
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:12, 2012

1705

Minimal Residual Method for Adaptive Filtering
with Finite Termination

Noor Atinah Ahmad and Shazia Javed

Abstract—We present a discussion of three adaptive filtering
algorithms well known for their one-step termination property, in
terms of their relationship with the minimal residual method. These
algorithms are the normalized least mean square (NLMS), Affine
Projection algorithm (APA) and the recursive least squares algorithm
(RLS). The NLMS is shown to be a result of the orthogonality
condition imposed on the instantaneous approximation of the Wiener
equation, while APA and RLS algorithm result from orthogonality
condition in multi-dimensional minimal residual formulation. Further
analysis of the minimal residual formulation for the RLS leads to
a triangular system which also possesses the one-step termination
property (in exact arithmetic)

Keywords—Adaptive filtering, minimal residual method, projec-
tion method.

I. INTRODUCTION

ADAPTIVE filtering is commonly formulated as a stochas-

tic adaptive least squares problem which may be solved

by adaptive counterparts of standard methods for least squares

problem. For standard least squares problem, solution methods

may be classified into two categories: direct method and

iterative method. Direct methods are able to give more ac-

curate solution and fast convergence in general but require

higher computational complexity. On the other hand, iterative

methods provide a more robust environment for adaptive im-

plementation while requiring lower computational complexity.

Standard iterative methods have been modified for appli-

cation in adaptive filtering [1], [2], [3], [4], [5], [6], [7] .

For example, the Least Mean Square algorithm (LMS) can

be seen as an adaptive counterpart of the steepest descent

method with stochastic estimation of gradient [1]. The LMS

algorithm is widely used due to its simplicity, robustness and

its low computational complexity. However it suffers from

slow convergence rate for colored input signal such as speech.

The normalized least mean square (NLMS), Affine Projection

algorithm (APA) and the recursive least squares algorithm are

well known adaptive filtering algorithms which have received

a lot of attention due to their superior convergence compared

to the LMS. The superior convergence is due to the one-step

termination property shared by these algorithms and their close

proximity to the Newton iteration [8], [9]. Although they are

implemented as iterative methods, the one-step termination

property renders the algorithms to be comparable to direct

methods.

In this paper, we analyze NLMS, APA and RLS and present

their relationship with the minimal residual method. After
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giving brief description of minimal residual method in section

II, , the relationship between these algorithms with the one

dimensional and multidimensional minimal residual method is

presented in section III. In section IV, we show the equivalence

of the RLS method to a triangular system which is solvable

via forward or backward substitution. The triangular system

is also shown to provide one-step termination.

II. THE MINIMAL RESIDUAL METHOD (MR)

The standard MR method for solving linear system of

equation Φx = p updates the approximated solution along the

current residual vector r(k) = p − Φx(k), and, the stepsize is

chosen so that the residual 2-norm square
∥∥p− Φx(k+1)

∥∥2
2

is minimized. By doing so, an orthogonality condition

r(k+1)T
(
Φr(k)

)
= 0 is imposed where r(k+1) = p−Φx(k+1).

In general, a one-dimensional MR method with direction of

search d(k), the MR update equations take the form,

αk = r(k)T b(k)

b(k)T b(k)

x(k+1) = x(k) + αkd
(k)

(1)

where b(k) = Φd(k). The iteration in (1) is a result of the

orthogonality condition

r(k+1)T b(k) =
(
p− Φx(k+1)

)T

b(k) = 0

i.e., (1) represents an orthogonal projection of

r(k+1)T b(k) =
(
p− Φx(k+1)

)T

b(k) = 0

onto the subspace containing b(k).
A general framework for multidimensional projection

method as described in [10] extracts an approximation to the

solution from a subspace of RNwhich is spanned by P linearly

independent directions (with P ≤ N ) so that

x(k+1) = x(k) + α
(k)
1 d

(k)
1 + α

(k)
2 d

(k)
2 + · · ·+ α

(k)
P d

(k)
P

= x(k) + V (k)y(k)
(2)

where

V
(k)
P =

⎛
⎝ | | |

d
(k)
1 d

(k)
2 · · · d

(k)
P

| | |

⎞
⎠ , y(k) =

⎛
⎜⎜⎜⎜⎝

α
(k)
1

α
(k)
2
...

