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Abstract—The effect of the discontinuity of the rail ends and the 

presence of lower modulus insulation material at the gap to the 
variations of stresses in the insulated rail joint (IRJ) is presented. A 
three-dimensional wheel – rail contact model in the finite element 
framework is used for the analysis. It is shown that the maximum stress 
occurs in the subsurface of the railhead when the wheel contact occurs 
far away from the rail end and migrates to the railhead surface as the 
wheel approaches the rail end; under this condition, the interface 
between the rail ends and the insulation material has suffered 
significantly increased levels of stress concentration. The ratio of the 
elastic modulus of the railhead and insulation material is found to alter 
the levels of stress concentration. Numerical result indicates that a 
higher elastic modulus insulating material can reduce the stress 
concentration in the railhead but will generate higher stresses in the 
insulation material, leading to earlier failure of the insulation material 
 

Keywords—Rail end, material interface, wheel-rail contact, stress, 
finite element method 

I. INTRODUCTION 

FFECT of contacting solids with discontinuous structural 
stiffness or different material properties within the contact 

region is a problem of great interest in contact mechanics. The 
presence of such discontinuity can be found in various 
adhesively jointed structures, such as the insulated rail joint 
(IRJ). IRJ is a passive system in the railway signaling track 
circuit. For automated signaling circuitry, it is required to have 
two length of rails electrically insulated from one another at 
their rail ends forming a gap, whilst the joint gap capable of 
allowing safe passage of loaded wheel. However, due to the 
difference between the stiffness of the insulation material and 
the rail, the IRJ is subjected to high stress concentration, which 
induces various failure modes. Higher axle loads and increased 
throughput reduce the service life of IRJ, which varies from as 
low as 7% to 35% of the life of the continuously welded rails 
(CWR). 

Fundamental study of geometrical edge effect subjected to 
loading due to contacting solids is a very complex problem that 
cannot be solved using closed form analytical methods; in spite 
of the advent of computer methods, this problem has received 
only limited attention in the literature. Based on the 
Boussinesq-Cerruti method for point loading acting on elastic 
half-space (Tan and Bushan [1]; Li and Berger [2]; Wilner [3]; 
Chen and Wang [4]; Liu and Hua [5]),  
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Some semi-analytical solutions for 2D and 3D free-traction 

edge effect problems subjected to prescribed loading have been 
investigated in (Hetenyi [6]; Keer et al. [7]; Hanson and Keer 
[8]). All of these techniques unavoidably introduces internal 
shear and normal stresses at the free-traction surfaces and 
successive superposition of the solution for the elastic 
half-space (correction methods) are required to eliminate the 
internal stresses normal to the free surface, which requires 
significant computational effort. Recently by (Guilbault et al. 
[9]; Guilbault [10]), partial correction methods are presented as 
the efficient analytical correction solution procedure.  

The fundamental study as mentioned above was then further 
applied to the contacting solids problems. Numerical 
investigation of a wedge contact was performed by Gerber [11], 
who evaluated a rigid frictionless punch contacting a quarter 
plane (wedge angle equals to 90°) using Hetenyi’s method [6]. 
Erdogan and Gupta [12] studied frictionless flat punch 
contacting with a two dimensional wedge at arbitrary angles and 
discussed the singularity of the contact pressure as a function of 
wedge angle when contact approaches the wedge apex. The 
contact pressure close to the vertical free edge has been studied 
by Hanson and Keer [13] for a frictionless contact of an elastic 
quarter plane and Keer et al. [14] for a quarter space contact. 
The contact distribution at the free edge is shown to exhibit 
different characteristics to those away from the free edge even 
for simple loading. Bosakov [15] and Guenfoud et al. [16] 
conducted the analysis of a deformable rectangular plate resting 
on the surface of an elastic quarter-space close to the vertical 
free traction edge. They applied Ritz’s method to obtain 
accurate results for the contact pressure, and vertical 
displacements of an elastic quarter-space. 

