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Abstract—Simultaneous Saccharification and Fermentation 

(SSF) of sugarcane bagasse by cellulase and Pachysolen tannophilus 
MTCC *1077 were investigated in the present study. Important 
process variables for ethanol production form pretreated bagasse 
were optimized using Response Surface Methodology (RSM) based 
on central composite design (CCD) experiments. A 23 five level CCD 
experiments with central and axial points was used to develop a 
statistical model for the optimization of process variables such as 
incubation temperature (25–45°) X1, pH (5.0–7.0) X2 and 
fermentation time            (24–120 h) X3.  Data obtained from RSM on 
ethanol production were subjected to the analysis of variance 
(ANOVA) and analyzed using a second order polynomial equation 
and contour plots were used to study the interactions among three 
relevant variables of the fermentation process. The fermentation 
experiments were carried out using an online monitored modular 
fermenter 2L capacity. The processing parameters setup for reaching 
a maximum response for ethanol production was obtained when 
applying the optimum values for temperature (32°C), pH (5.6) and 
fermentation time (110 h). Maximum ethanol concentration (3.36 g/l) 
was obtained from 50 g/l pretreated sugarcane bagasse at the 
optimized process conditions in aerobic batch fermentation. Kinetic 
models such as Monod, Modified Logistic model, Modified Logistic 
incorporated Leudeking – Piret model and Modified Logistic 
incorporated Modified Leudeking – Piret model have been evaluated 
and the constants were predicted. 
 

Keywords—Sugarcane bagasse, ethanol, optimization, 
Pachysolen tannophilus. 

I. INTRODUCTION 
THANOL has been known for a long time, being perhaps 
the oldest product obtained through traditional 

biotechnology. Its current applications include potable, 
chemical, and fuel ethanol [1-2]. Ethanol can be made from a 
number of renewable feedstocks, including sugar crops such 
as sugarcane, starch containing grains such as corn, or 
lignocellulosic materials including agricultural residues, 
herbaceous crops, and wood [3]. Lignocellulosic materials 
constitute an abundant and cheap feedstock, but the 
processing     
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techniques required for ethanol production are presently costly 
and extensive. The cost of ethanol produced from 
lignocellulosic materials with currently available technology 
and under the present economic conditions is not competitive 
with the cost of gasoline. Comprehensive process 
development and optimization are still required to make the 
process economically viable [4]. One of the major 
lignocellulosic materials to be considered in tropical countries 
is sugarcane bagasse, the fibrous residue obtained after 
extracting the juice from sugar cane (Saccharum officinarum) 
in the sugar production process [5].  Sugarcane bagasse is 
accumulated in large quantities at cane-to-sugar processing 
plants and consists approximately of 50% cellulose, 25% 
hemicellulose, and 25% lignin [6]. Lignin forms a protective 
shield around cellulose and hemicellulose, protecting the 
polysaccharides from enzymatic degradation. To convert the 
biomass into ethanol, the cellulose must be readily available 
for cellulase enzymes. Thus, by removing the lignin, the 
cellulose becomes vulnerable to enzymes and allows the yeast 
to convert the glucose into ethanol during fermentation. 
Therefore, a pretreatment must be applied to degrade the 
lignin in the sugarcane residue, decrease cellulose 
crystallinity, and increase the surface area for enzymatic 
activity [7]. Enzymatic hydrolysis is a promising way for 
obtaining sugars from lignocellulosic materials (because it has 
the advantages of reduced sugar loss through side-reactions, is 
milder and more specific), but the low enzymatic accessibility 
of the native cellulose is a key problem for biomass-to-ethanol 
processes     [8-9]. 
  The bagasse produced is traditionally utilized for in-house 
energy production. The cellulose conversion option that many 
currently favor is the Simultaneous Saccharification and 
Fermentation (SSF) process [3]. In this option, the cellulose 
hydrolysis and glucose fermentation steps are combined in a 
single vessel [10]. Since cellulase is inhibited by glucose as it 
is formed, rapid conversion of the glucose into ethanol by 
yeast results in faster rates, higher yields, and greater ethanol 
concentrations than possible for SHF. Furthermore, by 
combining the hydrolysis and fermentation steps in one vessel, 
the number of fermenters required is approximately one-half 
that for the SFR process. The presence of ethanol in the 
fermentation broth also makes the mixture less vulnerable to 
invasion by unwanted microorganisms [11]. In practice, yeast 
has shown higher yields and ethanol tolerance than bacteria. A 
great number of investigators have studied yeast xylose 
fermentations, notably with the organisms Pachysolen 
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tannophilus, Candida shehatae, and Pichia stipitis [3]. The 
classical method of studying one variable at a time can be 
effective in some cases but it is useful to consider the 
combined effects of all the factors involved. The Response 
Surface Methodology (RSM), based on statistical principles, 
can be employed as an interesting strategy to implement 
process conditions that drive to optimal ethanol production 
from pretreated sugarcane bagasse by performing a minimum 
number of experiments. Thus, RSM experimental design is an 
efficient approach to deal with a large number of variables and 
there are several reports on application of RSM for the 
production of primary and secondary metabolites through 
microbial fermentation [12-13].  

