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Abstract—An IEC technique is described for a multi-objective 

search of conceptual solutions. The survivability of solutions is 
influenced by both model-based fitness and subjective human 
preferences. The concepts’ preferences are articulated via a hierarchy 
of sub-concepts. The suggested method produces an objective-
subjective front. Academic example is employed to demonstrate the 
proposed approach. 
 

Keywords—Conceptual solution, engineering design, 
hierarchical  planning, multi-objective search, problem reduction.  

I. INTRODUCTION 
ECENTLY, a concept-based Interactive Evolutionary 
Computation (IEC) approach has been introduced for the 

exploration of conceptual solutions in multi-objective 
engineering design problems [1]. The use of conceptual 
solutions improves human-machine interface, and enables 
evaluating concepts, rather then just specific solutions, while 
taking into account human perceptions and subjective 
preferences. Dealing with engineering design problems, a 
progressive goal approach has been taken, where solution 
concepts are evolved around a dynamic target in a multi-
objective space [1]. In [2], an algorithm has been presented 
that interactively evolves conceptual solutions for a multi-
objective path-planning problem, by a Pareto-directed, rather 
then a progressive goal approach. This allows a non-localized 
inspection of solutions with respect to the objective space. 
Here, the technique is extended to deal with conceptual 
solutions that can be represented by a hierarchical tree of sub-
concepts (sub-solutions). Such a situation may occur in 
problem reduction and in application areas such as 
engineering design (e.g., sub-systems), and hierarchical 
planning. 

Pareto-based approaches are between the most popular 
MOEA solution techniques [3]. Surveys and descriptions of 
such algorithms can be found in several references (e.g., [3-
5]). The use of MOEA in conjunction with concepts, which 
are represented as sets of particular solutions, is not common. 
Andersson employed MOEA to separately evolve concepts by 
way of their particular solutions [6]. The novelty of our 
approach is in the ability to simultaneously evolve several 
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concepts. Moreover, our approach provides a method to 
combine human preferences and takes into account the 
hierarchy of sub-conceptual solutions. 

II. METHODOLOGY 

A. The Concept-based Search Problem 
In the common multi-objective search problem, such as 

described in [3,4], the set of Pareto optimal solutions is sought 
from the set of all possible particular solutions. Any particular 
solution is characterized by specific values of the problem 
variables representing a point in the problem variable space. 
The set of Pareto optimal solutions is found by comparing the 
performances of all particular solutions in the objective space 
for non-dominancy. The representation, in the objective space, 
of the set of non-dominated solutions is known as the Pareto 
front. Finding the performances of particular solutions is 
usually done by the use of models. 

Commonly the notion of a conceptual solution is associated 
with abstractive ideas generated by humans. It describes a 
generic solution to a problem. During a conceptual solution 
stage, such as initial planning and conceptual design, no 
particular solution is stated. By a particular solution we mean 
a fully detailed solution, such that it has a one-to-one 
relationship with a point in the objective space. Multiple 
particular solutions might be associated with a conceptual 
solution, constituting a one-to-many relationship between the 
conceptual solution and the objective space.  

In ‘real-life’ situations humans rely on their experiences and 
preferences in choosing a conceptual solution, and eventually 
they translate the chosen concept into a chosen particular 
solution. This is usually done with or without the ability to 
explicitly evaluate the merits of the chosen particular 
situation. We are interested in supporting humans, such as 
planners or designers, by computers, while performing a 
concept-based multi-objective search. In the proposed 
concept-based search, and in similar investigations, such as in 
[6-7], the interest is not on the performances of particular 
solutions, but rather on the performances of conceptual 
solutions. This is in contrast to the common multi-objective 
search problem. The proposed search concerns conceptual 
solutions that can be represented by sub-sets of the set of 
particular solutions of the problem (see examples in [1,2]). It 
is further assumed that the performances of each particular 
solution are computable via models (e.g., tables, parametric 
models). Each conceptual solution, and its associated 
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particular solutions, may be characterized by different models 
and/or range of variables, and consequently may possess 
different performances. Each conceptual solution, may be 
characterized by a different performance model and/or a range 
of variables, in comparison with other concepts.  

