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An Efficient Method for Load Flow
Solution of Radial Distribution Networks 

Smarajit Ghosh , Karma Sonam Sherpa      

Abstract—This paper reports a new and accurate method for 
load flow solution of radial distribution networks with minimum 
data preparation. The node and branch numbering need not to be 
sequential like other available methods. The proposed method does 
not need sending node, receiving node and branch numbers if these 
are sequential. The proposed method uses the simple equation to 
compute the voltage magnitude and has the capability to handle 
composite load modelling. The proposed method uses the set of 
nodes of feeder, lateral(s) and sub lateral(s). The effectiveness of the 
proposed method is compared with other methods using two 
examples. The detailed load flow results for different kind of 
load modellings are also presented.
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Composite, Exponential

I  INTRODUCTION 

HE exact electrical performance and power flows of the 
system operating under steady state is required in efficient 

way known load flow study that provides the real and reactive 
power losses of the system and voltages at different nodes of 
the system. With the growing market in the present time, 
effective planning can only be assured with the help of 
efficient load flow study. The distribution network is radial in 
nature having high R/X ratio whereas the transmission system 
is loop in nature having high X/R ratio. Therefore, the 
variables for the load flow analysis of distribution systems are 
different from that of transmission systems. The distribution 
networks are known as ill conditioned.  The conventional 
Gauss Seidel (GS) and Newton Raphson (NR) method does 
not converge for the distribution networks. A number of 
efficient load flow methods for transmission systems are 
available in literature.   A few methods had been reported in 
literature for load flow analysis of distribution systems. The 
analysis of distribution systems is an important area of activity 
as distribution systems is the final link between a bulk power 
system and consumers [1–3]. 
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The methods proposed in [4,5] were very time consuming 
and increased the complexity. Kersting and Mendive [6] and 
Kersting [7] proposed a load flow technique for solving radial 
distribution networks by updating voltages and currents using 
the backward and forward sweeps with the help of 
ladder network theory. Stevens et al. [8] showed that the 
method proposed in [6,7] became fastest but could not 
converge in five out of twelve cases studied. Shirmohammadi 
et al. [9] proposed a method for solving radial distribution 
networks with the help of direct voltage application of 
Kirchoff’s laws and presented a branch numbering scheme to 
enhance numerical performance of the solution method. They 
also extended their method for solving the weakly meshed 
distribution networks. Their method needs a rigorous data 
preparation.  Baran and Wu [10] developed the load flow 
solution of radial distribution networks by iterative solution of 
three fundamental equations representing the real power, 
reactive power and voltage magnitude. Renato [11] proposed 
one method for obtaining load flow solution of radial 
distribution networks computing  the electrical equivalent for 
each node summing all the loads of the network fed through 
the node including losses and then starting from the source 
node, voltage of each receiving end node was computed. 
Chiang [12] presented three different algorithms for solving 
radial distribution networks based on the method of Baran and 
Wu [10]. Goswami and Basu [13] proposed an approximate 
method for solving radial and meshed distribution networks 
where any node in the network could not be the junction of 
more than three branches i.e., one incoming and two outgoing. 
They had used sequential branch and node numbering scheme. 
Jasmon and Lee [14] developed a load flow method for 
obtaining the load flow solution of radial distribution 
networks using the three fundamental equations representing 
the real power, reactive power and voltage magnitude that had 
been proposed by Baran and Wu [10]. Das et al. [15] proposed 
a load flow method using power convergence with the help of 
coding at the lateral and sub lateral nodes. For large system 
that increased complexity of computation. Their method 
worked only for sequential branch and node numbering 
scheme. They had calculated voltage of each receiving end
node using forward sweep. They had taken the initial guess of 
zero initial power loss. Rahaman et al. [16] proposed a method 
for the improved load flow solution of radial distribution 
networks. They had proposed a voltage equation of the order 
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of four. Ghosh and Das [17] presented a load flow method for 
solving radial distribution networks based on the technique 
with nodes beyond branches using voltage convergence. They 
had considered flat voltage start. They had shown proof of 
convergence and also shown that incorporation of charging 
admittances reduces losses and improves voltage profile. The 
main draw back of this method was that it stores nodes beyond 
each branch. This method calculated current for each branch 
by adding load currents of nodes beyond the respective 
branch.  Jamali et al. [18] presented a load flow technique 
based on sequential branch numbering scheme to design 
distribution network by considering committed loads. 
Aravindhababu et al. [19] had shown a simple and efficient 
branch-to-node  matrix-based power flow (BNPF) for radial 
distribution systems and this method was unsuitable for 
extension to optimal power flow for which the NR method 
seems to be more appropriate. In that method any presence of 
sub laterals complicates the matrix formation. Mekhamer et al.
[20] developed a method for load flow solution of radial 
distribution networks using terminal conditions. Afsari et al.
[21] proposed a load flow method based on estimation of 
node voltage and assuming the loads of the nodes of lateral 
and their sub lateral are concentrated at the originating node of 
the feeder. They had tried to reduce the computation time 
only. But the computation becomes very complex when the 
number of laterals and sublaterals increases. Ranjan et al. [22] 
proposed a new load flow technique using power 
convergence characteristic. They had calculated voltage of 
each node using forward sweep by the same voltage 
expression available in reference [15]. They had calculated the 
total power flow of each branch that is fed to the 
receiving end node of that branch. Their method also needed 
the storage of nodes beyond each branch. They also claimed 
that their algorithm could easily accommodate the composite 
load modeling if composition of load was known. The main 
disadvantage of this method was that their method needed a 
repetitive search for connection of receiving end node of each 
branch with other nodes. In their method, they claimed that the 
proposed method worked for arbitrary node numbering but 
remained silent regarding the branch numbering scheme. 
Chakraborty and Das [23] had stated that the power 
convergence has the capability to handle composite load 
modeling. Ranjan et al. [24] had used the voltage convergence 
to handle the different composition of load for the same 
example used in refernce [23]. All the proposed methods need 
branch number, sending end node and receiving end node. 
The methods proposed in [13,15] needed sequential 
numbering scheme. In the all the proposed methods, the 
examples used were with sequential numbering scheme. 