In the present study, the potential use of sugarcane bagasse 
for ethanol fermentation using cellulase and yeast Pachysolen 
tannophilus MTCC *1077 was investigated. The influence of 
process variables such as incubation temperature, initial pH 
and fermentation time on ethanol production from pretreated 
sugarcane bagasse was studied using CCD experiments. 
Knowledge based approaches such as Artificial Neural 
Network (ANN) has been successfully applied for the purpose 
of simulation on the same experimental data used for RSM. 
Various kinetic models such as Modified Logistic model 
(growth kinetics), Modified Logistic incorporated Leudeking 
– Piret model (product formation kinetics) and Modified 
Logistic incorporated Modified Leudeking – Piret model 
(substrate utilization kinetics)  have been evaluated for the 
better prediction of experimental data.   

II. MATERIAL S AND METHODS 

A. Materials 
Sugarcane bagasse sample was obtained from M.R.K. 

Sugar Mills Ltd. Sethiyathope, Tamilnadu, India. The bagasse 
sample was made into 100 mesh (0.15mm) fine powder by 
use of laboratory blender at 3000 rpm. Sample was preserved 
in a sealed plastic bag at 4°C to prevent any possible 
degradation or spoilage. Pure cellulose powder was used in 
reference of cellulose estimation and fermentation tests. The 
control and pretreated bagasse samples were analyzed for 
cellulose content using Anthrone reagent at 630 nm in 
UV/Visible spectrophotometer ELICO BL 198 [14]. The 
estimated cellulose content of steam pretreated sample was 
420 mg/g bagasse.  

B. Microorganisms and Culture Conditions 
Commercially available cellulase enzyme (ONOZUKA R–

10) was obtained from HIMEDIA Laboratories, Mumbai. The 
activity of enzyme was found to be 15 FPU/ml and it was used 
throughout the experimentation. The cellulase activity was 
measured by standard Mandel’s method [15]. Yeast strain 
Pachysolen tannophilus MTCC *1077was obtained from 
Microbial Culture Collection and Gene Bank (MTCC), 
Institute of Microbial Technology (IMTECH), Chandigarh, 
INDIA. Culture was maintained on yeast extract agar medium. 
After three days incubation at 25°C the agar slants were stored 
at 4°C.The liquid medium for the growth of inoculum for 
yeast was yeast extract – glucose nutrient medium composed 
of 3g/l of yeast extract, 1g/l of sodium chloride, 10g/l of 

glucose, 2g/l of potassium dihydrogen phosphate, 0.2g/l of 
calcium chloride, 1.7g/l of magnesium sulphate.  

Inocula were grown aerobically in 250 ml Erlenmeyer 
flasks containing the above mentioned medium at 25°C in an 
Environmental Shaker (Remi Scientific) at 200 rpm for 24 h. 
Active cells were centrifuged in a clinical centrifuge (1200 
rpm), washed with sterile water, and were used as inoculum. 
Fermentations for ethanol production were conducted 
aerobically in an online monitored modular fermenter 2L 
capacity with a working volume of 1000ml medium. Samples 
were withdrawn periodically (12h interval) for the analysis of 
cellmass, ethanol and residual sugar concentrations. 

