
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

490

The OpenKnowledge Kernel
Adrian Perreau de Pinninck, David Dupplaw, Spyros Kotoulas and Ronny Siebes

Abstract— Web services are pieces of software that can be invoked
via a standardized protocol. They can be combined via formalized
taskflow languages. The OpenKnowledge system is a fully distributed
system using P2P technology, that allows users to publish these
taskflows, and programmers to register their web services or publish
implementations of them, for the roles described in these workflows.
Besides this, the system offers the functionality to select a peer that
could coordinate such an interaction model and inform web services
when it is their ’turn’. In this paper we describe the architecture and
implementation of the OpenKnowledge Kernel which provides the
core functionality of the OpenKnowledge system.

Keywords— Architecture,P2P,Web Services,Semantic Web

I. INTRODUCTION

Web services are pieces of software which functionality can
be invoked via standardized web interfaces. Combining these
services leads to service interactions, which are specified as
interaction models. In other words, interaction models contain
roles and the execution flow between them. Web-services are
not bound to specific interaction models; for example, a credit-
card service can be used for a hotel-booking task or to buy
music. From a user’s perspective, the services are only a
means to fullfill a task. The re-use of these interactions and
decoupling them from the services that play the roles in the
interaction is the novel contribution of the OpenKnowledge
System (OK system). This system is completely distributed
using P2P technology. Each peer that participates in the OK
system will at least run a piece of code that we call the
OpenKnowledge Kernel enabling the base functionality to
find these interactions and the code or peers that enable
to run the services. More precisely, the system is focused
on efficiently sharing and finding these formally described
interaction models (IMs) together with pointers to either the
code for the services or peers that can execute the services. We
call these services OK components (OKCs). The IMs together
with the OKCs are efficiently stored and retrieved in a P2P
network. Besides this, due to the fact that the tasks are formally
described, the OK system offers the functionality to coordinate
a task by controlling the process flow between OKCs, (i.e.,

Manuscript received March 9, 2007. This work is supported by the Open-
Knowledge Specific Targeted Research Project (STREP), which is funded by
the European Commission under contract number FP6-027253. The Open-
Knowledge STREP comprises the Universities of Edinburgh, Southampton,
and Trento, the Open University, the Vrije University of Amsterdam, and the
Spanish National Research Council, CSIC.

Adrian Perreau de Pinninck is with the Artificial Intelligence Research
Institute, IIIA, CSIC, in Barcelona, Spain. He is supported by a CSIC
predoctoral fellowship under the I3P program, which is partially funded by
the European Social Fund (e-mail: adrianp@iiia.csic.es).

David Dupplaw is with the IAM Group of the University of Southampton,
UK (e-mail: dpd@ecs.soton.ac.uk).

Spyros Kotoulas and Ronny Siebes are with the KR&R group at the section
Artificial Intelligence from the Vrije Universiteit, Amsterdam, NL (e-mail:
{kot,ronny}@few.vu.nl).

by executing the IM, selecting OKCs to fulfill a role, finding
alternative OKCs in case of failure, and making sure the IM
is followed by all OKCs). The users can publish IMs, write
interfaces to services, and subscribe these interfaces to play
roles in the IMs. The system helps these users by providing
tools to ease re-use of existing IMs or by helping connect two
services via mappings in case the output of one does not match
the input of the other.

In [1] a detailed overview of the system requirements,
assumptions and motivations together with a comparison to
other systems and research is given. For a short summary of
the related work, we refer to section VI. The OK system’s most
important requirements are ease of use, openness of sharing,
and re-use of knowledge about interactions, which are the
novel contribution of our approach. We assume that users are
willing to provide knowledge about tasks. We think that this
is a realistic assumption since community-based annotation
systems like FlickR1 and Youtube2 have become quite popular.
Also, we think it is reasonable to assume that a programmer
of a web service wants it to be used and is willing to spend
some time to write an IM with annotations if it would increase
its probability of being used. Our goal of making our system
user-friendly also holds for the programmers that contribute
the IMs and OKCs by using past community knowledge. This
knowledge is made up of interfaces to services, formal and se-
mantically annotated task descriptions, mapping information,
and feedback information for calculating reputations. Other
approaches also pursue similar goals to Open Knowledge:
sharing, searching and invoking services in a distributed and
scalable way, for more information about them refer to section
VI.

