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Free Vibration Analysis of Non-Uniform Euler
Beams on Elastic Foundation via Homotopy
Perturbation Method

U. Mutman and S. B. Coskun

Abstract—In this study Homotopy Perturbation Method (HPM)
is employed to investigate free vibration of an Euler beam with
variable stiffness resting on an elastic foundation. HPM is an easy-to-
use and very efficient technique for the solution of linear or nonlinear
problems. HPM produces analytical approximate expression which is
continuous in the solution domain. This work shows that HPM is a
promising method for free vibration analysis of nonuniform Euler
beams on elastic foundation. Several case problems have been solved
by using the technique and solutions have been compared with those
available in the literature.

Keywords—Homotopy perturbation method, elastic foundation,
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[. INTRODUCTION

N geotechnical engineering, beam on elastic foundation is

widely seen in application. There are various types of
foundation models such as Winkler, Pasternak, Vlasov, etc.
that have been used in the analysis of structures on elastic
foundations. The most frequently used foundation model in
the analysis of beam on elastic foundation problems is the
Winkler foundation model in which the soil is modeled as
uniformly distributed linear elastic vertical springs which
produce distributed reactions in the direction of the deflection
of the beam.

There are also different beam types in theory. The mostly
used one is the Euler-Bernoulli and it is suitable for slender
beams. For moderately short and thick beams, Timoshenko
beam model has to be used in the analysis. Vibration of a
uniform Euler beam on elastic foundation was studied
previously by Balkaya et al. [1] and Ozturk and Coskun [2].
Balkaya et al. [1] used Differential Transform Method while
Ozturk and Coskun [2] used HPM in their studies. Avramidis
and Morfidis [3] analyzed bending of beams on three-
parameter elastic foundation. De Rosa [4] studied free
vibration of Timoshenko beams on two-parameter elastic
foundation. Matsunaga [5] studied vibration and buckling of
deep beam-columns on two-parameter elastic foundations. El-
Mously [6] determined fundamental frequencies of
Timoshenko beams mounted on Pasternak foundation. Chen
[7], [8] analyzed vibration of beam resting on an elastic
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foundation by the differential quadrature element method
(DQEM). Coskun [9] investigated the response of a finite
beam on a tensionless Pasternak foundation subjected to a
harmonic load. Chen et al. [10] developed a mixed method for
bending and free vibration of beams resting on a Pasternak
elastic foundation. Maheshwari et al. [11] studied the response
of beams on a tensionless extensible geosynthetic-reinforced
earth bed subjected to moving loads. Auciello and De Rosa
[12] developed different approaches to the dynamic analysis
of beams on soils subjected to subtangential forces. Mutman
[13] determined free vibration frequencies of rectangular Euler
beams with linearly and exponentially varying width on elastic
foundation.

II. THE EQUATIONS OF MOTION AND BOUNDARY CONDITIONS

An Euler beam resting on Winkler foundation shown in Fig.
1 is considered in this study. The equation of motion for this
problem is given as follows.

2

2 2
0 El(x)ZT‘Q’ +k(X)W+ pA(x) aat_w -0 (1)

aXZ 2

where k is the spring constant, w is deflection, p is the mass
density, A is the cross sectional area, EI is the beam stiffness
and I is the area moment of inertia about the neutral axis. The
deflection is a function of both space and time, i.e., w = w(X,t)

in which space variable x is measured along the length of the
beam and t represents any particular instant of time.

—

Fig. 1 Representation of a beam on Winkler foundation

Due to the support conditions at both ends of the beam,
different conditions have to be imposed to the obtained
solution to determine unknowns included in final
approximation produced by HPM. These conditions are given
as follows:

a) For clamped-clamped beam the end conditions are:
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Wzﬂzo at Xx=0,L
OX )

b) For cantilever beam (clamped-free) the end conditions
are:

w=@=0 at x=0

OX A3)
2 3
OW_OW_ gt x=L
oX oX

c¢) For simply supported beam (pinned-pinned) the end
conditions are:

2
w=2Y_0 at x=0,L

X @)

d) For clamped-simply supported (pinned) beam the end
conditions are:

w=@=0 at x=0
X (5)
2

w=a\2/=0 at X=1L
OX

Now, free vibration analysis of the beams with variable
stiffness resting on elastic foundations will be formulated.