C. Pretreatment 
Various pretreatment techniques such as steam autoclaving 

in an autoclave at 15 psi (121°C) for 60 minutes, dilute 
sulphuric acid (1% v/v) with steam autoclaving for about 20 
minutes, concentrated sulphuric acid (50% v/v) with steam 
autoclaving for about 20 minutes, sodium hydroxide (1 % and 
10% w/v) with steam autoclaving for about 20 minutes, 
sodium chlorite (1.5 g/g bagasse) with steam autoclaving for 
about 240 minutes was adopted for the pretreatment of 
bagasse samples. The treated samples were collected and 
filtered in crucibles followed by washed with distilled water 
under suction. Finally it was dried at room temperature before 
fermentation [16-18]. 

D. Fermentation 
Batch experiments were conducted as per the central 

composite experimental design for ethanol production in a 
fermenter (APPLIKON Biotech ADI 1025, Holland), with 2 
L capacity, equipped with flat blade impeller, oxygen and pH 
electrodes, temperature and dO2 (dissolved oxygen) probe. 
The equipment also monitored temperature, agitation speed, 
gas purging flow rate, pumping rates, antifoam addition, dO2 
and the vessel level. All processing parameters were online 
monitored, with the aid of BioXpert Lite 1.00 software. The 
agitation speed (400±1 rpm) and dissolved oxygen, dO2 
(8±0.1 ppm) were kept constant during the experiments. 
Other parameters, like temperature, pH and fermentation time, 
were chosen as the most significant ones, considering the 
experimental design. After selecting those parameters, 
experiments were done in duplicate, for superior (+) and 
lower (-) levels of the experimental design, and in triplicate, 
for the central point (0). The process was conducted at the 
initial substrate concentration of 50g/l (pretreated sugarcane 
bagasse) with the addition of nutrient medium (without 
glucose) and 0.05 M Sodium phosphate buffer (pH 5.7) 
followed by sterilization for 15 min, at 15 psi (121°C). 
Cellulase dosage of 15 FPU/g bagasse was used for 
hydrolysis. For each experiment, 10ml of the inoculum was 
used, that is,10%(v/v) of the initial working volume (1L). 
Samples were withdrawn periodically (12h interval), 
centrifuged in a laboratory centrifuge at 1200 rpm, and the 
supernatants were analyzed for total sugars and ethanol conc.  

E. Cell growth and Chemical Analysis 
The sugarcane bagasse sample was analyzed for 

hemicellulose and Klason lignin content following the 
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procedures described in NREL Standard Procedure (No.002). 
Cellmass was determined by direct optical density at 660 nm 
using SYSTRONICS colorimeter (420 – 820 nm). Total 
reducing sugar was measured by the                                  
Dinitrosalicylic acid (DNS) method using a UV/Visible 
spectrophotometer ELICO BL 198 at 510 nm [19]. Ethanol 
was estimated using NUCON 5765 Gas Chromatography 
(GC) with a Flame Ionization Detector (FID) and 
CHROMATOPAK (10% Carbowax 20M) column (3m length 
and 1/8 mm dia) using N2 as the carrier gas at the rate of 20 μl 
per minute. The oven temperature was held at 80°C. The 
injector and detector temperature was maintained at 200°C. 
Ethanol concentration of the sample was obtained directly by 
using WINACDS software version 6.2. 

F. Experimental design and Statistical Analysis 
In the Central Composite Design (CCD), the total number 

of experimental combinations was 2K +2K + n0, where K is 
the number of independent variables and n0 is the number of 
repetitions of the experiments at the central point, which 
indicated that 20 experiments were required for this 
procedure. The CCD contains a total of 20 experiments with 
five level full factorial design and replications of the central 
points and axial points (Table 2). The dependent variable 
selected for this study was ethanol concentration, Y (g/l). The 
independent variables chosen were incubation temperature      
(25 – 45°) X1, pH (5.0 – 7.0) X2 and fermentation time (24 – 
120 h) X3. A mathematical model, describing the relationships 
among the process dependent variable and the independent 
variables in a second-order equation, was developed [20]. 
Design-based experimental data were matched according to 
the following second-order polynomial equation (1). 
 