In this paper we define the OK Kernel. We first start with
the architecture in the next section. Section III describes the
services used by peers to interact with other peers. Section
IV describes the protocols used by peers to interact with each
other, how they are started and how they are executed. Section
V gives an example to show how the system may be used. We
conclude with related work in section VI and the summary and
future work in section VII.

II. ARCHITECTURE

The OpenKnowledge system has a P2P architecture where
each autonomous peer shares a common piece of software
that we call the OK Kernel. In this section we introduce the
kernel’s architecture, which will be described in more detail
in the following subsections (see Figures 1 and 2). We follow
a bottom up approach, starting from the basic building blocks,
namely OpenKnowledge Components (OKCs) and Interaction

1http://www.flickr.com
2http://www.youtube.com



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

491

2

Fig. 1. Open Knowledge Architecture

Models (IMs). An IM is a formal specification written in a
language devised for this purpose (e.g., LCC [2] or BPEL3).
IMs contain roles and define the interactions between them.
Roles are implemented by OKCs. An OKC is comparable to
a web service: it has an implementation and a standardized
way to describe functionality. OKCs are mobile and are stored
locally in OKC repositories, and distributedly via the DTS (see
section III-A). Once they are being executed as part of an IM,
the OKC instances are stored in instance repositories. Each
peer manages the OKCs it has stored locally and can also
act as a coordinator of an interaction between OKCs. OKCs
communicate with the coordinator via the communication
layer. A user-interface is provided to access the basic OK
functionality by the user; search for IMs, download OKCs, and
subscribe to roles. The control manager provides execution
control over the peer’s modules.

Besides these, there is a set of elements that are not
essential for every peer but are essential for the system as
a whole. Therefore, a subset of the OK peers need to execute
them. Some peers, acting as coordinators, need to interpret
the IMs and coordinate the communication between OKCs.
Furthermore, some services are provided for peers to aid in
the interaction process. The Discovery and Team formation
Service (DTS) stores IMs, OKCs, and their subscriptions.
The Trust and Reputation Service (TRS) is used to gather
information about other peers in order to guide the user in
choosing interaction partners. The Mapping Service (MS) is
used by peers when interacting with each other to aid in mutual
understanding.

A. Interaction Models (IMs)

OKCs on the system may be seen as passively providing
functionality, just like a web service. When called, they
process data and produce an output. If we were to write the
specifications for the inputs and outputs we would end up
with a semantic web service description that would allow

3http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

Fig. 2. Peer Modules

OKCs to be executed on some data. However, any use of
these OKCs in some larger problem remains undefined. An
orchestration of two or more OKCs is useful in higher-level
tasks and we define this through an interaction specification.
However, from the types of inputs and outputs of a service,
no inference can be made of how to sensibly orchestrate the
values that pass between them; the coordination rules of the
interaction provide such a formalisation of this orchestration.
To fully define specific applications in which these OKCs may
be activated we need to define both the interaction specification
and coordination rules. Together, they create an IM by which
we can orchestrate OKCs providing services that fulfil one of
its roles.

IMs specify message passing interactions, with constraints
on their execution. Messages are sent or received by peers
if any constraints on the send or receive actions can be
satisfied. Pragmatically, this means that all constraints are
functional calls that will attempt to satisfy the constraint on
the message operation. If constraints can be satisfied then the
interaction may go ahead, otherwise we must backtrack to find
an alternative path in the IM whose constraints are satisfiable.

B. OpenKnowledge Components (OKCs)

OKCs play a role in an IM. Many different OKCs with the
ability to play the same role in the same IM can coexist. It is
up to the user to decide which one suits his needs best.

