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Bounds On The Second Stage Spectral Radius Of
Graphs

S.K.Ayyaswamy, S.Balachandran and K.Kannan

Abstract—Let G be a graph of order n. The second stage adjacency
matrix of G is the symmetric n × n matrix for which the ijth entry
is 1 if the vertices vi and vj are of distance two; otherwise 0. The
sum of the absolute values of this second stage adjacency matrix is
called the second stage energy of G. In this paper we investigate
a few properties and determine some upper bounds for the largest
eigenvalue.

Keywords—Second stage spectral radius; Irreducible matrix; De-
rived graph.

I. INTRODUCTION
Let G be a connected graph with vertex set V (G) =

{v1, v2, ..., vn}. The second stage adjacency matrix is denoted
by A2(G) and the second stage energy by E2(G). As it is
symmetrical it will be an adjacency matrix for some graph G′

which we call the derived graph of G. If Δ′ is the maximum
degree of G′ then clearly Δ′ ≤ Δ. Irreducibility of the ad-
jacency matrix is related to the property of connectedness[2].
Hence A2(G) is irreducible if and only if the derived graph
G′ is connected. Proposition 2.1 guarantees plenty of graphs
for which their derived graphs are connected, for example, the
Peterson graph whose derived graph is a 6-regular graph. In
this paper we consider only those graphs for which A2(G) is
irreducible.

II. SOME PROPERTIES
The derived graph of any odd cycle C2m−1 =<

v1, v2, ..., v2m−1 > is the odd cycle C2m−1 =<
v1, v3, v5, ..., v2m−1, v2, ..., v2m−2 >. This motivates to
enunciate the following proposition:

Proposition 2.1. Let G be a graph having C2m−1 =<
v1, v2, ..., v2m−1 > as an induced subgraph for some m ≥ 3.
If (i)Δ ≤ n − 2 and
(ii) for every u ∈ V (G)− V (C2m−1), there exist at least one
vj /∈ N(u), j ∈ {1, 2, , ..., 2m− 1},then the derived graph is
connected.
Proof: As mentioned above the induced subgraph

< v1, v2, ..., v2m−1 > is connected in G′. Choose any vertex
u �= vi for all i = 1, 2, ..., 2m − 1 and let vj be a vertex in
C2m−1 which is not in N(u).
Case 1. N(u) ∩ {v1, v2, ..., v2m−1} = φ.
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Let u = u1u2...ur = vi be the shortest path from u to C2m−1

of length r.
Case 1.1. r is even, then we have
d(u = u1, u3) = d(u3, u5) = ... = d(ur−2, ur = vi) = 2 and
so the derived graph has the path uu3u5...ur−2vi.
Case 1.2. r is odd, then we have uu3u5...ur−1vi+1 is a path
in the derived graph.
Case 2. N(u) ∩ {v1, v2, ..., v2m−1} �= φ.
Choose a vertex vk ∈ N(u) ∩ {v1, v2, ..., v2m−1} such that
vk is nearest to vj . If k = j± 1, then d(u, vj) = 2. Otherwise
vl is of distance two from u where l = k±1,. ie., d(u, vl) = 2.

Proposition 2.2. Let G be a r-regular graph with order
n such that n = 2r + 1. Then the derived graph G′ of G is
also r-regular.
Proof: Clearly r is even. Choose any vertex vi. Let vk be a
vertex such that vk ∈ N(vi).
Claim: d(vk, vi) = 2. Otherwise, vk /∈ N(vj) for all
vj ∈ N(vi). This implies deg(vk) ≤ (2r+1)−(r+2) = r−1,
which is a contradiction since deg(vk) = r.
Remark: Converse of the above proposition is not true. For
example, consider any odd cycle other than C5. It is 2-regular
and its derived graph being an odd cycle is also 2-regular.
But n �= 2r + 1.

Proposition 2.3. The derived graph of circulant graph is
a circulant graph.
Proof: Let G be a circulant graph formed by the set
S ⊆ {1, 2, ..., n}. Then i ∈ S if and only if n − i ∈ S [1].
Consider a vertex vi. Let vk ∈ D(vi). Then there exists
a vertex vj such that vj is adjacent to vi and vk. Then
by the definition of circulant graph, vn−k is also adjacent
to vj and so vn−k ∈ D(vi). Thus, G′ is formed by a set
S′ ⊆ {1, 2, ..., n} such that k ∈ S′ if and only if n − k ∈ S′

and hence G′ is also circulant.