 
 
Where, i, j are linear, quadratic coefficients, respectively, 
while ‘b’ is regression coefficient, k the number of factors 
studied and optimized in the experiment and ‘e’ is random 
error.  

The quality of fit of the second order equation was 
expressed by the coefficient of determination R2, and its 
statistical significance was determined by F-test. The 
significance of each coefficient was determined using 
Student’s t-test. The student t-test was used to determine the 
significance of the parameters regression coefficients. The P-
values (Probability value) were used as a tool to check the 
significance of the interaction effects, which in turn may 
indicate the patterns of the interactions among the variables. 
In general, larger magnitudes of t and smaller of P, indicates 
that the corresponding coefficient term is significant. The 
coefficients of the equation were determined by employing 
MINITAB software version 15. Analysis of variance 
(ANOVA) for the final predictive equation was done using the 
same software package. The response surface equation was 
optimized for maximum yield in the range of process variables 
using MATLAB software version 7.0.1. Isoresponse contour 
plots were obtained based on the effect of the levels of three 
parameters (at five different levels each) and their interactions 
on the yield of ethanol by keeping the other parameters at 

their optimal concentrations. From these contour plots, the 
interaction of one parameter with another parameter was 
studied. The optimum concentration of each parameter was 
identified based on the hump in the contour plots. 

G. Artificial Neural Network (ANN) and Modeling 
A number of design parameters affect performance and 

these parameters include the choice of activation function and 
training algorithm, training parameters such as learning rate 
and momentum, number of hidden layers, number of neurons 
in each hidden layer, initial weights, and training duration. In 
general, feed-forward neural networks with one hidden layer 
containing a sufficiently large number of hidden neurons have 
been shown to be capable of providing accurate 
approximations to any continuous nonlinear function [21-22]. 
The choice of design parameters for a neural network is thus 
often the result of empirical rules combined with trial and 
error as detailed. The configuration of the two neural 
networks developed in this work were 3-5-1 structure: three 
input neurons are incubation temperature (°C), initial pH and 
fermentation time (h)-five neurons in one hidden layer-one 
output neuron and are determined after brief experimentation. 
To avoid the problem of overtraining, the data set comprising 
20 experimental runs is split into two categories: a training set 
comprising 17 experimental runs is used to optimize the 
weights of the two neural networks and a validation set 
comprising 3 experimental runs is used to evaluate their 
predictive capability (Table 2). Because empirical models like 
neural networks do not extrapolate data well, data for network 
training should be selected carefully if the best results are to 
be achieved. In this study the data selected for network 
training covered the lower and upper bounds of the one output 
neurons (y1). 

III. RESULTS AND DISCUSSION 

A. Evaluation of pretreatment techniques 
It has long been recognized that some form of pretreatment 

is necessary to achieve reasonable rates and yields in the 
enzymatic hydrolysis of biomass. This has generally been 
attributed to the crystallinity of cellulose, the lignin-
hemicellulose sheath that surrounds the cellulose, and the lack 
of available surface area for enzymes to attack. A number of 
different pretreatment methods, such as dilute sulphuric acid 
(1% v/v), concentrated sulphuric acid (50% v/v), sodium 
hydroxide (1% and 10% w/v), sodium chlorite (1.5 g/g 
bagasse) and steam autoclaving have been extensively 
investigated. Figure 1 shows the comparison of the percentage 
reduction in bagasse composition after 20 minute treatment. 
All of the components and total weight decreased gradually 
with increasing pretreatment time. The amount of weight lost 
following chemical pretreatment of residue was due to lignin 
removal. Greater weight loss equals more lignin loss and the 
percent weight lost was used to compare pretreatment effects 
on lignin removal. It was observed that there is a drastic 
reduction in percentage cellulose, hemicellulose and lignin 
content of 45.98% (w/w), 48.15% and 44.22% respectively 
obtained after 15 minute treatment by concentrated sulphuric 
acid treatment. And there is a 59.12% increase in total sugars 
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is observed when treated with concentrated acid after 20 
minute which shows that the polymers are converted into 
monomer and dimers of sugars. There is a significant 
reduction in percentage cellulose, hemicellulose and lignin 
content of 9.26%, 18.19% and 20.75% respectively obtained 
after 20 minute treatment by 10% (w/v) sodium hydroxide 
treatment.  