 The main aim of the authors is to reduce the data 
preparation and to assure computation for any type of 
numbering scheme for node and branch. If the nodes and 
branch numbers are sequential, the proposed method needs 
only the starting node of feeder, each of lateral and each of sub 
lateral only. The proposed method needs only the set of nodes 
and branch numbers of feeder, each of laterals and each of sub 

laterals only when node and branch numbers are not 
sequential. The proposed method computes branch power flow 
most efficiently and does not need to store nodes beyond each 
branch. The voltage of each node is calculated by using a 
simple algebraic equation.  Although the present method is 
based on the forward sweep, it computes efficient load flow 
of any complicated radial distribution networks very 
efficiently even when branch and node numbering scheme are 
not sequential. The proposed method needs minimum data 
preparation compared to other methods. Two examples 
(33 node and 69 node radial distribution networks) with 
constant power (CP), constant current (CI), constant 
impedance (CZ), composite and exponential load modellings 
for each of these examples are considered. The proposed 
method is compared with other existing methods [15,17,22] . 
The initial voltage of all nodes is taken 1+j0 and initial power 
loss of all branches are also taken zero.  

II. ASSUMPTIONS 

 It is assumed that three-phase radial distribution networks 
are balanced and represented by their single-line diagrams and 
charging capacitances are neglected at the distribution voltage 
levels. 

III. SOLUTION METHODOLOGY 

A single line diagram of a radial distribution network is 
shown in Fig. 1 with sequential numbering.   

In Fig. 1, the node and branch numbering scheme have been 
shown sequential. From Fig. 1, set of nodes of  feeder, lateral 
and sub lateral are FN={1,2,3,4,5,6}, LN={3,7,8} and 
SLN={7,9,10}respectively. In Fig. 1 the set of branch number 
of feeder are FB = {1,2,3,4,5},  LB={6,7} and  SLB = {8,9} 
respectively.

Fig. 2 shows when the node and branch numbering scheme 
are not sequential. From Fig. 2, set of nodes of feeder, lateral 
and sub lateral are FN={1,6,4,8,10,2}, LN={4,9,3} and 
SLN={9,7,5} respectively. In Fig. 1 the set of branch number 
of feeder are  FB = {1,7,3,9,5},  LB={6,2} and SLB = {8,4} 
respectively.