Proposition 2.4. Given any positive integer n of the
form pr where p is a prime number and r is a positive integer,
there exists a graph G for which the second stage energy is
2(p − 1)pr−1.
Proof: Let G be the complement of the circulant graph H
formed by the set S = {α1, α2, ..., αk} where αi’s are all
numbers less than n and prime to n. Then the derived graph
of G is the circulant graph H whose energy is 2(p − 1)pr−1

[1]. Hence E2(G) = E(H) = 2(p − 1)pr−1 .
Theorem 2.5. Let D(vi) = {vj : d(vi, vj) = 2}. Then for

each fixed
i = 1, 2, ..., n, |D(vi)| = S1 − S2, where
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S1 =
∑

vjadjtoviandvjnonpendent |N(vj)| −∑
vjadjtoviandvjnonpendent |N [vi] ∩ N(vj)| and

S2 =
∑

vk∈D(vi)
(lk − 1), where lk is the number of

vertices which are adjacent to both vi and vk.
Proof: If we take any vertex vj adjacent to vi, then all
members of N(vj) need not be in D(vi); because some
neighbours of vj may be neighbours of vi and so vj can
contribute only |N(vj)|−|N [vi]∩N(vj)| number of members
to D(vi). Similarly for all other neighbours of vi. Therefore,
the total number of members contributed by the neighbours
of vi is∑

vjadjtoviandvjnonpendent {|N(vj)| − |N [vi] ∩ N(vj)|},
which can also be written as
S1 =

∑
vjadjtoviandvjnonpendent |N(vj)| −∑

vjadjtoviandvjnonpendent |N [vi] ∩ N(vj)|.
Among these S1 members, some may appear more than

once. For example, a member vk of D(vi) may have
neighbours v1, v2, ..., vlk which all are in turn neighbours of
vi also. Thus, vk is repeated say lk times in S1. But it should
be taken only once. Thus we get the required result.

Corollary 2.6. If the second stage adjacency matrix is
irreducible, then
|D(vi)| ≤ 2m − 2di − δ + εFi

where εFi
is the number of

pendent vertices adjacent to vi

Proof: We observe that vi is included as many times as
di − εFi

in
∑

vjadjtoviandvjnonpendent |N [vi] ∩ N(vj)|.
Hence

∑
vjadjtoviandvjnonpendent |N [vi]∩N(vj)| ≥ di− εFi

.
Therefore

D(vi) ≤ S1 ≤
∑

vjadjtoviandvjnonpendent

|N(vj)| − di + εFi

(1)
Since the second stage adjacency matrix is irreducible, for

each vertex vi, there is atleast one vertex vk which is non
adjacent to vi. Therefore∑

vjadjtoviandvjnonpendent

|N(vj)| ≤ 2m − di − δ (2)

Combining (1) and (2), we get D(vi) ≤ 2m−2di−δ+εFi
.

III. BOUNDS FOR THE LARGEST EIGENVALUE
Theorem 3.1. Let G be a graph with minimum degree δ ≥ 1

and maximum degree Δ, then
ρ(G) ≤

√
2Δ(m + n − δ − 1) − 4m + δ(2 − δ) + A,

where A = εF (2Δ + δ + 1) and εF is the number of pendent
vertices of G.

Proof:
Proof: Let D(vi) = {vj : d(vi, vj) = 2}. Let D1(vi) =
{vj : d(vi, vj) �= 2} and let D′

1(vi) = D1(vi) − {vi}. Let
x = (x1, x2, ..., xn)T be the unit eigenvector corresponding
to ρ(G). Then ρ(G)xi =

∑n

j=1 aijxj . By Cauchy- Schwarz
inequality,

ρ2(A)x2
i = (

∑n
j=1 aij(aijxj))2.

≤
∑n

j=1 a2
ij

∑n

j=1 (aijxj)2

≤ (2m− (2di + δ− εFi
))
∑

j∈D(vi)
x2

j , by using
corollary 2.6.