OKC’s are made up of the following parts:
• IM reference - the identifier of the IM that the OKC can

play.
• Role - the name of the role that the OKC can play.
• Annotation - (optional) information describing the OKC

implementation.
• Code - the algorithms that solve the role constraints in

the referenced IM.
• Facade - the name of the main class that acts as an entry

point to the OKC Code.
OKCs are packaged into one file so that they can be moved

around the network easily. The file contains the compiled
code (optionally the source code too), and an XML file which



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

492

3

contains the IM reference, role, annotation, and facade (i.e.,
the OKC Description).

More information about an OKC may be gathered from the
network. Services can be used to find out how many peers
host the OKC, its reputation ratings, or type mappings (see
section III).

C. OKC Repository

Each peer can store OKCs locally in the OKC repository.
A user is able to access the OKCs stored in it and use them to
interact with other peers. OKCs downloaded from the Open-
Knowledge network, and OKCs the user has implemented can
be stored in the repository.

The simplest possible repository will contain the function-
ality to store new OKCs, retrieve an OKC previously stored
using its ID, and list the currently stored OKCs. Advanced
implementations may have querying mechanisms to search
through the repository, and tag OKCs with labels according to
a user-defined label hierarchy. Searching, storing, and labeling
is achieved via the user interface.

D. Instance Repository

When the user starts interacting through one of its OKCs,
a new instance of the OKC is created that will play its role
in the IM. A new instance needs to be created, since an OKC
may be taking part in more than one interaction. The peer
needs to manage all these instances, and this is accomplished
through the instance repository.

E. Communication Layer

The communication layer describes the set of network
protocols used by the system objects (OKCs and Coordinators)
to communicate with each other. We have designed the com-
munication layer to send messages asynchronously between
peers using TCP/IP as the transport protocol, which is widely
used over the internet and guarantees message delivery.

F. Control Manager

The control manager is the glue that pulls the peer parts
together. The user interacts with the peer through the UI. Its
events are handled by the control manager which delegates the
request to the modules that can satisfy them. The control man-
ager follows the mediator pattern [3], whenever one module
needs to use another module’s functionality, it asks the control
manager which delegates to the appropriate module.

The control manager drives the system protocols (see sec-
tion IV), and accesses the different services offered by the
network. It initializes all the modules and services when the
peer is booted, and shuts them down when the peer is stopped.

G. Coordinators and Interpreters

Peers in the network may subscribe themselves to play the
role of coordinator (see section IV). A coordinator is a peer
in the network that will execute an IM locally, interpreting it,
storing the state and simulating all message passing within

Fig. 3. Basic User Interface

itself. Since, it is unable to provide specific functionality
that the IM requires (i.e., solve constraints), the coordinator
will contact the OKCs playing the IM roles to provide this
functionality. When the interpreter comes across a constraint,
the coordinator intercepts it and delivers it to a peer who has
subscribed to play the role that provides that functionality.

Delegating IM execution from each peer in the interaction
to a single coordinator peer, provides us with a greater ability
to execute potentially conflicting constraints in a parallel
fashion, because the coordinator retains an overall vision of
the interaction state. Passing the protocol from peer to peer
during message delivery makes such parallel interactions very
difficult to synchronise.

H. Visualization - User interface

OK peers are provided with a basic user interface (see
Figure 3), however it is not limited to such an interface. The
interface is mainly used as an event generator, these events
are handled by the system’s control manager. The UI provides
the means to search for IMs, download OKCs, and subscribe
to roles.

A number of extra features are available when an IM is
being executed; interaction state visualization, and constraint
satisfaction by users. The use of coordinators makes visualis-
ing the current interaction state simple. Since the coordinator
is in contact with all the interacting peers, it can send the
interaction state to those that wish to visualize it. Also, when
an OKC is unable to solve a constraint it can fire a GUI to
procure a result directly from a user, using the visualization
engine.