Fig. 1 Single-line diagram of a radial distribution network 
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From Fig. 1 and Fig. 2, the sub lateral has two branches, the 
lateral has two branches and the feeder has five branches. Let 
the feeder is denoted by 1, lateral by 2 and sub lateral by 3 in 
Fig. 1 and Fig. 2. 

Here the two dimensional array FN denotes the node of 
feeder, each lateral and each sub lateral where the first number 
of the array indicates feeder, lateral and sub lateral. At first 
feeder is kept, then lateral and sub lateral. The second number 
denotes the order of the node of the set. From Fig. 1, the nodes 
of feeder, lateral and sub lateral are shown below.   
FN(1,1) = 1, FN(1,2) = 2, FN(1,3) = 3, FN(1,4) = 4, FN(1,5) = 
5 and FN(1,6) = 6 
FN(2,1) = 3, FN(2,2) = 7 and F(2,3) = 8 and FN(3,1) = 7, 
FN(3,2) = 9 and F(3,3) = 10. 
From Fig. 1, the branches of feeder, lateral and sub lateral are 
shown below. 
FB(1,1) = 1, FB(1,2) = 2, FB(1,3) = 3, FB(1,4) = 4 and 
FB(1,5) = 5 
FB(2,1) = 6  and FB(2,2) = 7 and FB(3,1) = 8 and          
FB(3,2) = 9. 
From Fig. 2, the nodes of feeder, lateral and sub lateral are 
shown below. 
FN(1,1) = 1, FN(1,2) = 6, FN(1,3) = 4, FN(1,4) = 8, FN(1,5) = 
10 and FN(1,6) = 2 
FN(2,1) = 4, FN(2,2) = 9 and F(2,3) = 3 and FN(3,1) = 9, 
FN(3,2) = 7 and F(3,3) = 5. 
From Fig. 2, the branches of feeder, lateral and sub lateral 
shown below. 
FB(1,1) = 1, FB(1,2) = 7, FB(1,3) = 3, FB(1,4) = 9 and 
FB(1,5) = 5 
FB(2,1) = 6  and FB(2,2) = 2 and FB(3,1) = 8 and         
FB(3,2) = 4. 
Let jj = FB(i,j), m2 = FN(i,j+1) and m1 = FN(i,j). We have    

V(m2) V(m1) I(jj)Z(jj)                      (1) 
Let 2V(m2) V(m2)

       1V(m1) V(m1)

       Z(jj) Z(jj) R(jj) jX(jj)  and 

       I(jj) I (jj)

Voltage of node m2 is expressed by 

1
2 2 2
s sP (jj) Q (jj) Z(jj)

V(m2)  V(m1)  
V(m1)

     (2) 

where Ps(jj) and Qs(jj) are the real and reactive powers coming 
out from the  node m1. The detailed derivation has been 
shown in Appendix A. Voltage of node m2 can also be 
calculated using the following expression also: 

2 2 2
r rV(m1) V(m1)  4 {P (jj) Q (jj)} Z(jj)

V(m2)  
2

 (3) 

where Pr(jj) = Ps(jj)  LP(jj) and Qr(jj) = Qs(jj)  LQ(jj) are the 
real and reactive power fed through the node m2.          
        Equation (2) is used to calculate |V(m2)| due to its 
simplicity. 
The current through the branch jj is expressed by 

V(m1) V(m2)
I(jj) =

Z(jj)
        (4) 

        The real and reactive power loss of branch jj is 
expressed by 

2LP(jj)= I(jj) R(jj)          (5) 

and 2LQ(jj)= I(jj) X(jj)         (6) 

Ps(jj) = Sum of real power load of all nodes after the branch jj
plus the real power loss of all the branches after the 
branch jj including the branch jj also. 

Qs(jj)= Sum of reactive power load of all nodes after the 
branch jj plus the reactive power loss of all the 
branches after the branch jj including the branch jj 
also.