 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig.1 Comparative chart of the percentage reduction in 
bagasse composition after various pretreatments 

 
There is an 8.97% increase in total sugars is observed when 

treated with concentrated acid at 20 minute which shows that 
the more cellulose polymers and hemicellulose are converted 
into monomer and dimers of sugars. There is a considerable 
reduction in percentage lignin content of 27.19% obtained 
after 240 minute treatment by sodium chlorite leaving native 
cellulose and hemicellulose unaltered. And there is an 11.82% 
increase in total sugars is observed when treated with sodium 
chlorite for 240 minutes which shows that the only a less 
amount of hemicellulose are converted into monomer sugars. 
There is a considerable reduction in percentage hemicellulose 
and lignin content of 14.79% and 8.93% respectively obtained 
after 20 minute treatment leaving native cellulose unaltered. 
And there is an 3.76% increase in total sugars is observed 
when treated with steam for 20 minute which shows that only 
hemicellulose are hydrolyzed to simple sugars. It is seen from 
the treatment results the cellulose content is not changed even 
when the steam treatment time increased upto 20 minutes and 
also the hemicellulose and lignin content is significantly 
reduced by about 16.58 and 10.23% (in comparison with 
untreated bagasse) respectively. Generally steaming of 
biomass in the 120–200°C temperature range leads to 
increased enzymatic digestibility, as a result of increasing pore 
size and the partial hydrolysis of hemicelluloses. 

B. Optimization of process variables in ethanol 
fermentation 

The experimental results associated to the processing set up 
of each independent variable are listed in Table 1. Five level 
central composite design matrix and the experimental 
responses of the dependent variable (ethanol conc.) are listed 
in Table 2. The regression equation coefficients were 
calculated and the data is fitted to a second-order polynomial 
equation. The response, Y (ethanol concentration) by P. 

tannophilus, can be expressed in terms of the following 
regression equation (2): 
 

 
 
 

Besides the linear effect of the ethanol concentration, Y g/l, 
the response surface method also gives an insight about the 
parameters quadratic and combined effects. The analyses were 
done by using both Fisher's F- test and Student t-test statistical 
tools. The regression coefficient, t and P values for all the 
linear, quadratic and combined effects with a 95% 
significance level are given in the Table 3. It shows that the 
regression coefficients of the all linear and quadratic 
coefficients of X1, X2 and X3 were significant at < 1% level (p 
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TABLE I 
CODES AND ACTUAL LEVELS OF THE INDEPENDENT VARIABLES FOR DESIGN 

OF EXPERIMENT 
Coded levels Independent 

variables Symbols 
– 1.682 – 1 0 +1 +1.682 

Temp (°C) X1 25 30 35 40 45 
pH X2 5 5.5 6.0 6.5 7.0 
Fermentation 
time (h) X3 24 48 72 96 120 