Hence
ρ(G)2 =

∑n

i=1 ρ(G)2x2
i

≤
∑n

i=1 (2m − (2di + δ − εFi
))
∑

j∈D(vi)
x2

j

=
∑n

i=1 (2m − (2di + δ − εFi
))(1 −

∑
j∈D1(vi)

x2
j )

=
∑n

i=1 (2m− (2di + δ− εFi
))−

∑n
i=1 (2m− (2di +

δ − εFi
))
∑

j∈D1(vi)
x2

j

= 2mn−4m−nδ+εF−
n∑

i=1

(2m−(2di+δ−εFi
))

∑
j∈D1(vi)

x2
j

(3)
In (3), we estimate, −

∑n

i=1 (2m − (2di + δ −
εFi

))
∑

j∈D1(vi)
x2

j

= −

n∑
i=1

2m
∑

j∈D1(vi)

x2
j +

n∑
i=1

(2di+δ−εFi
)
∑

j∈D1(vi)

x2
j (4)

Now, consider∑n
i=1(2di + δ − εFi

)
∑

j∈D1(vi)
x2

j

=
∑n

i=1(2di+δ−εFi
)x2

i +
∑n

i=1(2di+δ−εFi
)
∑

j∈D′

1(vi)
x2

j

=
∑n

i=1 2dix
2
i +

∑n

i=1 δx2
i −

∑n

i=1 εFi
x2

i +∑n
i=1 2di

∑
j∈D′

1(vi)
x2

j +
∑n

i=1 δ
∑

j∈D′

1(vi)
x2

j

−
∑n

i=1 εFi

∑
j∈D′

1(vi)
x2

j

≤
∑n

i=1 2dix
2
i + δ

∑n
i=1 x2

i +
∑n

i=1 2di

∑
j∈D′

1(vi)
x2

j +∑n

i=1 δ
∑

j∈D′

1(vi)
x2

j

≤ 2
∑n

i=1 dix
2
i + δ + 2Δ

∑n

i=1

∑
j∈D′

1(vi)
x2

j +
δ
∑n

i=1

∑
j∈D′

1(vi)
x2

j

= 2
∑n

i=1 dix
2
i + δ + 2Δ

∑n

i=1(n − (di − εFi
) − 1)x2

i +
δ
∑n

i=1(n − (di − εFi
) − 1)x2

i

= 2
∑n

i=1 dix
2
i +δ+2Δ

∑n

i=1(n−di−1)x2
i +2Δ

∑n

i=1 εFi
x2

i

+ δ
∑n

i=1(n − di − 1)x2
i + δ

∑n
i=1 εFi

x2
i

≤ 2
∑n

i=1 dix
2
i +δ+2Δ

∑n

i=1(n−di−1)x2
i +2ΔεF

∑n

i=1 x2
i

+ δ
∑n

i=1(n − di − 1)x2
i + δεF

= 2
∑n

i=1 dix
2
i + δ + 2Δ

∑n

i=1(n − di − 1)x2
i + 2ΔεF +

δ
∑n

i=1(n − di − 1)x2
i + δεF

= Δ(2
∑n

i=1 dix
2
i + 2

∑n
i=1(n − di − 1)x2

i ) − (2Δ −
2)
∑n

i=1 dix
2
i + δ + 2ΔεF

+ δ(
∑n

i=1 dix
2
i +

∑n

i=1(n− di − 1)x2
i )− δ

∑n

i=1 dix
2
i + δεF

= Δ(2n − 2) − (2Δ − 2)
∑n

i=1 dix
2
i + δ + 2ΔεF +

δ(n − 1) − δ
∑n

i=1 dix
2
i + δεF

≤ 2Δ(n− 1)− 2(Δ− 1)δ + δ + 2ΔεF + δ(n− 1)− δδ + δεF

= 2Δ(n− 1)− 2δ(Δ− 1)+ δ + δ(n− 1)− δ2 + 2ΔεF + δεF

= 2Δ(n− 1)+ δ(−2(Δ− 1)+1+ (n− 1)− δ)+ εF(2Δ+ δ)

= 2Δ(n − 1) + δ(n − 2(Δ − 1) − δ) + εF (2Δ + δ) (5)

In a similar fashion, we have −
∑n

i=1 2m
∑

j∈D1(vi)
x2

j

= −
∑n

i=1 2mx2
i −

∑n
i=1 2m

∑
j∈D′

1(vi)
x2

j

= −2m − 2m
∑n

i=1

∑
j∈D′

1(vi)
x2

j

= −2m − 2m
∑n

i=1(n − (di − εFi
) − 1)x2

i

= −2m − 2m
∑n

i=1(n − di − 1)x2
i − 2m

∑n

i=1 εFi
x2

i
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≤ −2m− 2m
∑n

i=1(n − di − 1)x2
i

= −2m− 2m
∑n

i=1 nx2
i + 2m

∑n

i=1 dix
2
i + 2m

∑n

i=1 x2
i

= −2m− 2mn + 2m
∑n

i=1 dix
2
i + 2m

≤ −2mn + 2mΔ (6)