As for the wheel-rail contact problem in the vicinity of the 
gap of the IRJ, the interface between the railhead end and the 
insulation material defines the problematic vertical edge. More 
importantly, this vertical edge is subjected to unknown traction 
provided by the insulation material and the analytical or 
semi-analytical solution are very complex to formulate. 
Therefore, numerical tools are used for exploring the wheel-rail 
contact problem. Yan and Fisher [17] used three-dimensional 
finite element (FE) model to investigate the wheel-rail contact 
problem, their result indicated that the Hertzian prediction can 
be applied if the material is assumed to be linear and the 
geometrical effect can be ignored such as CWR. Chen [18] 
developed a two-dimensional line contact FE model to simulate 
the effect of a free-traction rail end on the contact and stress 
variation. Chen and Kuang [19] proposed a three-dimensional 
FE model for the study of the effect of the rail ends with 
insulation material on the contact stress behavior; however, they 
only considered the situations, where the ratio of the elastic 
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modulus between the insulation material and rail is below 0.2. 
Besides, limited information was reported in terms of the stress 
variation at the gap of the IRJ. Dynamic analysis of the IRJ 
(Wen et al. [20]; Cai et al. [21]) and material deterioration 
(Sandström and Ekberg [22]) are also solved using FE 
modeling.  

In this paper, a three-dimensional finite element method is 
described to investigate the effect of the discontinuity of the 
elastic modulus between the rail end and the insulation material 
in the vicinity of the gap of the IRJ. The normalized contact 
stress and stresses variation are presented and compared with 
Hertzian prediction and results from Chen [18]. More 
importantly, the effect of various ratios of the elastic modulus 
between rail and the insulation material are reported. 

II. WHEEL-RAIL CONTACT MODELING AT IRJ 

A. Hertzian contact theory 

As the wheel is located far away from IRJ, the contact can be 
treated as Hertzian contact problem. Under the normal load F at 
the wheel centre, the contact region is in elliptical shape, with a 
major semi axis a and a minor semi-axis b. The contact pressure 
P distribution in this elliptical contact region is defined as: 

2 2
0 1 ( ) ( )

x y
P P

a b
= − −                        (1) 

in which P0 is the maximum contact pressure at initial contact 
point between the wheel and the rail, and it is expressed as: 

0

3

2

F
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abπ
=                                    (2) 

 
The semi-axis a and b are along the x axis and y axis 

respectively as shown in the coordinate system in Fig. 1. In 
order to calculate the axes a and b, the coefficients m, n, K1, K2 
and K3 are defined by Dukkipati (2000) and a and b is given by: 
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Fig. 1 Wheel-rail contact configuration at IRJ 
 

B. Finite element modeling 

In this paper, a three-dimensional finite element model was 
established to simulate the wheel-rail contact at various 
proximities to the IRJ. As shown in Fig. 1, a cylindrical shape of 
wheel subject to normal load F was assumed to contact at the 
centre line of the rail for simplicity. The contact distance l is 
defined as the distance from the initial wheel contact point to the 
vertical rail end, and the initial wheel-rail contact point is 
always regarded as the origin of the xoz coordinates system. The 
wheel and the rail have the same elastic material property in 
terms of Young’s modulus E1=210GPa and Poisson’s ratio 
v1=0.3, while lower elastic modulus E2=0.2E1 and same 
Poisson’s ratio v2=v1 is applied to the insulation material. t 
denotes the insulation material thickness. Dimensions of the 
modeled sections of the wheel and rail were chosen to be large 
enough to limit boundary effect. By allowing for reasonable 
computational effort, fine mesh with full integration solid 
element (in ABAQUS, 3D8) was used around the wheel 
railhead contact region, while coarse mesh with reduced 
integrated solid element (3D8R) was used in regions away from 
the contact. In all numerical simulations, the insulation material 
was assumed to be perfectly bonded with the rail ends. Since the 
simulation was conducted for different contact distances, the 
rail model was remeshed at each contact distance l to make sure 
that fine mesh was placed in the zone of contact. Typical finite 
element meshes for the wheel-rail contact in the vicinity of the 
gap of the IRJ is shown in Fig. 2. Definition of contact 
interaction between the wheel and the rail in ABAQUS is very 
sensitive to iteration convergence, result accuracy and 
computational time. The master/slave contact surface method 
was employed throughout the simulations. The wheel tread 
surface was defined as master contact surface, while the top 
surface of IRJ was defined as slave contact surface. The contact 
surface pair was allowed for finite sliding by defining the 
friction coefficient between them as � =0.3. In the static 
analysis, hard contact was chosen for the contact pressure-over 
closure relationship in ABAQUS/Standard. The penalty method 
was used to enforce the contact constraints, which searched for 
slave node penetrations into the current configuration in all 
iterations. Contact forces as a function of the penetration 
distance were applied to the slave nodes to oppose the 
penetration, while equal and opposite forces acted on the master 
surface at the penetration point. As the master surface was 
defined using the element faces, the master surface contact 
forces were distributed to their nodes. 