To discuss the calculation of Ps(jj) and Qs(jj), Ps(jj) and Qs(jj) 
for sub lateral(s), lateral(s) and feeder are calculated at first 
with an assumption that they are separated. 
For the sub lateral:  
 Ps[FB(3,2)] = PL[FN(3,3)] + LP[FB(3,2)] 
 Ps[FB(3,1)] = PL[FN(3,2)] + LP[FB(3,1)] + Ps[FB(3,2)] 

Ps[FB(2,2)] = PL[FN(2,3)] + LP[FB(2,2)] 
Ps[FB(2,1)] = PL[FN(2,2)] + LP[FB(2,1)] + Ps[FB(2,2)] 

Ps[FB(1,5)] = PL[FN(1,6)] + LP[FB(1,5)] 
Ps[FB(1,4)] = PL[FN(1,5)] + LP[FB(1,4)] + Ps[FB(1,5)] 
Ps[FB(1,3)] = PL[FN(1,4)] + LP[FB(1,3)] + Ps[FB(1,4)] 
Ps[FB(1,2)] = PL[FN(1,3)] + LP[FB(1,2)] + Ps[FB(1,3)] 
Ps[FB(1,1)] = PL[FN(1,2)] + LP[FB(1,1)] + Ps[FB(1,2)] 

From (7), (8) and (9), we can conclude the following: 

For the end branch 
Ps[FB(i,j)] = PL[FN(i,j+1)] + LP[FB(i,j)]     (10) 

and for other branches,  
Ps[FB(i,j)] =PL[FN(i,j+1)]+LP[FB(i,j)]+Ps[FB(i,j+1)]   (11) 
 Equations(10) and (11) shows  generalized expressions for 

the computation  of  Ps’s through the feeder, lateral and sub 
lateral when they are separated. Similarly, the following are 
the generalized expressions for Qs’s:

Fig. 2  without sequential numbering scheme 
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For the end branch 
Qs[FB(i,j)] = QL[FN(i,j+1)] + LQ[FB(i,j)]   (12) 

and for other branches,  
Qs[FB(i,j)]=QL[FN(i,j+1)]+LQ[FB(i,j)]+Qs[FB(i,j+1)]  (13) 

Now from Fig. 1 and Fig. 2, we have the following: 
Sub lateral is connected to lateral at the node F(2,2). 
Therefore, power flow through the branch FB(2,1) becomes 
Ps[FB(2,1)] = PL[FN(2,2)] + LP[FB(2,1)]  

                          + Ps[FB(2,2)] + Ps[FB(3,1)]   (14) 
and Qs[FB(2,1)] = QL[FN(2,2)] + LQ[FB(2,1)]  

   + Qs[FB(2,2)] + Qs[FB(3,1)]  (15) 
The lateral is connected to feeder at the node F(1,3). 
Therefore, power flow through the branch FB(1,2) becomes 
Ps[FB(1,2)] = PL[FN(1,3)] + LP[FB(1,2)]  

+ Ps[FB(1,3)] + Ps[FB(1,1)]  (16) 
and Qs[FB(1,2)] = QL[FN(1,3)] + LQ[FB(1,2)]  

                               + Qs[FB(1,3)] + Qs[FB(1,1)]  (17) 
From the above discussion, it can be concluded that the 

common nodes of among the sub lateral(s) and lateral(s) as 
well as that of feeder and lateral(s) must be marked at first. If 
FN(i,j) be the node of lateral which is the source node of the 
sub lateral also or be the node of feeder which is the source 
node of the lateral also, the branch number FB(i,j 1) is 
required to be stored. 

The proposed logic checks the common nodes of lateral(s) 
and sub lateral(s) [ first node of the sub lateral(s)] and also 
stores the branch number. If the node FN(i,j) of the lateral and 
first node FN(x,1) of the sub lateral are identical, the branch 
FB(i,j 1) of the lateral to be stored in the memory say the 
variable mm[TN 1] where TN is the total number denoting 
the sum of numbers of feeder, lateral(s) and sub lateral(s) and 
the sub lateral number is also stored in the array mn[TN 1]. 
Here TN 1 shows the total memory size of the array. 
Similarly, the common nodes of lateral(s) and feeder are found 
out and the branch number of the feeder corresponding to the 
common node of feeder and lateral are stored in mm[TN 1] 
and simultaneously lateral number is stored in mn[TN ].  

The branches of lateral(s) and feeder(s) are checked with 
the branches stored in the array mm[TN 1]. If any branch 
number of lateral and feeder matches with any element of 
mm[TN 1], say the branch number of FB(i,j) matched with 
mm[2], the Ps and Qs for the branch FB(i,j) will be 
  Ps[FB(i,j)] =  PL[FN(i,j+1)] + LP[FB(i,j)]  

                         + Ps[FB(i,j+1)] + Ps[FB(mn[2],1)]         (18) 
  and  Qs[FB(i,j)] =  QL[FN(i,j+1)] + LQ[FB(i,j)]  

                               + Qs[FB(i,j+1)] + Qs[FB(mn[2],1)]  (19) 
where mn[2] is the number of lateral or sub lateral depending 
of the value of i. 