TABLE II 
FIVE LEVEL CCD AND THE EXPERIMENTAL RESPONSES OF DEPENDENT 

VARIABLE, Y 
Coded levels Real variables Ethanol conc. (g/l) Ru

n 
No. x1 x2 x3 X1 X2 X3 Exp Pred 

RSM 
Pred 
ANN 

1 -1.000 1.000 -1.000 30.0 6.5 48.0 1.54 1.55 1.58 

2 1.682 0.000 0.000 43.4 6.0 72.0 1.62 1.63 1.60 

3 0.000 0.000 0.000 35.0 6.0 72.0 3.46 3.45 3.48 

4 0.000 0.000 0.000 35.0 6.0 72.0 3.46 3.45 3.48 

5 0.000 0.000 0.000 35.0 6.0 72.0 3.46 3.45 3.48 

6 1.000 1.000 1.000 40.0 6.5 96.0 2.32 2.40 2.36 

7 0.000 0.000 0.000 35.0 6.0 72.0 3.46 3.45 3.48 

8 -1.682 0.000 0.000 26.6 6.0 72.0 2.34 2.37 2.32 

9 0.000 0.000 -1.682 35.0 6.0 31.6 1.47 1.57 1.59 

10 0.000 0.000 0.000 35.0 6.0 72.0 3.46 3.45 3.48 

11 1.000 -1.000 -1.000 40.0 5.5 48.0 1.58 1.54 1.60 

12 0.000 0.000 0.000 35.0 6.0 72.0 3.46 3.45 3.48 

13 1.000 -1.000 1.000 40.0 5.5 96.0 2.52 2.46 2.49 

14 -1.000 -1.000 -1.000 30.0 5.5 48.0 2.67 2.54 2.70 

15 0.000 -1.682 0.000 35.0 5.2 72.0 2.74 2.83 2.81 

16 1.000 1.000 -1.000 40.0 6.5 48.0 1.34 1.28 1.36 

17 -1.000 1.000 1.000 30.0 6.5 96.0 2.29 2.28 2.32 

18 0.000 1.682 0.000 35.0 6.9 72.0 1.98 1.94 1.21 

19 0.000 0.000 1.682 35.0 6.0 112.
3 3.01 2.96 3.09 

20 -1.000 -1.000 1.000 30.0 5.5 96.0 3.07 3.08 3.11 

X1(incubation temperature, °C) is calculated as: X1 = 35 + x1 (5) 
X2 (initial pH) is calculated as: X2 = 6.0 + x2 (0.5) 
X3 (fermentation time, h) is calculated as: X3 = 72 + x3 (24) 
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< 0.001) and the interaction coefficients of X1X3 and X2X3 
were less significant (p < 0.005). The statistical significance of 
the ratio, between the mean square variation, due to 
regression, and the mean square residual error, was tested 
using analysis of variance (ANOVA). ANOVA is a statistical 
technique that subdivides the total variation of a set of data 
into component associated to specific sources of variation. 
The regression equation obtained form the ANOVA shows 
(Table 4) that the R2 (coefficient of determination) was 0.995 
(a value > 0.75 indicates fitness of the model). This is an 
estimate of the fraction of overall variation in the data 
accounted by the model, and thus the model is capable of 
explaining 99.5% of the variation in the response. The 
‘adjusted R2’ is 0.991, which indicates that the model is good 
(for a good statistical model, the R2 value should be in the 
range of 0 to 1.0, and the nearer to 1.0 the value is, the more 
fit the model is deemed to be). ANOVA of the regression 
model for ethanol yield demonstrated that the model was 
significant due to a very high F-value of 436.5 and a very low 
probability value (P model >F – 0.001).  

The response surfaces can be used to predict the optimum 
range for different values of the test variables and the major 
interactions between the test variables can be identify from the 
circular or elliptical nature of the contours.  The circular 
nature of the contours signify that the interactive effects 
between the test variables are not significant and optimum 
values of the test variables can be easily obtained. Figs. 2 – 4 
show the isoresponse contour plots of the interactive effect of 
incubation temperature, initial pH and fermentation time on 
ethanol production. The response values for the variables can 
be predicted form these plots. The effect of incubation 
temperature and pH on ethanol production, while other 
variable (fermentation time) was fixed at central level (72 h), 
is shown in Fig. 2. According to Fig. 2, the contours around 
the stationary point were elliptical and it became elongated 
more and more along the temperature axis, which meant that a 
small change of the response value would require a small 
move along the temperature axis.  

It was evident that the ethanol concentration steadily 
decreased with increasing incubation temperature upto 45°C 
and at low pH level. While at high temperature, the increase in 
the response value was negligible with as the pH value was 
increased. So a lower temperature and lower pH value 
enhance the ethanol yield. The significant interaction between 
incubation temperature and initial pH were apparent not only 
from the elliptical nature of the contour plot, but also from the 
low probability value (Table 3). The other pair of the 
independent variables incubation temperature and 
fermentation time shows a less interactive effect (Fig. 3) while 
keeping the third independent variable, initial pH at 6.0.  From 
Fig. 3, it was evident that the interactive effects between the 
test variables were less significant not only from the circular 
nature of the contour plot and also from the probability value 
(P - 0.004). Then the optimum values of the test variables can 
be easily obtained form this type of circular contour plot.  