Given the above assumption on the existence of models, a 
Pareto front can be found for each concept, independently, by 
the associated sub-set of particular solutions. Eventually, all 
such Pareto fronts can be further organized to produce one 
final front (e.g., [6]). Our approach differs from such a 
sequential approach by two major aspects. First, the concepts 
are evolved simultaneously, which is far more efficient. 
Second, their survivability depends not only on computable 
models, but also on human subjective preferences of sub-
concepts.  

The simultaneous approach is motivated by its 
computational efficiency. This stems from the fact that no full 
development of fronts of bad concepts is expected. In contrast, 
the sequential technique inherently involves such a 
development.  

The interactivity element is significant for dealing with 
complex real-life situations. In many such problems the 
available models are limited. The computation of merits might 
only partially reflect all issues that are involved in selecting a 
concept. Difficulties in realizing solutions associated with a 
particular concept, might not be modeled (e.g., difficulties of 
manufacturing in design problems, un-modeled hazards 
associated with plans, which constitute a conceptual plan). 
The interactivity allows overcoming the lack of such models 
by employing human preferences. In the following section the 
foundations for the interactive concept-based search problem 
are outlined.    

B.  Hierarchical Representation of Concepts 
We use a hierarchical ‘AND/OR’ tree to represent the set of 

all conceptual solutions of the problem (conceptual solution 
space). Each concept is represented as a hierarchical ‘AND’ 
tree, which is extracted from the ‘AND/OR’ tree, by decisions 
taken at the ‘OR’ nodes. The ‘OR’ nodes are termed D-N 
(decision node), indicating that a decision on selecting a 
branch at that node has to be taken for the extraction of a 
concept. All other nodes on the ‘AND/OR’ tree can be viewed 
as sub-conceptual solutions (S-Cs) of the problem. Figure 1 
depicts such a tree. It includes 10 S-Cs, which are used to 
express 8 different concepts as further detailed in section III. 
It is important to note that the current representation of the 
conceptual solution space is assumed to be a-priori to the 
search. This means that in the current implementation, the tree 
is not generated, while searching, as in common AI problems, 
and the search is limited for innovative rather then creative 
concepts. 

 

 

 

 

  
 

Fig. 1 Conceptual solution space representation 

C. Evaluating Concepts and Particular Solutions 
Our explicit interest is in the performances of conceptual 

solutions. The performances of a concept are examined via its 
associated particular solutions. Each particular solution has its 
associated point at the objective space. A parallel search 
process is performed, where a finite set, S, of particular 
solutions, is examined simultaneously for their relative 
performances. The resultant Pareto–optimal set may consist of 
clusters of particular solutions, each associated with one of the 
concepts. 

Machine based fitness - Evaluating a particular solution of 
S is done by a multi-stage process, which is described below. 
First we employ a sorting and ranking procedure, following 
[8], to obtain ranked sets of non-dominated solutions out of S. 
This is done purely by a model-based evaluation. Next we 
assign ‘dummy fitness,’ r

Ufit , to each of the particular 
solutions, according to their rank, and further correct it by two 
penalty functions (see appendix, and [2] for further details). A 
machine-based fitness MBF of the i-th individual of the r-th 
rank, which is based on models, is calculated by  
                                                 

            mr
i

mr
i

r
Ui mfitMBF ,, −−= φ            (1) 

 
where, the right hand side of equation 1 is described in the 

appendix.   
Hierarchy-based S-Cs’ weighting - The process of 

evaluating a particular solution is not completed without the 
insertion of the affect of humans on the evaluation. The fitness 
of a particular solution should be corrected according to the 
human preference of the associated concept. The simplest case 
would be when humans assign preferences weights to each 
one of the concepts. In [2], we dealt with the less trivial case, 
where each sub-concept is assigned with a preference weight. 
Here we deal with a modification to include the affect of 
hierarchy on the fitness.      

