware because it does not
influences the result value.

//#pragma omp parallel …

�
#pragma omp for
 for (i=0; i<n; i++) {
 �

}
/* Warning Report
LINE_66:Use of for directive without parallel construct
*/

Fig. 9 Use of for directive without parallel construct

G. omp_unset_lock() Called from Non-owner Thread &
Using Lock as Barrier

Lock function should be unset at the thread where lock
function is set [6]. In second section of Fig. 11, it generates
warning since the thread which calls omp_set_lock and the
thread which calls omp_unset_lock are different. Because
omp_set_lock function blocks the thread until lock variable is
available, so it should call the omp_set_lock function and then
calls the omp_unset_lock function before currently active
thread finishes. As shown in Fig. 10, if lock function is not
unset until the thread finishes, the warning message is
generated.

#pragma omp parallel sections {
 #pragma omp section {
 �
 omp_set_lock(&mylock);

 //omp_unset_lock(&mylock);
 }
 #pragma omp section {
 �
 //omp_unset_lock(&mylock);

omp_set_lock(&mylock);
 }
}
/* Warning Report
LINE_36:Using lock as a barrier
LINE_41:omp_unset_lock() called from non-owner thread
*/
Fig. 10 Using lock as a barrier & omp_unset_lock called from
non-owner thread

H. Attempt to Change Loop Variable While in #pragma omp
for

Changing loop variable in the loop is prohibited in the
parallel handling structure. GCC cannot find changing loop
variable error. Using OPAT a warning is generated when the
loop variable is changed in for loops as shown in Fig. 11.

#pragma omp parallel for shared(n) private(i)
for (i=0; i<n; i++){
 printf(“Thread %d executes loop iteration %d\n”,
omp_get_thread_num(),i);
 i=5;
 }
/* Warning Report
LINE_69:Attempt to change loop variable while in #pragma omp
for
 */

Fig. 11 Attempt to change loop variable while in #pragma omp for

IV. CONCLUSION
It is not easy for the programmer who only has experiences

with sequential program using OpenMP directives for
enhancing performance. Programmers are prone to commit
mistakes. Handling error or warning is an important indicator
for the performance of compiler. To examine the performance
of compiler supporting OpenMP, latest version of GCC which
is one of the most widely used compilers was used. It was found
that GCC does not generate warning and error messages for the
specific programmers’ mistakes in OpenMP code. In this paper
It is presented the programming aid tool for OpenMP programs.
It detects 12 common mistakes that novice programmer
commits during the programming of OpenMP. OPAT is very
light and easy to install. It is also available for any platform. It
is demonstrated and verified that the programming aid tool can
detect the various common mistakes that GCC failed to detect.

ACKNOWLEDGMENT
This research was supported by the Converging Research

Center Program through the National Research Foundation of
Korea(NRF) funded by the Ministry of Education, Science and
Technology (2009-0081958).

REFERENCES
[1] Rohit Chandra, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff

McDonald, and Ramesh Menon “Parallel Programming in OpenMP”,
Morgan Kaufmann Publishers, 2001.

[2] Haoqiang Jin, Michael Frumkin and Jerry Yan, “Automatic Generation of
OpenMP Directives and Its Application to Computational Fluid Dynamic
Codes”, in NASA Ames Research Center. ISHPC 2000, LNCS, 2000.

[3] Michael S¨uß and Claudia Leopold, “Common Mistakes in OpenMP and
How to Avoid Them,” IWOMP 2005/2006, LNCS 4315, pp.
312-323,2008.

[4] http://gcc.gnu.org/gcc-4.4/.
[5] http://openmp.org/examples/Using-OpenMP-Examples-Distr.zip.
[6] Babara Chapman, Gabriele Jost and Ruud van der Pas “Using OpenMP”,

2007,pp.268.