 

Fig. 4 show the similar effect, that the variables initial pH and 
fermentation time show a less interactive effect in the ethanol 

fermentation while keeping the third variable incubation 
temperature as constant at 35°C and found that the test 
variables were less significant. The results show that as the 
values of process variables increased, the yield also increased 
but only up to the midpoint of range of variables and 
thereafter the yield decreased even though the values of 
variables increased. The ethanol yield is significantly affected 
by incubation temperature and initial pH than other pair of 
variables in the ethanol fermentation by SSF process. The 
matching quality, of the data obtained by the model proposed 
in equation (2), was evaluated considering the correlation 
coefficient, R2, between the experimental and modeled data. 
The mathematical adjust of those values generated a R2 = 
0.995, revealing that the model would explain very well 99.5% 
of the overall effects and only 0.5% was not explained. In 
ANN modeling the R2 value between the experimental and 
predicted responses is determined as 0.953, revealing that the 
model could not explain only 4.7%. The increase in the 
number of experimental points in training the data set 
improved the network’s performance. From equations derived 
by differentiating Equation 2, the optimum values for the 
independent variables obtained were incubation temperature 
32°C, pH 5.6 and fermentation time 110 h. Based on the 
model, the optimal working conditions were obtained to attain 
high ethanol yield.  

TABLE III 
RESULTS OF REGRESSION ANALYSIS AND CORRESPONDING T AND P 

VALUE OF SECOND ORDER POLYNOMIAL MODEL 
Term 

Constant 
Regression 
coefficient 

Std. 
deviation t-statistics P-value 

Intercept 3.4584 0.02993 115.569 < 0.001 

X1 – 0.2212 0.01985 – 11.141 < 0.001 

X2 – 0.2657 0.01985 – 13.381 < 0.001 

X3 0.4144 0.01985 20.874 < 0.001 

X1X1 – 0.5128 0.01933 – 26.530 < 0.001 

X2X2 – 0.3784 0.01933 – 19.578 < 0.001 

X3X3 – 0.4208 0.01933 – 21.773 < 0.001 

X1X2 0.1838 0.02594 7.083 < 0.001 

X1X3 0.0963 0.02594 3.710 0.004 

X2X3 0.0488 0.02594 1.879 0.090 

 
TABLE IV 

ANOVA FOR THE QUADRATIC POLYNOMIAL MODEL FOR ETHANOL 
PRODUCTION 

Sources of 
variation 

Sum of 
squares 

Degrees of 
freedom 

(DF) 

Mean 
square (MS) F-value P-value 

Regression 11.3909 9 1.26566 235.10 < 0.001 

    Linear 3.9778 3 1.32594 246.29 < 0.001 

    Square 7.0499 3 2.34996 436.50 < 0.001 

    Interaction 0.3632 3 0.12108 22.49 < 0.001 
Residual 
Error 0.0538 10 0.00538 – – 

   Lack-of-Fit 0.0538 5 0.01077 – – 

   Pure Error 0.0000 5 0.0000 – – 

Total 11.4448 19 – – – 
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Fig. 2 Isoresponse contour plot for the effect of incubation 
temperature versus initial pH on ethanol production 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 Isoresponse contour plot for the effect of incubation 
temperature versus fermentation time on ethanol production 

 
 

Fig. 4 Isoresponse contour plot for the effect of initial pH 
versus fermentation time on ethanol production 

 
Response analysis revealed the maximum ethanol 

concentration (3.36 g/l) by P. tannophilus could be achieved at 
the optimum process conditions. 

 

C. Kinetics and Modeling 
A comprehensive mechanistic kinetic model has been 

derived based on the mechanism of ethanol production from 

lignocellulosic materials by using yeast strains [23-24]. The 
validity of the proposed model under different experimental 
conditions has been tested. The cellmass, product formation 
and substrate utilization kinetics using P. tannophilus with 
different parameters were studied. 
Monod and Modified Logistic model (growth) 

Monod model (Eqn. 3) relates the growth rate to the 
concentration of a single growth-controlling substrate [μ = 
f(s)] via two parameters, the maximum specific growth rate 
(μmax), and the substrate affinity constant (Ks). Since growth is 
a result of catabolic and anabolic enzymatic activities, these 
processes, i.e., substrate utilization or growth-associated 
product formation, can also be quantitatively described on the 
basis of growth models.  