The team’s preferences are accounted for in accordance 
with their location in the hierarchical tree. This is carried out 
by the following procedure, which makes sure that human 
preferences of S-Cs are not contradicting to the hierarchy of 
the S-Cs. Preferences of S-Cs are not to be considered 
whenever preferences exist at ancestors’ nodes. For example 
if designers of an airplane reject using a ‘delta’ wing then a 
high preference towards a bolt arrangement to mount the wing 
is irrelevant. The team may assign weights to some S-Cs of 
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the problem, with values in the interval [-1, 1], where -1 
designates pure dislike, and 1 stands for highest preference. 
Each S-Cg of the k-th hierarchy (the root has the lowest k), 
might be interactively assigned with weight, which is 
designated as k

gw* . Each extracted ‘AND’ tree, representing a 

concept, contains nA paths. For each path j, the highest node 
with an assigned weight is marked, and it’s weight is termed 

)(* jk
gw . Branches, below such nodes are pruned. S-Cs, with 

no preference, are automatically assigned with zero weights. 
The weights, of the resulting pruned tree, are used to obtain 
the m-th concept-weight, Hm, representing the concept 
preference. Starting from the leaves of the pruned tree, the 
weight, w(pr), of each parent node, is calculated by averaging 
the weights of its children, w(ch). The weight of a parent node 
is: 

 

                    )ch(w
n
1)pr(w

Ln

1nL
∑

=

=                           

                                                                  (2) 
and )(rootwHm =  

 
where, nL is the number of the node’s children. The 

calculation of the weight of the root, )(rootwHm = , is 
obtained by calculating the weights of the ancestors up to the 
root node of the ‘AND’ tree of the m-th concept. 

Human-Machine fitness - The human preferences should 
be combined with the MBF so that evolution is affected by 
both the objective performances and the subjective designers’ 
preferences.  Thus a fitness of a design solution is influenced 
by its performances and by the preferences of the designers 
towards the S-Cs, as related to the concept to which the design 
belongs. The fitness, which results from considering both 
influences, is termed Human Machine Fitness (HMF), HMF = 
f (MBF, H). The results presented in section III, were obtained 
using the following HMF function. 
                                                                                                                                                              
             0H1for)1H(fit i ≤≤−+⋅        

=HMF                                                                                   (3) 

             1H0for)H()fitfit(fit mmax,
imaxi ≤<⋅−+                              

 
where, fitmax is the maximal machine fitness over all 

individuals within the generation, and mmax,
ifit  is the maximal 

fitness of an individual belonging to a concept m of the 
generation. Thus, the fitness of an individual is scaled 
according to the team preferences.  

Objective subjective front – We term the presentation of 
solutions obtained by the HMF, in the objective space, as the 
objective-subjective front. It should be noted that this ‘front,’ 
might not necessarily possess the non-dominancy 
characteristics in the objective space. This is due to the fact 
that it is not based on performances alone, but also on the 
human preferences. 

D. MOEA Implementation 
A Compound-Individual, (C-I) holds a genetic code, as 

described in [1]. The code consists of all S-Cs and all the 
problem variables, in an ‘AND/OR’ structure. It enables the 
evolution of concepts, and the problem variables, 
simultaneously. For each ‘OR’ node, a genetic code is used 
for the competing S-Cs. Decoding the S-Cs’ competition code 
points at the winning S-C of the node, and its related problem 
variables.  The pseudo MOEA for the interactive concept-
based multi-objective search is outlined below.  

 
INITIALIZE: C-I= compound individuals 
While   team discussion continues 
  Insert k

gw*  - team preferences, interactively 

  While generation ≤  final generation 
     While not all individuals’ performances computed 
    Decode C-I for extracting winning S-Cs and values of    
        the problem variables    
    Compute Performances 
 End 
    Compute MBF (see appendix and eq. 1)  
   Compute H (eq. 2)  
   Compute HMF= Scaled human fitness ( eq. 3) 
       C-I = Reproduce C-I  
    C-I = recombine C-I with pc probability  
    C-I = Mutate C-I with pm probability 
    End 
Introduce fronts to the team 
End 
It is noted that due to the possible shuffling of the initially 

assigned ranks, by the human intervention, the HMF of a large 
portion of the population may rise rapidly. This can cause 
exploitation at a too early stage of the search. Therefore a re-
ranking procedure is implemented. The outlined MOEA is 
used in the following example. 

III. CASE STUDIES 
The purpose of this bi-objective academic example is to 

demonstrate the ideas presented in this paper and in particular 
to show the affect of the hierarchical preferences on the 
resulting front. The genetic algorithm parameters are detailed 
in table 1. Where pc, and pm, are the probabilities for 
crossover and mutation, respectively.  