α
(k)
P

⎞
⎟⎟⎟⎟⎠

Each of the stepsizes

α
(k)
i =

r(k)T
(
Φd

(k)
i

)
(
Φd

(k)
i

)T (
Φd

(k)
i

)
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for i = 1, . . . , P , satisfies the orthogonality condition

r(k+1)T b
(k)
i =

(
p− Φx(k+1)

)T

b
(k)
i = 0

where b
(k)
i = Φd

(k)
i , therefore, minimizing the residual 2-norm

along the direction d
(k)
i respectively.

III. MINIMAL RESIDUAL PROPERTIES OF SEVERAL

EXISTING ADAPTIVE FILTERING ALGORITHM

Consider a typical setup for a transversal finite impulse

response (FIR) adaptive filter with adjustable coefficient vector

x ∈ RN where N is the filter order. The filter output at

the nth instant is y (n) = a(n)Tx, where vectors a(n) =[
u (n) u (n− 1) · · · u (n−N + 1)

]T
are formed by

the input signal u (n).
We seek an estimate of the filter coefficient vector such that

the output signal is a good estimate of the desired (measured)

signal s (n). The mean-squared error (MSE) is a common

criterion for determining how good y (n) approximates d (n)
and by this criterion, the optimal solution is the solution of

the Wiener-Hopf equation

Φx = p

where Φ = E
{
a(n)a(n)T

}
is the autocorrelation of the filter

input signal (E {·} denotes the expectation operator), and, p =
E
{
a(n)s (n)

}
is the cross correlation vector.

We shall now discuss the minimal residual properties of

several adaptive filtering algorithm for estimating the Wiener

solution.

A. The Normalized Least Mean Square (NLMS) Algorithm as
a One-Dimensional Minimal Residual Method

The Normalized Least Mean Square (NLMS) update equa-

tion is given by

x(k+1) = x(k) + μ
1

ε+
∥∥a(k)∥∥2

2

a(k)e(k) (3)

where e(k) = d (k)−a(k)Tx(k) is the instantaneous error at the

kth instant. This equation is obtained by updating the approxi-

mate solution along the direction of the instantaneous residual

vector a(k)e(k) with a normalized stepsize of μ

ε+‖a(k)‖2

2

, and

b(k) = Φ(k)d(k) = (a(k)a(k)T )a(k)e(k) =
∥∥∥a(k)∥∥∥2

2
a(k)e(k)

It is straightforward to show that, when μ = 1 and ε = 0,(
p(k) − Φ(k)x(k+1)

)T

b(k) = 0

which is the orthogonality condition that minimizes the instan-

taneous residual 2-norm∥∥∥a(k)e(k)∥∥∥2
2
=

∥∥∥a(k)s (k)− (
a(k)a(k)T

)
x
∥∥∥2
2

Another interesting observation is that, when μ = 1 and

ε = 0, x(k+1) is the exact solution to the instantaneous normal

equation
(
a(k)a(k)T

)
x = a(k)s (k). Moreover,

a(k)
(
a(k)Tx(k+1) − s (k)

)
= a(k)ẽ(k) = 0 (4)

where ẽ(k) is the aposteriori error. Thus from (4), it is

implied that the NLMS algorithm forces the aposteriori error

to zero (one step termination). Of course, in finite arithmetic

environment, this will not be achieved, so the parameter μ
will serve as an acceleration parameter to control speed of

convergence (a regularization parameter ε is also required for

increased stability).

B. The Affine Projection Algorithm (APA) as a Multi-
Dimensional Minimal Residual Method

The Affine Projection algorithm (APA) in its standard

form updates the coefficient vector based on Pprevious input

vectors such that

x(k+1) = x(k) + α
(k)
1 a(k) + α

(k)
2 a(k−1) + · · ·+ α

(k)
P a(k−P+1)

= x(k) + V (k)y(k)

(5)

where

V (k) =

⎛
⎝ | | |

a(k) a(k−1) · · · a(k−P+1)

| | |

⎞
⎠

y(k) =

⎛
⎜⎜⎜⎜⎝

α
(k)
1

α
(k)
2
...