 

 
Fig. 2 Finite element mesh 
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III.  RESULT AND DISCUSSION 

A. Contact pressure 

The variations of the contact pressure between the wheel and 
the IRJ at different contact distances was discussed in this 
section. Under the wheel load F=130KN, the maximum contact 
pressure P0 major semi-axis a and minor semi-axis b calculated 
from Hertz formulations is 1381MPa, 7.5mm and 5.98mm 
respectively. The normalized contact pressure P/P0 and the 
normalized coordinates (x/a and y/b) are presented and 
compared with the Hertzian prediction as well as Chen [18]. As 
shown in Fig. 3(a) and (b), the distribution of the contact 
pressure obtained from the FE model forms the ellipsoidal 
shape and matches well with the Hertzian prediction as well as 
the Chen’s result. The maximum difference in terms of the 
contact pressure, major semi-axis and minor-axis is found to be 
less than 3% in these two contact distance, i.e. l/a=1.60 and 0.96. 
It indicates that the proposed FE model is capable of predicting 
accurate contact result, and also proves that the contact 
variations are not sensitive to the contact distance before the 
contact extends beyond the rail end, i.e. l/a>0.96 and the rail 
ends effect can be ignored. 

0

0.2

0.4

0.6

0.8

1

1.2

-1.5 -1 -0.5 0 0.5 1 1.5

HCT

l/a=1.60

l/a=1.60 (Chen)

l/a=0.96

l/a=0.96 (Chen)

x/a

P
/P

0

 
(a) 

0

0.2

0.4

0.6

0.8

1

1.2

-1.5 -1 -0.5 0 0.5 1 1.5

HCT

l/a=1.60

l/a=1.60 (Chen)

l/a=0.96

l/a=0.96 (Chen)

y/b

P
/P

0

 
(b) 

Fig. 3 Distribution of contact pressure at contact distances: (a) 
l/a=1.60; (b) l/a=0.96 

However, when the contact region extends beyond the rail 
end, i.e. l/a=0.32, 0.0 and -0.4 (-0.4 denotes that the wheel is 
located in the middle of the insulation material between the rail 
ends), the contact pressure distribution along the x axis deviates 
significantly from the ellipsoidal shape. Fig. 4 illustrates that the 
contact region is divided into two portions, one between the 
wheel and the rail and the other between the wheel and the 
insulation material. Similar to Chen [18], at contact distance 
l/a=0.32, the contact pressure between the wheel and the rail 
slightly increased, while the contact pressure over the insulation 
material has dropped below 0.4P0. As the wheel further moves 
and contacts with the other rail end (Rail-2) i.e. l/a= 0 and -0.4, 
the contact pressure exhibits two peak values, with the 
maximum peak around 1.23P0 in l/a=0 and 1.17P0 in l/a=-0.4 
respectively. Moreover, a wider contact length was found with 
the deceasing contact distance l/a. 
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Fig. 4 Distribution of contact stress along x axis at different contact 

distances 
 

Fig. 5 depicts the contact pressure variations along the y axis 
at different contact distances. Generally, the distribution retains 
a symmetrical shape at these different contact distances. 
However, the magnitude reduced significantly at l/a=0 and -0.4. 
The peak contact pressure at l/a=0 is reduced to 84% of P0 in 
current FE model and 80% of P0 in Chen [18]. When the wheel 
was symmetrically located between rail ends, i.e. l/a=-0.4, the 
peak contact pressure further reduced to only around 40%P0. 
Fig. 6 (a) and (b) show the three-dimensional contour plots of 
the contact pressure at l/a=0 and -0.4 respectively. The effect of 
the rail ends is obvious and can be concluded that as the 
wheel-rail contact is located between the rail ends, the wheel is 
partially losing contact with the insulation material due to the 
difference of the elastic modulus between the rail and the 
insulation material. This results in significant alteration in terms 
of the magnitude and the distribution of the contact pressure. 
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Fig. 5 Distribution of contact stress along y axis at different contact 
distances 
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(b) 

Fig. 6 Three-dimensional contour plot of contact stress distribution at 
contact distance: (a) l/a=0.0; (b) l/a=-0.4 