From above discussion, it is clear that the proposed method 
does not depend upon the node and branch numbering. To 
make the computation of  Ps and Qs faster, the logic used in 
the proposed method is described below: 
Step 1 : Get the number of Feeder(A), lateral(s) (B) 

and sub lateral(s) (C). 
Step 2  : TN = A + B + C 
Step 3 : Read total number of nodes of feeder, each 

lateral and sub lateral respectively i.e., N(i) for 
i = 1,2,…..,TN. 

Step 4 : Get the status of numbering scheme. 
Step 5 : If it is sequential, ask for the starting node of 

feeder, each lateral and sub lateral 
respectively. Go to Step 7.

Step 6 : If it is not sequential, read the set of nodes as 
well as branches of feeder, each lateral and 
sub lateral respectively. 

Step 7 : Find the common nodes of sub lateral(s) and  
lateral(s) i.e., FN(i,1) for i = TN to TN C+1  
from FN(i,j) for j = 1,2,…,N(i) and i = TN C
to TN C B. Store them in mm(i) for i = 
1,2,..,C and store the branch of lateral 
FB(i,j 1) corresponding to the node FN(i,j) in 
mn(i) for i=1,2,..,C. 

Step 8 : Find the common nodes of lateral(s) and  
Feeder i.e., FN(i,1) for i = TN C to 
TN C B+1  from FN(1,j) for j = 1,2,…,N(1). 
Store them in mm(i) for i = C+1,..,C+B and 
the branch of feeder FB(i,j 1) corresponding 
to the node FN(i,j) in mn(i) for i = 
C+1,..,C+B. 

Step 9 : Calculate Ps[FB(i,j)] and Qs[FB(i,j)] for j = 
N(i) 1 ,…,2,1 and for i = TN to TN C+1
using (10) or (11) and (12) or (13) 
respectively.

Step
10

: Calculate Ps[FB(i,j)] and Qs[FB(i,j)] for j = 
N(i) 1 ,…,2,1 and for i = TN C to 
TN C B+1 using (18) and (19) respectively 
with a check of  FB(i,j) for j = N(i) 1 ,…,2,1 
and for i = TN C to TN C B+1 with mn(k) 
for k =1,2,..,C. 

Step
11

: Calculate Ps[FB(1,j)] and Qs[FB(1,j)] for   
j = N(i) 1 ,…,2,1 using (18) and (19) 
respectively with a check of  FB(1,j) for  
j = N(i) 1 ,…,2,1 with mn(k) for k 
=C+1,…,C+B.

IV. LOAD MODELLING 

A balanced load that can be represented either as constant 
power, constant current, constant impedance or as an 
exponential load is considered here.  The general expression 
of load is shown below. 

P(m2) = Pn [a0 + a1V(m2) + a2V2(m2) + a3Ve1(m2)]    (20) 
Q(m2)= Qn[b0 + b1V(m2) + b2V2(m2) + b3Ve1(m2)]   (21) 

where, Pn and Qn are nominal real and reactive power 
respectively and V(m2) is the voltage at node m2. 
For all the loads, ( 20) and (21) are modeled as 

a0 + a1 + a2 + a3   = 1.0    (22) 
b0 + b1 + b2 + b3  = 1.0                         (23)

 For constant power (CP) load a0 = b0= 1 and ai = bi = 0 for  
i = 1, 2, 3. For constant current (CI) load a1 = b1= 1 and   ai = 
bi = 0 for i = 0, 2, 3. For constant impedance (CZ) load a2 = 
b2= 1 and ai = bi = 0 for i = 0, 1, 3.  Composite load modelling 
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is combination of CP, CI and CZ. For exponential load a3 = 
b3= 1 and ai = bi = 0 for i = 0, 1, 2 and e1 and e2 are 1.38 and 
3.22 respectively [23]. 