  
 

 
Under optimal growth conditions and when the inhibitory 
effects of substrates and product play no role, the rate of cell 
growth is given by equation (4) 

  
 
 
 
where μo is a constant defined as the initial specific growth 
rate. The logistic model     equation implies that the growth 
rate increases with increase in cellmass concentration and is 
independent of the substrate concentration.  The logistic 
equation utilized to describe the kinetics of several 
polysaccharides fermentation systems. A modified form of 
logistic equation is used to describe the cell growth kinetics by 
introducing an index of the inhibitory effect ‘r’ which 
accounts for the deviation of growth from the exponential 
relationship [23], as equation (5) 

   
 
 
 
when r = 0 will be a complete inhibition of cell growth; r = 1 
equation (5) reduces to logistic model equation (5); r ranges 
between 0 and 1 equation (5) describes a higher degree of 
inhibition compared to logistic growth; r >1 the growth lies 
between exponential and logistic patterns. Equation (5) was 
rearranged and integrated by using partial fraction method 
with the initial conditions, X=X0 (t=0) gives equation (6) 
 

   
 
 
 

The model parameter values were evaluated using 
MATLAB software version 7.0.1 program and are shown in 
Table 5. A better prediction of cellmass concentrations was 
obtained using the monod and modified logistic model and 
were most suited for ethanol production with the minimum 
average error of 4.56 % and 6.99% respectively. 
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Modified Logistic incorporated Leudeking – Piret model 
(product formation) 

Modified Logistic incorporated Leudeking – Piret model 
was developed by rearranging and integrating the Leudeking – 
Piret model with two initial conditions, X=X0 (t=0) and P = P0 
(t=0) gives equation (7) 
        
 
 
 
 
 

The model parameter values were evaluated using 
MATLAB program and are presented in Table 5. The 
simulation result of the Modified Logistic incorporated 
Leudeking – Piret model is in good agreement with the 
experimental data obtained from the pretreated sugarcane 
bagasse and the minimum average error of 7.01 %. 
Modified Logistic incorporated Modified Leudeking – Piret 
model (substrate utilization) 

The substrate utilization kinetics is the modified form of the 
Leudeking – Piret model which can be used for substrate 
utilization kinetics. Substrate consumption depends on the 
magnitude of three sink terms, the instantaneous cellmass 
growth rate, the instantaneous product formation rate and a 
cellmass maintenance function. The Modified Logistic 
incorporated Modified Leudeking – Piret model was 
developed by rearranging and integrating the Modified 
Leudeking – Piret model with two initial conditions,                     
X=X0 (t=0) and S= S0 (t=0) gives equation (8) 
            
 
 
 
 
 

The model parameter values shown in Table 5 are then 
used to simulate the experimental data of substrate 
concentration at any time during the entire course of 
fermentation. Better substrate utilization kinetics is obtained 
using the Modified Logistic incorporated Modified Leudeking 
– Piret model (Eqn. 8) and is well suited for ethanol 
production from pretreated sugarcane bagasse with a 
minimum average error of 7.32%.    

IV. CONCLUSION 
Based on the present study, it is evident that the use of 

statistical optimization tools, response surface methodology 
(RSM), has helped to locate the optimum levels of the most 
significant parameters for ethanol production, with minimum 
effort and time. Maximum ethanol concentration (3.36 g/l) 
was obtained from 50 g/l of pretreated sugarcane bagasse at 
the optimized conditions (incubation temperature 32°C, initial 
pH 5.6 and fermentation time 110 h) by using yeast strain P. 
tannophilus. Modified logistic model, Modified Logistic 
incorporated Leudeking – Piret model and Modified Logistic 
incorporated Modified Leudeking – Piret model were 
attempted for representing the batch growth kinetics, product 

formation kinetics and substrate utilization kinetics 
respectively. The results of the process simulation from the 
various models using the experimental data were compared 
and found to predict more accurately during the entire course 
of fermentation.  
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