B. Stresses variations 

The distribution of the normalized maximum shear stress 
�max/P0 along the depth of the symmetrical axis of the rail end 
surface at various contact distances were presented in Fig. 7. It 
can be seen that the maximum shear stress is less than 0.1P0 in 
both of the FE model and Chen [18] at the contact distance 
l/a=1.60, and the rail ends are experiencing high stress 
concentration. However, with the wheel moving closer to the 
rail end, the maximum shear stress has significantly increased 

especially from the railhead subsurface (z/a=2) to railhead top 
surface (z/a=0). Meanwhile, the peak value is shifting up 
towards to the rail head top surface. When the wheel is loaded 
right over the rail end, i.e. l/a=0, the peak maximum shear stress 
�max/P0  is crowded at the corner of the rail end, valued around 
0.54P0 for the FE model and 0.5P0 for Chen [18]. With the 
wheel further moving in between the rail ends, i.e. l/a=-0.4, the 
peak maximum shear stress topped up to 0.68P0. Because the 
maximum shear stress reflects the failure of the insulation 
material adhesive, the results from Fig. 7 indicate that the 
development of high level of shear stress along the interface 
between the rail end and the insulation material may lead to 
delamination of the insulation material. 

 

Fig. 7 Maximum shear stress variation along the interface between rail 
end and insulation material at different contact distances 

 
The von Mises stress is an important factor describing the 

possibility of the material plastic deformation and material 
deterioration, the variation of the normalised von Mises stress 
σe/P0 along the depth of the rail end is presented as shown in Fig. 
8. The behaviour of the von Mises stress is similar to the 
maximum shear stress as presented in Fig. 7. When the wheel 
approaches the rail end, the peak von Mises stress migrates to 
the corner of the rail end, with increased values 1.0P0 at l/a=0 
and 1.2P0 at l/a=-0.4, they are above yield strength of high yield 
strength steels used in railhead, whose averaged yield strength 
σy is around 780MPa (0.56P0). 

 

 
Fig. 8 Von Mises stress variation along the interface between rail end 

and insulation material at different contact distances 
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The distribution contours of the von Mises stress in the 
symmetrical plane of the rails at different contact distances are 
shown in Fig. 9, which illustrates the stress concentration at the 
rail end surface. The upper limit of the stress distribution 
contour is bounded at 0.56P0, which represents the yield stress 
of the railσy. It is found that as the wheel moves close to the rail 
end i.e. from l/a=1.60 to 0.32, the stress concentration zone 
above σy is shifting towards the rail end and its area is 
increasing. Moreover, the maximum von Mises stress is 
migrating from the subsurface to the corner of the rail end, 
valued 1.6P0 at l/a=0.32. As the contact region further extends 
to the other rail end, i.e. l/a=0 and -0.4, the maximum von Mises 
stress in both of the rail ends retains at their corners and valued 
1.77P0 (Rail-1) and 1.47P0 (Rail-2) at l/a=0 and around 2.26P0 
in both of the rail ends at l/a=-0.4. This stress concentration 
zone crowded at the rail end corner region and its high level of 
magnitude reveals that the vertical rail end is a serious problem 
from the wheel-rail contact perspective as it acts as a point of 
singularity leading to excessive material deterioration. 
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Fig. 9 Distribution of von Mises stress at IRJ at different contact 
distances: (a) l/a=1.60; (b) l/a=0.32; (c) l/a=0.0; (d) l/a=-0.4 

 

C. Effect of insulation material 

The results in the above sections are presented by considering 
the most commonly used insulation material with the ratio of the 
elastic modulus E2/E1=0.2 between the insulation material and 
the rail steel. In this section, the effect of different ratios (E2/E1) 
is investigated. Four different ratios were studied and compared, 
namely E2/E1=0.002, 0.2, 0.5 and 0.8. 