V.  ALGORITHM FOR COMPUTATION OF LOAD FLOW 
To calculate the node voltages and branch currents and the 

total system loss, a initial guess of zero real and reactive 
power loss is assumed. Also flat voltage start is used. The 
convergence criteria is such that if                    
Max|Vold[FN(i,j)]  VNew[FN(i,j)] | < , for i = 1,2,..,TN and j 
= 1,2,….,N(i)=total number of nodes of  FN(i). The following 
are the steps for load flow calculation: 
 Step 1 : Get the number of Feeder(A), lateral(s) (B) 

and sub lateral(s) (C). 
Step 2  : TN = A + B + C 
Step 3 : Read the total number of nodes N(i) of feeder, 

lateral(s) and sub lateral(s) for i = 1,2,…,TN 
Step 4 : Read the nodes and branch numbers of feeder, 

lateral(s) and sub lateral(s) i.e., FN(i,j) for j 
=1,2,…,N(i) and i = 1,2,….,TN if these are not 
sequential.. 

Step 5 : Read real and reactive power load at each 
node i.e., PL[FN(i,j)] and QL[FN(i,j)] for j = 
2,3,..,N(j) and i = 1,2,..,TN.  

Step 6 : Initialize PL[FN(1,1)] = 0.0 and QL[FN(1,1)] 
= 0.0 

Step 7 : Read the branches of feeder, lateral(s) and sub 
lateral(s) i.e., FB(i,j) for j =1,2,…,N(i)  1 and 
i = 1,2,….,TN. 

Step 8 : Read resistance and reactance of each branch 
i.e., R[FB(i,j)] and X[FB(i,j)] for j = 2,3,..,N(j) 

1 and I = 1,2,..,TN. 
Step 9 : Read base kV and base MVA, Total number 

of iteration (ITMAX),  (0.00001) 
Step 10 : Compute the per unit values of  PL[FN(i,j)] 

and QL[FN(i,j)] for j = 2,3,..,N(j) and i = 
1,2,..,TN as well as R[FB(i,j)] and X[FB(i,j)] 
for           j = 1,2,3,..,N(j) 1 and i = 1,2,..,TN. 

Step 11 : Set PL1[FN(i,j)] = PL[FN(i,j)] and 
QL1[FN(i,j)] = QL[FN(i,j)] for  j = 2,3,..,N(j) 
and i = 1,2,..,TN 

Step 12 : Set LP[FB(i,j)] = 0.0 and LQ[FB(i,j)] = 0.0 for 
all j = 1,2,…,N(i) 1 and   i = 1,2,….,TN. 

Step 13 : Set  V[FN(i,j)] = 1.0 + j0.0 for j =1,2,…,N(i) 
and i = 1,2,….,TN and set 
V1[FN(i,j)] = V[FN(I,j)] for j =1,2,…,N(i) and 
i = 1,2,….,TN. 

Step 14 :  Use the Step7 to Step 11  (Art 3.0) to 
calculate the branch currents of each feeder, 
lateral(s) and sub lateral(s) respectively. 

Step 15 : Set IT = 1 
Step 16 : Set PL[FN(i,j)] = PL1[FN(i,j)] and 

QL[FN(i,j)] = QL1[FN(i,j)] for  j = 2,3,..,N(j) 
and i = 1,2,..,TN 

Step 17 : Use proper load modeling using (20) and (21). 
Step 18 : Compute voltage |V[FN(I,j)]| using (2) for j = 

2,3,..,N(j) and         i = 1,2,..,TN. 
Step 19 : Compute | V[FN(i,j)]|  

= |V1[FN(i,j)]|  |V[FN(i,j)]| for j = 2,3,..,N(j) 
and i = 1,2,..,TN. 

Step 20 : Compute current |I[FB(i,j)]| using (4) for j = 
1,2,3,..,N(j) 1 and  i = 1,2,..,TN. 

Step 21 : Set  |V1[FN(i,j)]| = |V[FN(i,j)]| for j = 
1,2,3,..,N(j) and I = 1,2,..,TN. 

Step 21 : Compute LP[FB(i,j)] and LQ[FB(i,j)] for all j 
= 1,2,…,N(i) 1 and i = 1,2,….,TN using (5) 
and (6) respectively. 

Step 22 : Find Vmax from | V[FN(i,j)]| for  
j = 2,3,..,N(j) and i = 1,2,..,TN. 

Step 23 : If Vmin  0.00001 go to Step 26 else go to 
Step 24. 