III. SERVICES

Not everything happens via OKCs, a set of services is also
part of the OK system. The discovery and team formation
service is an essential service, meaning that the system cannot
operate without it. Other services, namely the mapping service
and the trust and reputation service are in the focus of our
research, but are optional.



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

493

4

A. Discovery and Team formation Service (DTS)

Much of the functionality of the OK system relies on the
DTS, its main responsibilities being the following:

• IM Discovery - the DTS is used to publish, discover and
retrieve IMs.

• OKC Discovery - the DTS is also used to publish,
discover and retrieve OKCs. This enables reusability thus
providing scalable functionality. OKCs can be discovered
either in the context of an already known IM or indepen-
dently.

• Role subscription - peers can subscribe a locally stored
OKC to play a role in an IM. Additional information
such as annotations and restrictions concerning the other
participants can be given along with the subscription.

• Coordinator subscription - peers may also subscribe to
act as interaction coordinators.

• Team formation and interaction initialization - the DTS
uses subscription information to form teams of OKCs,
which will, potentially, participate in an interaction, and
finds a subscribed coordinator to orchestrate them.

B. Mapping Service (MS)

An OKC needs to understand the other OKCs it is interact-
ing with. Chances are that an OKC will not interact with all
the other OKCs, therefore defining an a priori ontology seems
unreasonable, given the complexity of the task. Furthermore,
we want to achieve low entry cost, therefore, matching of one
OKC’s terms to another must be done at runtime. The MS’s
aim is to aid in this runtime process.

The MS is used in the searching and the interaction
processes. When searching for IMs and OKCs it is used
to map the text in their annotations to the query. When
interacting, an OKC can use the MS to map those terms
that another OKC is sending to its own terms. The MS taps
into the information gathered from the system use, to provide
community-supported mappings.

C. Trust and Reputation Service (TRS)

Since we are dealing with a completely decentralized system
and flexible interactions, a service to maintain trust rela-
tionships greatly benefits the range of applications suitable
for OpenKnowledge. To this end, a combination of personal
preferences and community past experience needs to be taken
into consideration when choosing whom to accept as interac-
tion partner. Note, that although the policies governing this
can be complex, our architecture is independent of the TRS
implementation.

All that is needed from the user by the TRS is that it rates
the interactions with other peers. This action is optional, but
it is feasible to assume enough users will be willing to rate
interactions seeing how other community-based rating systems
such as FlickR and YouTube are being used. In return, users
will be able to query the TRS in order to retrieve reputation
data about other OKCs and peers with which (s)he might have
to interact.

IV. OPENKNOWLEDGE PROTOCOLS

The OpenKnowledge peers interact with each other through
different protocols; discovery, team formation, and interaction.
In this section we will describe each one of them.

A. Discovery

The discovery protocol is used by peers to find information
that other peers have published in the network. Therefore this
protocol consists of the following parts: publishing, searching,
and downloading.

A user, that has developed an IM or an OKC in his machine,
can publish them to the OpenKnowledge network if he wants
to share them with other users. OKCs that have not been
published can interact with others. On the other hand an IM
that is not published cannot be used. When publishing the user
provides annotations associated with the IM or OKC so that
other users can find them. The DTS is in charge of storing the
published IMs and OKCs

Users can search for IMs and OKCs that other users have
published by querying the DTS. The query is made up of a list
of keywords. The DTS will search for IMs and OKCs whose
annotation matches the user’s query, the MS can be used in
the process of matching the query to the annotations. The DTS
will return a list of matching IMs or OKC descriptions4 which
are shown to the user through the GUI. The user may select
one of the objects from the list and download it from the
DTS, if the user chooses an OKC the whole package with
description and code is retrieved.

B. Team Formation

Peers that want to interact with other peers must play a
role in an IM. In order to achieve this the peer subscribes an
OKC in its local OKC repository to the DTS. The user can
add annotations associated to the subscription giving further
information about the OKCs capabilities in the interaction,
and partner restrictions. Furthermore, peers can also subscribe
themselves to act as interaction coordinators to the DTS. Once
enough peers have subscribed to play all the obligatory roles
of an IM, a team can be formed. The DTS collects all the
subscriptions and appoints a coordinator which is responsible
for informing peers about the participation of their OKC in
the team, carrying out participant finalization.