α
(k)
P

⎞
⎟⎟⎟⎟⎠

To minimize the residual 2-norm square∥∥∥r(k)∥∥∥2
2
=

∥∥∥p(k)P − Φ
(k)
P x(k)

∥∥∥2
2

where

p
(k)
P = V (k)s(k), Φ

(k)
P = V (k)V (k)T

s(k) = (s (k) , s (k − 1) , . . . , s (k − P + 1))
T
,

the following (multidimensional) orthogonality condition is

imposed, (
r̃(k)

)T

Φ
(k)
P V (k) = 0 (6)

where r̃(k) = p
(k)
P − Φ

(k)
P x(k+1) = r(k) − Φ

(k)
P V (k)y(k).

Condition (6) insists that r(k+1) is orthogonal to the span of{
Φ

(k)
P a(k), . . . ,Φ

(k)
P a(k−P+1)

}
.

By using the fact that r(k) = V (k)
(
s(k) − V (k)Tx(k)

)
=

V (k)e(k), followed by some simplification, Eqn. (6) leads to

V (k)y(k) =
(
Φ

(k)2
P

)−1

Φ
(k)
P r(k)

=
(
Φ

(k)2
P

)−1

Φ
(k)
P V (k)e(k)

(7)

Substituting for V (k)y(k) in (5) gives rise to

x(k+1) = x(k) +
(
Φ

(k)2
P

)−1

Φ
(k)
P V (k)e(k)

= x(k) +
(
V (k)V (k)T

)−1
V (k)e(k)

The more common form of the APA coefficient vector update

equation is

x(k+1) = x(k) + μ
(
V (k)V (k)T + εI

)−1

V (k)e(k)
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where μ and ε are the acceleration and regularization pa-

rameters respectively, for controlling rate of convergence and

stability in finite arithmetic environment.

C. Recursive Least Squares (RLS) Method with Refinement as
a N -dimensional Minimal Residual Method with Euclidean
Unit Vectors as Direction of Search

Consider the N dimensional minimal residual method for

minimizing
∥∥p− Φx(k+1)

∥∥2
2
, where the directions of search

are the Euclidean unit vectors

êi = [0, . . . , 1, . . . , 0]
T
, i = 1, . . . , N

with 1 appearing in the ith place. Thus

x(k+1) = x(k) +
N∑
i=1

α
(k)
i êi = x(k) + y(k)

The stepsize vector y(k) is calculated by insisting that(
p− Φx(k+1)

)T
Φy(k) =

(
r(k) − Φy(k)

)T
Φy(k) = 0,

(the orthogonality condition). For a symmetric n × n matrix

Φ, the procedure above gives rise to an auxiliary system of

linear equations in y(k) of the form Φ2y(k) = Φr(k).
We shall now apply the procedure above to the exponentially

weighted least squares problem which is the objective function

used for the Recursive Least Squares (RLS) method, i.e.,

min
x∈RN

Jn (x) =

n∑
i=1

λn−i
(
a(i)Tx− s (i)

)2

(8)

where the constant λ ∈ [0, 1] is the forgetting factor. Note

that the solution to the minimization problem in (8) is also a

solution to the following normal system,

Φ(n)x = p(n) (9)

where

Φ(n) =

n∑
i=1

λn−ia(i)a(i)T

and

p(n) =
n∑

i=1

λn−ia(i)s (i)

Thus, applying the N dimensional minimal residual method

with Euclidean unit vectors as the search directions on the

normal equation (9) at the kth instant, leads to the auxiliary

problem

Φ(k)2y = Φ(k)r(k) (10)

where r(k) = p(k)−Φ(k)x(k). Eqn. (10) has the exact solution

y(k) = Φ−1r(k) ( which is unique when Φ(k)2 is nonsingular).

In other words,

r̃(k) = p(k) − Φ
(
x(k) +Φ−1r(k)

)
= r(k) − r(k) = 0 (11)

Now, it is possible to update Φ(n) and p(n) recursively [7]

through the formulas,

Φ(n) = λΦ(n−1) + a(n)a(n)T (12)

p(n) = λp(n−1) + a(n)s (n) (13)

By applying these formulas, a recursive update for the residual

vector r(k) is also possible which is given by

r(k) = p(k) − Φ(k)x(k)

= λp(k−1) + a(k)s (k)− (
λΦ(k−1) + a(k)a(k)T

)
x(k)

= λ
(
p(k−1) − Φ(k−1)x(k)

)
+ a(k)

(
s (k)− a(k)Tx(k)

)
= λr̃(k−1) + a(k)e(k)

(14)

where e(k) = s (k) − a(k)Tx(k), is the instantaneous apriori

error between the desired signal and the adaptive filter output.