Step 24 : IT = IT + 1 
Step 25 : If  IT  ITMAX go to Step 16 else write 

“NOT CONVERGED” and go to   
Step 27. 

Step 26 :  Write “ SOLUTION HAS CONVERGED” 
and display the results : Total Real and 
Reactive Power Losses , Voltages of each 
node, minimum value of voltage and its node 
number and total real and reactive power load 
for CP, CI, CZ, Composite and Exponential 
Load Modelling. 

Step 27 : Stop 

VI. EXAMPLES 

To demonstrate the effectiveness of the proposed method, 
the following two examples are considered here: 

The first example is 33 node radial distribution network 
(nodes have been renumbered with Substation as node 1) 
shown in Fig. 3. Data for this system are available in [25].  
Real and reactive power loss for CP, CI, CZ, Composite and 
Exponential load modeling as well as the minimum voltage 
and its node number is shown in Table 1. Base values for this 
system are 12.66 kV and 100 MVA respectively. 

Fig. 3   33 Node Radial Distribution Network [25] 
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The second example is 69 node radial distribution network 
(nodes have been renumbered with Substation as node 1). 
Data for this system are available in [10]. Real and reactive 
power loss for CP, CI, CZ, Composite and Exponential load 
modeling as well as the minimum voltage and its node number 
is shown in Table 1. Base values for this system are 12.66 kV 
and 100 MVA respectively. 

In all cases Composite Load = 40%CP + 30%CI + 30% CZ 
has been considered. Comparison of CPU time of the 
proposed method with the methods [15,17,22] is shown in 
Table 2.  

TABLE  I 
REAL POWER LOSS, REACTIVE POWER LOSS, MINIMUM VOLTAGE 

FOR CP, CI, CZ, COMPOSITE AND EXPONENTIAL LOAD 
MODELLING FOR 33 NODE AND 69 NODE RESPECTIVELY 

Total Load  Power Loss Minimu
m

Voltage

Type 
of

Load Real
(kW) 

Reactive
(kVAr)

Real
(kW) 

Reactiv
e

(kVAr)

Minimum 
Voltage
(p.u.) 

CP 3715.00 2300.00 202.30 135.020 V18 = 
0.909924 

CI 3534.84 2175.25 176.20 117.305 V18 = 
0.916587 

CZ 3366.20 2058.92 154.67 102.651 V18 = 
0.922519 

Com
posit

e

3559.37 2192.43 178.71 119.031 V18 = 
0.915873 

33 node 
radial

distribut
ion 

network 
[25] 

Expo
nenti

al

3469.44 1927.52 155.43 103.172 V18 = 
0.921396 

CP 3802.80 2693.07 225.00 102.095 V65 = 
0.906755 

CI 3622.08 2564.97 191.23 87.632 V65 = 
0.914548 

CZ 3455.58 2446.82 164.09 76.023 V65 = 
0.921351 

Com
posit

e

3647.60 2583.10 194.47 89.003 V65 = 
0.913749 

69 node 
radial

distribut
ion 

network 
[10] 

Expo
nenti

al

3557.30 2314.36 165.87 76.779 V65 = 
0.920887 

The comparison of relative CPU Time of the proposed 
method with the other existing methods [15,17,22] for 
constant power load modelling has been shown in Table II. All 
simulation works have been carried out in Celeron Processor 
1GHz. 

TABLE II 
COMPARISON OF RELATIVE CPU TIMEOF THE PROPOSED METHOD 

WITH OTHER EXISTING  METHODS [15,17,22] FOR CONSTANT 
POWER LOAD  MODELING 

VII CONCLUSION 

 An efficient method for load flow solution of radial 
distribution network has been proposed in this paper. The 
proposed method reduces the data preparation. The proposed 
method simply needs starting nodes of feeder, lateral(s) and 
sub lateral(s) and no data of branch numbers for sequential 
numbering scheme. If the node and branch numbers are not 
sequential, only node numbers and branch numbers of each 
feeder, lateral(s) and sub lateral(s) are required. Therefore, the 
proposed method consumes less computer memory. The 
proposed method uses the simple voltage equation. The 
proposed method takes the zero initial loss for computation of 
voltage of each node and considers flat voltage start to 
incorporate voltage convergence. The proposed method 
overcomes the shortfalls of the methods reported in 
[15,17,22]. Effectiveness of the proposed method has been 
demonstrated by two examples (33 node and 69 node radial 
distribution networks) with constant power load, constant 
current load, constant impedance load, composite load and 
exponential load for each of these examples. The efficiency of 
the proposed method in terms of CPU time has been checked 
by comparing it with the other existing methods [15,17,22]. 