Participant finalization is an additional negotiation step in
which OKCs are expected to commit themselves to participate.
The coordinator sends a message to each peer with a list of
the other peers that have subscribed. Each OKC then returns
a message saying if it commits to play the subscribed role
or not. If so, a new instance of the OKC is created and
the interaction can start, the coordinator informs the DTS
so that the used subscriptions are taken into account. If not
enough peers commit, the coordinator must roll back the team
formation process. Sends a cancel interaction message to each
peer, which will then destroy the OKC instance.

4The code is not returned since it is only downloaded on demand with the
whole OKC.



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

494

5

When the peer receives a message from a coordinator
to commit to an interaction, it can check the other peers’
reputation via the TRS. This information can be used to decide
whether it want to commit to the current interaction or not. In
some special cases (e.g., electronic marketplaces), deciding to
commit can include step in which the user is asked to confirm.

C. Interaction

The protocol starts with the coordinator using the interpreter
to parse the IM it has been handed by the DTS. When the
interpreter reaches a constraint which must be solved by one
of the interacting OKCs, the constraint solving protocol starts.
The coordinator sends a message to the OKC that is to solve
the constraint. This message contains the interaction state,
the constraint to be solved, and the parameters associated to
the constraint. When the OKC receives this message it tries
to solve the constraint. If it does it returns a message with
the constraint return values and the modified interaction state.
When the coordinator receives the message with the solved
constraint, it merges the new state with the global interaction
state. If the OKC is not capable of solving the constraint (e.g.,
due to problems with ontology mapping, or to unforeseen
problems with resource availability), it sends the coordinator
a message indicating this, and the coordinator will search for
another path in the IM that can be satisfied.

V. EXAMPLE

We will now show through a simple example how the Open-
Knowledge System works. We will show how a dictionary
service can be created and used. The scenario that we describe
in this section is made up of three peers, but many more could
be added without changing the general idea. Each of the peers
will also be part of the DTS and subscribe to act as coordinator.
To simplify matters we will assume that these peers are always
online, and the OK Kernel is being executed in each one of
them.

Peer A develops an IM that describes an interaction between
two roles, one being the querier, and the other the dictionary.
The querier sends a word to the dictionary which returns its
definition. It also creates an OKC that can play each of the
roles. Peer A then publishes the IM and the querier OKC to
the DTS giving annotations so that they can be easily found.
The OKC Peer A has implemented to play the dictionary role
can only give definitions to English words. Peer A subscribes
this OKC and gives an annotation saying that it is an ”English”
dictionary.

Peer B wants to find a service that will allow it to find
definitions to words in Spanish. It queries the DTS and finds
an IM that suits its needs. It also finds an OKC which allows
it to play the querier role, which it downloads to its local
OKC repository. Peer B then subscribes the OKC to play with
the restriction that it wants to find the definition for words in
Spanish. At this point the DTS has enough subscriptions to
start an interaction. But, since Peer B set a restriction that the
subscription of Peer A does not satisfy, the interaction cannot
start.

Peer C would like to offer a spanish dictionary service. It
queries the DTS and finds an IM that suits its needs. Therefore,
it creates an OKC that can play the dictionary role in the IM.
Peer C then subscribes the OKC with an annotation saying
that it is a Spanish dictionary. Now the DTS has enough
subscriptions that (satisfy the restrictions) to play all the roles
in the IM. It chooses one of the peers that has subscribed to
play as coordinator and sends it the IM and the interacting
OKC peers’ addresses.