From (3),(4),(5),(6), we get,
ρ(G)2 ≤ (2mn − 4m − nδ + εF ) + (2Δ(n − 1) + δ(n − 2
(Δ − 1) − δ) + εF (2Δ + δ)) − 2mn + 2mΔ
= −4m − nδ + εF + 2Δ(n − 1) + δ(n − 2(Δ − 1) − δ) +
εF (2Δ + δ) + 2mΔ
= −4m+εF +2Δ(n−1)−δ(2(Δ−1)+δ)+εF (2Δ+δ)+2mΔ
= −4m+2mΔ+2Δ(n−1)−δ(2(Δ−1)+δ)+εF(2Δ+δ+1)
= −4m+2mΔ+2nΔ−2Δ−2δΔ+2δ−δ2+εF (2Δ+δ+1)
= −4m + 2Δ(m + n− δ − 1) + (2δ − δ2) + εF (2Δ + δ + 1)
Hence

ρ(G) ≤
√

2Δ(m + n − δ − 1) − 4m + δ(2 − δ) + A, where
A = εF (2Δ + δ + 1).
Let B be an n × n matrix and let Si(B) denote the ith

row sum of B, ie., Si(B) =
∑n

j=1 Bij , where 1 ≤ i ≤ m .

Lemma 3.2. Let G be a connected n-vertex graph and
A2 its second stage adjacency matrix, with spectral radius ρ.
Let P be any polynomial. If A2 is irreducible, then,
minv∈V (G)Sv(P (A2)) ≤ P (ρ) ≤ maxv∈V (G)Sv(P (A2))
Moreover, if the row sums of P (A2) are not all equal then

both inequalities are strict.
Proof: Since A2 is irreducible, the proof is just analogous

to that of Lemma 2.2 in [4].

Lemma 3.3. For each fixed i=1,2, . . . ,n,
Svi

(A2
2) = |D(vi)| +∑

i�=j

∑
k | {vk : d(vk, vi) = 2 and d(vk, vj) = 2} |

Proof: ijth entry in bij in A2
2 =

∑n
i=1 aikakj

Case 1. Let i = j, then bii =
∑n

k=1 aikaki

= |D(vi)| (7)

Case 2. Let i �= j, aikakj = 1 if and only if aik = 1 and
akj = 1
aikakj = 1 if and only if d(vk, vi) = 2 and d(vk, vj) = 2.
Therefore

bij =
∑

k

| {vk : d(vk, vi) = 2 and d(vk, vj) = 2} | (8)

Svi
(A2

2) = bii +
∑

i�=j bij

= |D(vi)| + B where
B =

∑
i�=j

∑
k | {vk : d(vk, vi) = 2 and d(vk, vj) = 2} |,

using (7) and (8).
Let G be a simple graph with n vertices and m edges. Let

δ = δ(G) be the minimum degree of vertices of G and ρ(G)
be the spectral be the spectral radius of the adjacency matrix
A of G. Then in [6] it is proved that,
ρ(G) ≤ (δ − 1 +

√
(δ + 1)2 + 4(2m− δn))/2.

Corresponding to the above result, we have the following
theorem for the second stage matrix.

Theorem 3.4. Let G be a simple graph with n vertices
and m edges. Let Δ = Δ(G) be maximum degree
of vertices of G and ρ(G) be the spectral radius of
the second stage adjacency matrix A2 of G. Then
ρ(G) ≤ (1 +

√
4(n − 1)Δ)/2. Proof: Since Svi

(A2
2) =

|D(vi)| +
∑

i�=j

∑
k | {vk : d(vk, vi) = 2andd(vk, vj) = 2} |

Svi
(A2

2) − Svi
(A2) =∑

i�=j

∑
k | {vk : d(vk, vi) = 2andd(vk, vj) = 2} |

≤ (n − 1)Δ. As this holds for every
vertex v ∈ V (G). Lemma 3.2 implies that ρ(G)2 − ρ(G) ≤
(n−1)Δ. Solving the quadratic inequality, we obtain ρ(G) ≤
(1 +

√
4(n − 1)Δ)/2.