Example 3 Example 4 
                                                      
                                  Examples 

Methods CPU Time CPU Time 

Proposed method 1.00 1.00 

D.Das et al. [15]  1.90  2.23 

S.Ghosh and D.Das [17]    1.41  1.82 

Ranjan and D.Das [22]    1.59  1.94 
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From the proposed voltage equation a suitable stability index 
can also be formed. 

APPENDIX 

Let FB(i,j) = jj , FN(i,j) = m1 and FN(i,j+1) = m2. Therefore, 
we have 

V(m2) V(m1) I(jj)Z(jj)                (A1) 
Let 2V(m2) V(m2)

       1V(m1) V(m1)

       Z(jj) Z(jj) R(jj) jX(jj)  and 

       I(jj) I (jj)

Therefore, (A1) becomes      
2 2

1 1

V(m2)  (cos jsin )

              V(m1)  (cos jsin ) I  (cos jsin  ) {R(jj) jX(jj)}

2 2

1

1

i.e.,  V(m2) cos j V(m2) sin

              V(m1)  cos  I(jj) {R(jj)cos X(jj)sin   } 

                  +j[ V(m1)  sin  I(jj) {(X(jj)cos R(jj)sin  )}

2

1

V(m2)  cos

          V(m1)  cos  I(jj) {R(jj)cos X(jj)sin  } 
   (A2)                                          

and 2

1

V(m2)  sin

        V(m1)  sin  I(jj) {X(jj)cos R(jj)sin  } 
  (A3) 

From (A2) and (A3), we have 
2 2

1
2 2 2

V(m2) V(m1)  2 V(m1) I(jj) cos {R(jj)cos X(jj)sin  }

                      I(jj) {R (jj) X (jj)}
             }R(jj)sin{X(jj)cossinI(jj)V(m1)2 1

2
1 1

1 1

V(m1)  2 V(m1) I(jj) {R(jj)(cos cos sin sin )
              X(jj)(cos sin sin cos  )} 
           }(jj)X(jj)R{I(jj) 222

2
1 1

2 2

V(m1)  2 V(m1) I(jj) {R(jj)(cos( ) X(jj)sin( )}

       I(jj) Z(jj)
2

1 1
2 2

V(m1)  

    2 V(m1) I(jj) Z(jj) {cos  cos( ) sin  sin( )}

         I(jj) Z(jj)

2
1

2 2

V(m1)  2 V(m1) I(jj) Z(jj) cos( )         

     I(jj) Z(jj)

Since, 1  is very very small and hence 

1)cos( 1

Therefore, 
2 2

2 2

V(m2) V(m1)  2 V(m1) I(jj) Z(jj)

                         I(jj) Z(jj)

22i.e., V(m2) V(m1)  I(jj) Z(jj)

i.e., V(m2)  V(m1)  I(jj) Z(jj)      (A4) 

Again, 

1
2 2 2
r rP (jj) Q (jj)

I(jj)
V(m2)

     (A5) 

and also 

1
2 2 2s sP (jj) Q (jj)

I(jj)
V(m1)

                  (A6) 

where Pr(jj) = Ps(jj)  LP(jj) and Qr(jj) = Qs(jj)  LQ(jj) are the 
real and reactive power fed through the node m2. 
Using (A6), (A4) can be written as 

1
2 2 2s sP (jj) Q (jj) Z(jj)

V(m2)  V(m1)  
V(m1)

                (A7) 

Using  (A5),  (A4) can be written as 
1

2 2 2r rP (jj) Q (jj) Z(jj)
V(m2)  V(m1)  

V(m2)
                (A8)

i.e.,
1

2 2 2 2
r rV(m2)  V(m1) V(m2)  P (jj) Q (jj) Z(jj)

i.e.,
1

2 2 2 2
r rV(m2)  V(m1) V(m2)  P (jj) Q (jj) Z(jj) 0

i.e.,
2 2 2

r rV(m1) V(m1)  4 {P (jj) Q (jj)} Z(jj)
V(m2)  

2
  (A9) 
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