The coordinator sends a message to each peer asking them
to commit to the interaction, with information about the other
subscribed peers. Both Peer B and C receive the message and
commit. Each of them creates an instance of the OKC for
this interaction, and the coordinator notifies the DTS that the
subscriptions have been used. The coordinator starts parsing
the IM and it finds a constraint where the word to be defined
should be returned. The coordinator sends a message to Peer
B which solves the constraint by asking the user (using the
visualizer). The word is sent back to the coordinator which
continues parsing the IM and reaches a constraint that must
be satisfied by the dictionary role to give the word definition.
The coordinator sends the constraint to Peer C which solved
it and returns the definition in a message. The coordinator
continues parsing and finds a constraint in which the querier
role must show the user the word definition. It sends Peer B
a message with this constraint and it is solved by using the
visualizer to show the query results to the user. The IM is
finished at this point, so the coordinator sends a message to
each peer so they can stop the OKC instances.

VI. RELATED WORK

Other approaches such as Web services, Grids, P2P, and
MAS, share the goals of OK: writing, sharing, searching and
executing task descriptions (IMs) and services (OKCs) in a
distributed, user-friendly, and scalable way. Below we point
out the key differences between OK and them:

• Web services are clearly distributed, but recruiting them
for a work-flow is either static (i.e., fixed addresses in
the work-flow description) or centrally organized like in a
UDDI[4] registry for regular web-services and WSMX[5]
for semantic Web services. Static pointers are a disad-
vantage because they are not flexible with regard to new
peers that want to host the service or for those that do
not want to host it anymore. A centralized repository,
especially when it needs reasoning (e.g., Semantic Web
services), is not scalable and is a single point of failure.
In our system, we build a scalable distributed repository
of IMs (DTS) together with pointers to (web) services or
code. Although there are differences, we can use many of
the technologies and methods like mappings, reasoning,
versioning, and query relaxations in our system[6].

• Grids have the most overlap with our approach. The key
difference is not the goal but the focus; which problems
to solve, and the assumptions made. For example, the grid
community focusses more on reliability, task schedul-
ing, and distributed computing. We focus on making
everything P2P, user-friendliness, community support and



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:3, 2007

495

6

knowledge re-use. The most related approaches to our
work are myGrid [7] and OGSA[8]. Unfortunately, they
assume a centralized infrastructure on which, for exam-
ple, process flows are published and discovered which
may cause scalability problems when applied in large
scale. One other very interesting direction is distributing
the control of the execution of a workflow to prevent
single points of failure [9], [10]. Please recall that in our
system, for each IM that is instantiated with peers that
will play the roles, a coordinator is dynamically chosen
from a pool that controls the IM. This means that if the
coordinator fails, only the interactions the coordinator is
orchestrating are lost, not the whole of the interactions
being coordinated in the system.

• P2P systems are the most generic category. Many systems
fall into this category, such as Seti@home (where peers
act like drones), file-sharing systems (i.e., Kazaa and
Gnutella ), and messaging services (i.e., Jabber , and
Skype ). This field’s limitation is its specific functionality
(i.e., for each task there is a new application). We have
designed a generic system where tasks are open and the
peers in the system can execute it. For example, the
Gnutella task could run on our system by writing the
IM that describes the interactions between peers. Besides
this, the P2P systems are mostly data oriented, where our
system is service oriented.

• Multi-agent systems focus on complex behavior of a
whole system or the agents within. Agents often have
reasoning capabilities based on psychological models and
show pro-active behavior. Individual agents or groups
can perform tasks which are similar to our approach.
The difference is that many systems still have cen-
tralized components, like matchmakers and brokers as
InfoSleuth[11] or AMELI[12], and therefore could have
scalability issues.

VII. SUMMARY AND FUTURE WORK

In this paper we have presented the motivation and the
technical description the OpenKnowledge Kernel that offers
the core functionality of the OK system. We defined the
different protocols and services offered by it, how OKCs
interact with each other, and the peer’s local modules. We
have left a lot of the implementation issues open to allow for
multiple implementations. Our goal is to describe the different
objects present in the Kernel and its core services and define
the relation and communication between them. The novelty
of the OK system lies in (1) the interaction centric approach,
where interactions are published and efficiently stored in a
P2P network, (2) decoupling interactions and roles from the
services that execute these roles, (3) a distributed way of
finding coordinators that coordinate IMs.