For a non regular graph, many upper bounds for
the largest eigenvalue of adjacency matrix are found. One
such upper bound is
λ1 ≤ Δ − (1/2n(nΔ − 1)Δ2 [5]. In the following theorem
we find a similar upper bound for our second stage concept.

Theorem 3.5. If G is connected and not regular, then
λ1 ≤ Δ − (1/4Δ2n(2m − 3δ + εF )).
Proof: Let x be a positive unit eigenvector of A2(G)
corresponding to λ1. We have that λ1 = λ1‖x‖

2

= λ1

∑
vi∈V x2

i

= 2
∑

d(vi,vj)=2 xixj

Since the maximum degree of G is Δ and G is not regular,
we have
Δ = Δ‖x‖2 >

∑
vi∈V |Di|x

2
i

Thus, Δ − λ1 >
∑

vi∈V |Di|x
2
i − 2

∑
d(vi,vj)=2 xixj

=
∑

vi∈V

∑
vj∈D(vi)

x2
i − 2

∑
d(vi,vj)=2 xixj

=
∑

d(vi,vj)=2(x
2
i + x2

j − 2xixj)
=
∑

d(vi,vj)=2(xi − xj)2

From Cauchy-schwarz inequality and |D(vi)| ≤ 2m −
2di − δ + εFi

, it follows that
∑

d(vi,vj)=2(xi − xj)2 ≥

(1/|D(vi)|)(
∑

d(vi,vj)=2 |xi − xj |)2

≥ (1/2m − 2di − δ +
εFi

)(
∑

d(vi,vj)=2 |xi − xj |)2

≥ (1/2m − 3δ +
εF )(

∑
d(vi,vj)=2 |xi − xj |)2

Let u and v be the vertices of derived graph G such
that xu = maxvi∈V xi and xv = minvi∈V xi and let u =
w0w1...wk = v be a path between u and v in the derived
graph G. Then∑

{vi,vj}∈E |xi − xj | ≥
∑k−1

l=0 xwl
− xwl+1

≥
∑k−1

l=0 (xwl
− xwl+1)

= xw0 − xwk

= xu − xv .
We haveΔ−λ1 > (1/2m−3δ+εF)(xu−xv)2. It remains to

estimate xu − xv . Since
∑

vi∈V x2
i = 1, we have xu ≥ 1/

√
n

and xv ≤ 1/
√

n . There are three cases to consider.
Case Ia: xu ≥ 1/

√
n + c. Then xv < 1/

√
n and Δ − λ1 >

(c2/2m − δ + εF )
Case Ib: xv ≤ 1/

√
n − c. Then xu > 1/

√
n and again Δ −

λ1 > (c2/2m − δ + εF ) Case II : 1/
√

n − c < xv < xu <
1/

√
n + c. Then xi ∈ (1/

√
n − c, 1/

√
n + c). Then xi ∈

(1/
√

n−c, 1/
√

n+c) holds for each vi ∈ V , and by choosing
s ∈ V ′ with ds < Δ′ − 1, which is regular, we get
λ1(1/

√
n − c) < λ1xs
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=
∑

{t:{s,t}∈E′
}
xt < (Δ′ − 1)(1/

√
n + c)

where Δ′ = maxD(vi), i = 1, 2, ..., n and E′ is the edge
set of G′ which implies,
λ1 < (Δ′−1)(1+ c

√
n/1− c

√
n). In order for the expression

on the RHS to be useful, it must be less than Δ′, which is
satisfied for c < 1/(2Δ′− 1)

√
n). Put c = 1/2Δ′

√
n in cases

Ia and Ib, we get,
Δ − λ1 > 1/(2m− 3δ + εF )4(Δ′)2n

λ1 < Δ − (1/(2m − 3δ + εF )4(Δ′)2n)
While in λ1 < (Δ′ − 1)(1 +

√
n/2Δ′

√
n/1 −

√
n/2Δ′

√
n)

< (Δ′ − 1)(2Δ′ + 1/2Δ′ − 1)
= (2Δ2 + Δ′ − 2Δ′ − 1/2Δ′ − 1)
= Δ′ − (1/2Δ′ − 1)

This implies λ1 < Δ′ − (1/2Δ′ − 1)
< Δ − (1/4(Δ′)2(2m − 3δ + εF ))
< Δ − (1/4(Δ)2n(2m − 3δ + εF ))
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