Fig. 10 and Fig. 11 show the effect of the modulus ratio on the 
contact pressure along the x axis and y axis at contact distance 
l/a=0 and -0.4 respectively. At contact distance l/a=0 and -0.4 
as shown in Fig. 10 (a) and (b), the shape of the contact pressure 
along the x axis is affected by the materials of the rail and the 
insulation material. It is found that the contact pressure on the 
railhead increase and the insulating material decrease with the 
reduction in E2/E1 from 0.8 to 0.002.  
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Fig. 10 Effect of various elastic modulus ratios on the contact stress 
distribution along: (a) x axis; (b) y axis at l/a=0.0 

 
Fig. 10 (b) and Fig. 11 (b) illustrate the contact pressure along 

the y axis at contact distances l/a=0 and -0.4. Generally the 
pressure distribution keeps approximately an elliptical shape 
irrespective of E2/E1, and the magnitude decreases as the E2/E1 

reduces. To further demonstrate the effect of the material 
modulus ratio on the contact pressure. Fig. 12 depicts 
three-dimensional contour plots of the contact stress for the 
cases of E2/E1=0.002 and 0.8. The presence of extreme low 
elastic stiffness for the insulation material i.e. E2/E1=0.002, will 
result in the loss of the contact and magnify the rail ends effect, 
while the insulation material with high elastic modulus, i.e. 
E2/E1=0.8 could provide more support to the wheel loading. 
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Fig. 11 Effect of various elastic modulus ratios on the contact pressure 
distribution along: (a) x axis; (b) y axis at l/a=-0.4 
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(c) E2/E1=0.8 at l/a=0.0 
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(d) E2/E1=0.8 at l/a=-0.4 

Fig. 12 Three-dimensional contour plot of contact pressure 
distribution 

 
Following the study of the effect of the elastic modulus ratio 

(E2/E1), the von Mises stress σe/P0 and the shear stress �max/P0 

along the interface between the insulation material and the rail 
end are presented in Fig. 13 and Fig. 14 respectively. It is found 
that the magnitude of either the maximum shear stress or the von 
Mises stress will increase with the decreasing elastic modulus of 
insulation material, and they reach as high as 0.94P0 and 1.65P0 

at l/a=0.0 and 1.13P0 and 2.0P0 at l/a=0.0 for E2/E1=0.002. The 
behaviour of such stresses reduction could be beneficial for 
slowing the process of delamination of the interface. However, 
further analysis in terms of the peak von Mises stress in the rail 
end and insulation material suggests that it is not always positive 
to increase the elastic modulus of the insulation material. As 
shown in Fig. 15, the difference of the maximum von Mises 
stress between the insulation material and the rail has been 
significantly reduced as E2/E1 changes from 0.002 to 0.8. As for 
E2/E1=1, the rail joint will act as the continuously welded rail 
(CWR) and the majority of the stress concentration zone will 
shift into the insulation material as predicted in Hertzian contact 
theory. This trend reveals although the higher ratio E2/E1 can 
slow down the interface delamination, the increasing stress level 
in the insulation material could lead to earlier damage or failure 
of insulation material, resulting the electrical failure of IRJ. 

 

(a) 

(b) 
Fig. 13 Distribution of von Mises stress along the interface between 
rail end and insulation material at contact distance: (a) l/a=0.0; (b) 

l/a=-0.4 
 

 
(a) 
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(b) 
Fig. 14 Distribution of maximum shear stress along the interface 
between rail end and insulation material at contact distance: (a) 

l/a=0.0; (b) l/a=-0.4 
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Fig. 15 Comparison of maximum von Mises stress in rail and 

insulation material at various ratios in elastic modulus 
  

IV. CONCLUSIONS 

The effects of material interface between rail end and 
insulation material to the wheel-rail contact in various 
proximities to the IRJ were investigated by using 
three-dimensional finite element model. Results based on FE 
analysis are presented and compared with relevant literature. 
Some conclusions are made as follows: 

 
� Contact can be regarded as Hertzian when the wheel is at a 

distance l/a>0.96; beyond that Hertzian assumption is 
invalid; 

� The response of the maximum shear stress and von Mises 
stress along the interface between the rail end and the 
insulation material was found to be quite sensitive to the 
contact positions of the wheel. As the wheel approaches the 
rail end, these stresses significantly increases; 

� The stress concentration zone at rail end was also found to be 
amplified and its location migrates from the rail subsurface 
to the top surface as wheel moves to the rail end. This 
phenomenon can accelerate the railhead deterioration in the 
vicinity of gap end; 

� The effect of the difference of elastic modulus between the 
insulation material and the rail was investigated. Results 
show that that a lower difference in elastic modulus can 
reduce the interface stress magnitude in the rail ends, 
however, it could adversely result in higher stress in the 
insulation material, which may lead to its earlier failure. 
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