A solution is assumed as the following form to formulate
the analysis of the presented problem by the separation of
variables:

w(x,t) =W (x)e'” ©

where is the circular frequency for the vibration. Substituting
(6) into (1), equations of motion becomes as follows:

2 2
d—2 EI(x)d—VY +kW = pAp’W
dx dx ™

This equation can be rearranged as:

2

4 ! "2

d \:v+2 El(x) 6;% El(x) 6*\2” k(x) e PA(X) [azwj_o(i?)
' El(x) X El(x) & El(x)  EI(x)

where() denotes total derivative with respect to x. The
governing equation is now rewritten in a non-dimensional
form. This procedure is provided from [1] in which a constant
stiffness beam was analyzed. The notation is maintained in
this study for the comparison purposes. The non-dimensional
parameters for the Euler-beam on the Winkler foundation are

defined as [1].

— 4 —
7:1’ W:ﬂ’ l:ki’ D=0 p_A
L L El VK ()

Using these parameters, non-dimensional form of the
equations and formulation procedures are explained in the
following sections.

III. HOMOTOPY PERTURBATION METHOD

Homotopy Perturbation Method [14]-[19] that is an
analytical approximate solution technique can be considered
as one of the most applied method for nonlinear problems. The
HPM provides an analytical approximate expression as the
solution for the problems which are continuous in the solution
domain. The technique is applied to an equation of the form
L(u)+N(u)=f(1), r € Q with boundary conditions B(u,0u/0n)=0,
r € I' where L is a linear operator, N is a nonlinear operator, B
is a boundary operator, I' is the boundary of the domain Q,
and f(r)is a known analytic function. HPM, defines a
homotopy as v(r,p)=Qx[0,1]—R which satisfies the following
inequalities:

H(v, p) = (1= PILV) ~ L)1+ PILW) + NV = F0]=0 )
H(V, ) = L(v) = L(uy) + PL(U,) + PIN(W) = (] =0

wherer € Q and p € [0,1] is an imbedding parameter, uyis an
initial approximation which satisfies the boundary conditions.
From (10), (11), we have:

H(v,0) = L(v)—L(u,) =0 (12)

Hwv,)=LMV)+N\V)-f(r)=0 (13)

The changing process of p from zero to unity is that of
v(r,p) from uy to u(r). In topology, this deformation L(v)-L(u,)
and L(V)*N(v)-f(r) are called homotopic. The method
expresses the solution of (10), (11) as a power series in p as
follows:

V=V, + py, + PV, + PV .. (14)

The approximate solution ofL(u)+N(u)=f(r),r € Q can be
obtained as:

Uu=limv=v,+Vv, +V, +... (15)

p—l

The convergence of the series in (15) has been proven
in[14]-[19].
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IV.HPM FORMULATION

In this study, o linearly varying stiffness is assumed for the
beam considered. The linear variation of stiffness is due to the
linearly varying and is formulated as:

b(X)zbo(l—aX) 16)

where the dimension of o is [1/L]. By the use of variable
width, both cross-sectional area and flexural stiffness becomes
as:

A(x)=bh(1-ax)=A (1-ax)

E1 (x) = b, 1 (1) = 1, (1-)

(17

(18)

whereA, and I, are the cross-sectional area and moment of
inertia of the section at the origin, respectively. Inserting (17),
(18) into (8):

4 3 2
ok Ely(1-ax)oc El(l-ax) " El L2 )

This equation can be rewritten as:

a4—W—205[ ! )a3_vv+k(x)[ ! jWJrﬂﬂv =0
ot l-ax)ox  El, \1-ax El, \ ot 20)

employing (6);

w" —2a§(x)W”’+M§(x)W _PA =0
El, El, on

Equation (24) can be made non-dimensional in view of (9)
as follows:

W 20z ()W +2(£(x)-o Jw =0

(22)
where
— 4 p—
=X, W:V_V, ,1:ki, o= PA
L L El, K 23,
- 1 _
((X)=—= ., a=al
I-aX (24)

By the application of HPM, following iteration algorithm is
obtained:

W —u =0
W, +uy —2a& (X)W," +A(&(X)—@" )W, =0

W) - 22 (X)W,," + A(&(X)-a°)

=i
L
I
[e)
>
\Y
[\

V.SOLUTION PROCEDURE

A cubic polynomial with four unknown coefficients can be
chosen as initial approximation. There exist four boundary
conditions, i.e., two at each end of the column, due to the end
supports of the beam in the presented problem. Hence, the
initial approximation is:

W, = AX® + BX* +CX + D 26)

Twenty iterations are conducted through the analysis
procedure and four boundary conditions for each case are
rewritten by using the solution for displacement of the beam.
Each boundary condition produces an equation containing four
unknowns due to the initial approximation. These boundary
conditions in non-dimensional form are:

Clamped-Clamped beam:

dx 27

v_vzd—v_vzo at X=0
dx (28)
d*w  d’w
—=——>1=0 at X=
dx dx

— 2_
W :d_\/l/ =0 at X=0,1
dx 29)
Clamped-Pinned beam:
W:d—\ﬁ/=0 at X=0
X (30)
— 2_
dx

Hence, four equations in four unknowns may be written
with respect to the boundary conditions of the problem. These
equations can be represented in matrix form as follows:
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TABLE IV

(€2))

where {A}=ABCD»". For a nontrivial solution, determinant
of coefficient matrix must be zero. Determinant of coefficient
matrix yields a characteristic equation in terms of .
Positive real roots of this equation are the normalized free
vibration frequencies for the case considered.

VI.NUMERICAL RESULTS

A. Constant Stiffness Case

As the first example Euler beam of constant stiffness, (i.e.
El is constant), with different boundary conditions is
investigated. For the sake of comparison, all the values are set
to unity such as [=E=A=p=1, hence A=1, according to

NORMALIZED FREE VIBRATION FREQUENCIES OF CLAMPED-PINNED BEAM
RESTING ON WINKLER FOUNDATION

Method

(O]

(a7

3

W4

s

HPM [9]

15.451

49.975

104.253

178.273

272.033

As one can see, perfect agreement is obtained for constant
stiffness case. This issue is mainly due to constant coefficient
governing equation. In the following sections, variable
stiffness cases are investigated.

B. Linearly Varying Stiffness

A number of case studies are conducted with respect to
parameter a, and the results are given in Tables V-VIII below.

TABLEV

NORMALIZED FREE VIBRATION FREQUENCIES OF CANTILEVER BEAM
RESTING ON WINKLER FOUNDATION WITH LINEARLY VARYING FLEXURAL

previous studies [7]. Both algorithms given for linear and STIFFNESS
exponential variations lead to constant stiffness when o=0. a 0.00 0.10 0.20 0.30 0.40 0.50
In Table I, first three normalized free vibration frequencies o 3.65546  3.77785 391814 4.08113 4.27363 4.50571
for simply supported (pinned-pinned) beam are compared with @ 220572 222779 225271 228129 23.1475  23.5506
HPM results in the literature and the exact solution. Excellent @ 617053 619182  62.1616 624458 627867 63.2104
agreement is observed for HPM with the exact solution. @ 120.9061 121.1194 121.3645 121.6528 122.0024 1224434
os 199.8620 200.0755 200.3213 200.6117 200.9661 201.4172
TABLEI
NORMALIZED FREE VIBRATION FREQUENCIES OF SIMPLY SUPPORTED BEAM TABLE VI

RESTING ON WINKLER FOUNDATION

Method ) [oN o3 [N s

NORMALIZED FREE VIBRATION FREQUENCIES OF CLAMPED-PINNED BEAM
RESTING ON WINKLER FOUNDATION WITH LINEARLY VARYING FLEXURAL

HPM 9.92014 39.4911  88.8321  157.9168 246.7421 STIFFNESS
DTM[1] 992014 39.4911  88.8321 - - o 0.00 0.10 0.20 0.30 0.40 0.50
D%si’cltm 9.92014  39.4913  89.4002 - - o 154506 155615 156801 158069 159427  16.0879
Solution[1] 002014 394911 88.8321 - - @ 499749 500781 50.1878 503052 504316  50.5685
©; 1042525 1043556 104.4655 104.5836 104.7121 104.8544
The first five natural frequencies for clamped-clamped o5 1782725 1783756 178.4853 178.6036 178.7333 178.8785
beam and cantilever (clamped-free) beam are presented in os 2720328 2721358 2722455 2723640 2724944 272.6418

Tables II and III, respectively.