The following objectives are used: 
 

                 
db)2x(f
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TABLE I   
ALGORITHM'S PARAMETERS 

 
 
 
 
 
 
 
 
 
 
 
The parameter, x, is the problem parameter searched within 

the interval [-10, +10]. Eight concepts are evolved based on 
ten S-Cs. The S-Cs, within the hierarchy arrangement of the 
‘AND/OR’ tree, are depicted in figure 1. Table 2 provides a 
list of concepts and their associated symbols (legend) as used 
in the following figures. 

 
TABLE II  

 SUMMARY OF CONCEPTS AND THEIR LEGEND 

 
 

The parameters b, c, and d, which are associated with the S-
Cs, dictate different performance models, (equation 4), for the 
various concepts. It should be noted that the S-C1 to S-C10 are 
related to b=1.0, b=1.5, c=2.0, c=3.0, d=2.0, d=1.0, c=1.0, 
c=2.0, d=0.5, and d=1.5, respectively. It is also noted that the 
equal values of c=2.0 for S-C3 and S-C8 mean that these S-Cs 
are actually the same, and the different indices is a result of 
the representation. The problem parameter 'b' characterizes the 
highest S-Cs of the hierarchy, and the rest of the parameters 
are associated with the S-Cs of the lower hierarchy. Deciding 
on the branch at each D-N, leads to an ‘AND’ tree of S-Cs, 
which corresponds to a concept. Each concept of this example 
has its unique model resulting from determining the values of 
the parameters b, c, and d.  

Figure 2 shows a part of the initial population. The eight 
concepts are distributed in the objective space according to 
their performances, as calculated by equation. 4. 
 

         
    Fig. 2 Initial concepts distribution  Fig. 3  Machine-based front 
 

Figure 3 depicts the resulting front. It shows that three 
concepts survived (concepts # 5,7,8). The winning concepts 
are associated with the S-C of b=1.5. Figure 4 shows the 
resulted front with preference assignment. A weight of 1*

1w = 
0.6 for the S-C6 (associated with b=1), is used. Clearly, this 
causes a change from the front of figure 3. In addition to 
concept # 5, which belongs to the branch of b=1.5, a second 
concept survived belonging to the branch with b=1(concept # 
1). It is noted that any assigned weights for S-C3 ÷  S-C6, will 
not be accounted due to the pruning procedure. 

  

     
     Fig . 4 Obj-Sub front 1*

1w =0.6      Fig. 5 Obj-Sub front 0.6 w 2*
2 =  

 
Figure 5 shows the results, with a change of preference of a 

S-C, which belongs to a lower hierarchy. S-C6 (associated 
with d=1) is assigned a preference weight, 2*

6w  = 0.6. This 
assignment causes the survival of concept # 1, yet the 
resulting front is not as full, in comparison with that of figure 
4. This is due to the lower location of the preferred S–C 
within the hierarchy.  When the S-Cs, associated with c=2 and 
d=1, are both assigned with weights ( 2*

3w = 2*
8w , 2*

6w ) of 0.6, 
the result is similar to the one depicted in figure 4. Increasing 
weight 1*

1w  (the b=1 branch) to 1.0, a further increase in the 
survivability of concepts, which include S-C6, takes place, as 
shown in figure 6.  
 

parameter value 
q r 8 
δ 40 
ε  10 

pn  250 

pc 0.7 
pm 0.03 
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       Fig. 6 Subjective front 1*

1w =1.0 Fig. 7 Subjective front 1*
2w =0.6 

 
Three out of the four concepts, belonging to that branch 

(b=1), appear in the resulting objective-subjective front. The 
forth concept did not appear, due to its low performance.   

If the branch of b=1.5 is given a higher preference ( 1*
2w = 

0.6), with no preference to S-Cs associated with b=1, a second 
front is surviving along with a front similar to the initial one. 
This can be seen by comparing figure 7 with figure 3. Any 
concept can be retained in the evolution by changing the 
preferences of its’ relevant S-Cs’, and those of the competing 
concepts. For example, concept #6, which has not survived so 
far, can be elevated by a subjective decision.  This can be 
done by assigning preference weights of to 6.02*

10
2*

8 == ww  

as well as assigning 4.02*
9

2*
7

1*
2 −=== www . The resulting 

front of these assignments, which contains concept # 6 alone, 
is depicted in figure 8.    
 