We have presented the first architecture version, and we
are working on the next version that will improve it. For
instance, the current version’s coordinator is a bottleneck, and
the single point of failure in a single interaction. We want
to distribute the coordination task amongst different peers, so
that if a coordinating peer goes offline, the interactions it is

orchestrating are not suspended. We also want to offer all
the current services and the coordinator as OKCs. Different
implementations would be available, and users would choose
which services to offer, and which to use.

In order to implement a pure OKC-based architecture, we
must define how to create new IMs by using preexisting ones
as sub-IMs. IMs would have references to other IMs, but this
is just one part of the problem. We also need to design a
mechanism through which sub-IMs can be coordinated, and
how the coordinators at different levels of the IM keep whole
interaction state consistent.

In the actual architecture there is a tight coupling between
OKCs and IMs. To make the system more dynamic, we plan
to allow OKCs to play roles in many IMs. This could be
accomplished by allowing a list of IM references in an OKC,
or by defining the OKC’s capabilities and verifying real-time if
the OKC is able to play a role in an IM. Also IMs are restricted
to define reactive roles, because OKCs are only asked to solve
constraints when the IM demands it. We also plan to allow
OKCs to be pro-active bringing us closer to the multi-agent
community.

REFERENCES

[1] R. Siebes, D. Dupplaw, S. Kotoulas, A. P. de Pinninck, D. Roberston,
and F. van Harmelen, “The functional description of the open-
knowledge system,” Open-knowledge consortium, Tech. Rep., 2006.
[Online]. Available: http://www.cs.vu.nl/ ronny/work/okfunctional.pdf

[2] D. Robertson, “A lightweight coordination calculus for agent systems,”
Lecture Notes in Computer Science - DALT, vol. 3476, pp. 183–197,
2005.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of reusable object-oriented software. Addison-Wesley, 1995.

[4] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weer-
awarana, “Unraveling the web services web: An introduction to soap,
wsdl, and uddi,” IEEE Internet Computing, no. 6(2), pp. 86–93, March
2002.

[5] P. Bouquet, J. Euzenat, E. Franconi, L. Serafini, G. Stamou, and
S. Tessaris, “Overview and scope of wsmx,” DERI, Ireland, Tech. Rep.,
2005, http://www.wsmo.org/TR/d13/d13.0/v0.2/.

[6] G. Antoniou and F. van Harmelen, A Semantic Web Primer. MIT Press,
2004.

[7] R. Stevens, A. Robinson, and C. Goble, “myGrid: personalised bioin-
formatics on the information grid,” Bioinformatics, vol. 19, no. 1, pp.
302–304, 2003.

[8] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The physiology of
the grid: An open grid services architecture for distributed systems
integration,” in Open Grid Service Infrastructure WG, Global Grid
Forum, june 2002.

[9] D. Wodtke and G. Weikum, “A formal foundation for distributed
workflow execution based on state charts,” in ICDT ’97: Proceedings of
the 6th International Conference on Database Theory. London, UK:
Springer-Verlag, 1997, pp. 230–246.

[10] W. Tan and Y. Fan, “Model fragmentation for distributed workflow
execution: A petri net approach,” in Advanced Distributed Systems
(LNCS 3563). Springer Berlin / Heidelberg: Springer-Verlag, 2005,
pp. 207–214.

[11] M. Nodine, W. Bohrer, and A. H. H. Ngu, “Semantic brokering over
dynamic heterogeneous data sources in infosleuth,” in Proceedings of
the International Conference on Data Engineering, 1999.

[12] M. Esteva, B. Rosell, J. A. Rodriguez-Aguilar, and J. L. Arcos, “Ameli:
an agent-based middleware for electronic institutions,” in Proceedings
of the Third International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS’04), 2004.