TABLE II
NORMALIZED FREE VIBRATION FREQUENCIES OF CLAMPED-CLAMPED BEAM
RESTING ON WINKLER FOUNDATION

TABLE VII

NORMALIZED FREE VIBRATION FREQUENCIES OF CLAMPED-CLAMPED BEAM
RESTING ON WINKLER FOUNDATION WITH LINEARLY VARYING FLEXURAL

STIFFNESS
Method o @ 03 D Os o 000 0.10 0.20 0.30 0.40 0.50
HPM[O] 223956 61.6809  120.908  199.862  298.557 @ 223956 223922 223777 223477 222958 222120
DIM[l] 223733 61.6728 120903  199.859 298.556 @ 616809 61.6752 61.6541 61.6114 615380 61.4183
DQEM[7] 223956 616811 120910 199.885 298.675 @ 1209075 120.9009 120.8775 120.8302 120.7485 120.6144
TABLE 111 ®s 199.8620 199.8549 199.8302 199.7803 199.6939 199.5512
®s 298.5572 298.5499 298.5243 298.4729 298.3834 298.2351

NORMALIZED FREE VIBRATION FREQUENCIES OF CANTILEVER BEAM
RESTING ON WINKLER FOUNDATION

Method o o o ©s s TABLE VIII
NORMALIZED FREE VIBRATION FREQUENCIES OF SIMPLY-SUPPORTED BEAM
HPM[9] 3.65546  22.0572 61.7053 120.906 199.862 RESTING ON WINKLER FOUNDATION WITH LINEARLY VARYING FLEXURAL
DTIM 1] 3.65546  22.0572  61.7053  120.906  199.862 STIFFNESS
DQEM[7]  3.65544 22.0572 61.7057 120911 199.894 a 0.00 0.10 0.20 0.30 0.40 0.50
o 99201 99217  9.9210  9.9170  9.9084  9.8932
Excellent agreement is observed for HPM with previous o 394911 39.4928 39.4970 39.5047 39.5166  39.5340
available results for both cantilever and clamped-clamped o; 83.8321 88.8340 88.8398 88.8511 88.8697  88.8986
beams. Clamped-pinned beam was only included in [9]. os 1579168 157.9189 157.9257 157.9389 157.9612 157.9966
Hence, only HPM results are tabulated for this case in Table s 246.7421 246.7443 246.7516 246.7661 246.7907 246.8302

Iv.

Variations of normalized free vibration frequencies ([l®)
with respect to non-dimensional variation parameter o for
each beam are also given in Figs.2-6.
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Fig. 2 Variation of normalized first mode frequency with respect to
normalized variation coefficient
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Fig. 3 Variation of normalized second mode frequency with respect
to normalized variation coefficient
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Fig. 4 Variation of normalized third mode frequency with respect to
normalized variation coefficient
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Fig. 5 Variation of normalized fourth mode frequency with respect to
normalized variation coefficient
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Fig. 6 Variation of normalized fifth mode frequency with respect to
normalized variation coefficient

VII. CONCLUSION

In this study, HPM is introduced for the free vibration
analysis of variable stiffness non-uniform Euler beams on
elastic foundations. As a demonstration of application of the
method, firstly constant stiffness uniform Euler beam is
considered and HPM results are comparison with the available
results. HPM has produced results in excellent agreement with
the previously available solutions that encourage the
application of the method for variable stiffness non-uniform
Euler beams. To represent a variation in stiffness, a
rectangular beam with varying width is considered. The
analyses areexpanded for variable stiffness cases. HPM also
produced reasonable results for the vibration of variable
stiffness Euler beams which show the efficiency of the
method. In the case of variable stiffness, the governing
equation becomes a differential equation with variable
coefficients, and it is not easy to obtain analytical solutions for
these types of problems. However, HPM would produce
reasonable results after performing some iterations with the
method. The results obtained in this study point out that the
proposed method is a powerful and reliable method in the
analysis of the presented problem.
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