 
Fig. 8 Concept elevation 

 

IV. SUMMARY AND CONCLUSIONS 

A. Figures and Tables  
A concept-based MOEA, which strengthens symbiosis 

between computers and humans, in exploring conceptual 
solutions to multi-objective search problems, is presented. In 
particular the hierarchical preferences of S-Cs is dealt with. 
The algorithm allows simultaneous evolution of concepts. 
This is in contrast with methods that evolve each concept at a 
time, and use a post-evolution creation of a mixed front. In 
contrast to a theoretical Pareto front, the methodology uses 
ranked non-dominated sets, which are obtained by objective 

model-based design performance evaluations. These are 
further manipulated by subjective evaluations to produce 
objective-subjective fronts.  

An example is given, which demonstrates the performance 
of our concept-based method.  

APPENDIX 
A-1 Rank Assignment based on Non-dominancy 
The following algorithm assigns a level of non-dominancy 

(herby termed rank), r, to each individual. The predefined 
number of ranks is qr. The individuals of the first rank are 
assigned with an initial upper (U) fitness bound, as large as 
the population size, np  
 

                                 p
r
U nfit = ,   for   r=1                    (A1) 

 

For subsequent ranks upper fitness bounds are calculated as 
follows:  
 

             0
r
U

1r
U fitfit δ−=+ ,    for r=1,…., q r -1             (A2) 

 

Similarly, a lower (L) bound is assigned for each rank 
according to:  

                     ε+= +1r
U

r
L fitfit , for r=1,….,qr               (A3) 

 

where 1r
Ufit +<<ε  is a constant that separates 

between adjacent ranks. As a result, each rank has an available 
fitness span, δ, where, 
 

                                   ε−δ=δ 0                            (A4) 

The available span is reserved for distributing the fitness of 
the individuals, of the rank, according to front-based concept 
sharing, and in-concept niching, as explained in the following. 
 

A-2 Front-based concept sharing 
 

  The goal of concept sharing is to preserve concept 
diversity and prevent a good concept from hindering the 
evolution of other potential concepts. Concept sharing is 
implemented within each rank. A sharing penalty function for 
the i-th C-I, belonging to the m-th concept, within the r-th rank 
is defined as: 

 

                m,r
r

m,r
i n

n
5.0 δ

=φ                            (A5) 

     
where,  m,rn   is the total number of C-Is belonging to the m-

th concept within rank r, and rn  is the size of the population 
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belonging to rank r.  
 

A-3 In-concept front niching 
  

In our approach, fitness sharing is practiced within each 
concept, rather than within all the population. This preserves 
diversity within each concept belonging to a particular rank. A 
normalized Euclidean distance-measure, following [9], for the 
i-th and the j-th individuals, belonging to the r-th rank and m-
th concept, is computed as follows:  

 

                ∑
= ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
−

=
on

n
n

worst
n
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n
j

n
imr

ij ff
ff

d
1

2

,             (A6) 

 
where,  no  is the number of objectives to be optimized, and 
n

if  is the performance of the particular solution of the i-th 
individual with respect to the n-th objective. 
Also, )max( n

i
n

best ff =  and )min( n
i

n
worst ff = , are the 

best and worst performances within objective n, of the 
individuals, in rank r and concept m. A sharing function, [8], 
for the i-th individual with respect to the j-th individual, of the 
r-th rank and the m-th concept, is computed as: 
 

 

otherwise
difd

sh share
mr

ijshare
mr

ijmr
d mr

ij ,0
,)/(1 ,2,

,
,

σσ ≤−
=     (A7) 

 
where,  
 

                     
pshare q

5.0
=σ                                (A8) 

 
where q is the desired number of niches and p is the number 

of the problem variables. The niche count for each individual 
i, belonging to the m-th concept, and the r-th rank, is 
computed by: 
 

                ∑
=

=
mr

mr
ij

n

j

mr
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mr
i sh

n
m

,

,

1

,, 5.0 δ
                     (A9) 
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