From (11),

r̃(k−1) = p(k−1)−Φ(k−1)x(k) = 0, thus Eqn. (14) is reduced

to

r(k) = a(k)e(k)

and,

y(k) = Φ(k)−1a(k)e(k) (15)

This results in an update equation for the coefficient vector of

the form

x(k+1) = x(k) +Φ(k)−1a(k)e(k) (16)

where Φ(k)−1 is updated using the matrix inversion lemma.

Equation (16) is the refined RLS method which is commonly

used as an alternative update equation for RLS [11], [12].

IV. REFINED RLS METHOD WITH TRIANGULARIZATION

In this section, we will show that the equivalence of the

auxiliary equation (10) to a triangular system. First, observe

that y(k) is chosen so that r̃(k)T
(
Φ(k)y(k)

)
= 0 which is

equivalent to

r(k)T (Φ(k)y(k))− (
Φ(k)y(k)

)T (
Φ(k)y(k)

)

= y(k)T (Φ(k)r(k) − Φ(k)2y(k)) = 0

(17)

Consider splitting the matrix Qk = Φ(k)2 as,

Q(k) = Φ(k)2 = L(k) +D(k) + U (k) (18)

where D(k) is a diagonal matrix consisting of the main

diagonal of Q(k), and, matrices L(k) and U (k) are the strict

lower and upper triangular parts of Q(k) respectively. Now,

substituting (18) into (17) leads to

y(k)T
(
Φkr

(k)
)
= y(k)T

(
L(k)y(k) +D(k)y(k) + U (k)y(k)

)
(19)

It is straightforward to see that the entries of L(k)y(k) are

given by

[
L(k)y(k)

]
1
= 0

[
L(k)y(k)

]
i
=

i−1∑
j=2

y
(k)
j

(
Φ

(k)T
i Φ

(k)
j

)
=

i−1∑
j=2

y
(k)
j Q

(k)
i,j ;

i = 2, . . . , N



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:12, 2012

1708

where Q
(k)
i,j is the entry of Q(k) in the ith row and jth column,

and, Φ
(k)
i is the ith column of Φ(k). Thus

y(k)TL(k)y(k) =

N∑
i=2

y
(k)
i

i−1∑
j=1

y
(k)
j Q

(k)
i,j

Switching the order of summation leads to,

y(k)TL(k)y(k) =
∑N

i=2 y
(k)
i

∑i−1
j=1 y

(k)
j Q

(k)
i,j

=
∑N−1

j=1 y
(k)
j

∑N
i=j y

(k)
i Q

(k)
i,j

=
∑N−1

j=1 y
(k)
j

∑N
i=j y

(k)
i Q

(k)
j,i

= y(k)TU (k)y(k)

(20)

The last line of (20) is obtained by using the fact that Q(k) =
Φ(k)2 is symmetric. Using (20), we are able to write (19) as

either,

yT
(
D(k) + 2L(k)

)
y = yTΦ(k)r(k) (21)

or,

yT
(
D(k) + 2U (k)

)
y = yTΦ(k)r(k) (22)

It is straightforward to show that solutions to the following

triangular systems,

(
D(k) + 2L(k)

)
y = Φ(k)r(k) (23)

and, (
D(k) + 2U (k)

)
y = Φ(k)r(k) (24)

are also solutions to (21) and (22) which in turn solves

(10). Moreover, (23) and (24) can be solved by forward

and backward substitution respectively. For example, forward

substitution procedure on (23) will provide the exact solution

(in exact arithmetic)

y(k) =
(
D(k) + 2L(k)

)−1

Φ(k)r(k)

and the coefficient vector update equation can be written in

the exact form which is

x(k+1) = x(k) +
(
D(k) + 2L(k)

)−1

Φ(k)r(k) (25)

thus providing a one-step solution to the normal equation

Φ(k)x = p(k).

Similarly, backward substitution procedure on (24) will result

in the update equation of the form

x(k+1) = x(k) +
(
D(k) + 2U (k)

)−1

Φ(k)r(k) (26)

It is worth noting that update equations (25) and (26) will

track the unique solution of (9) as long as Φ(k)2 is nonsingular

for all k = 1, 2, ... .

V. CONCLUSION

Our analysis in this paper has highlighted the relationship

between NLMS, APA and RLS adaptive filtering algorithms

with the minimal residual method. The NLMS is shown to

be equivalent to one dimensional minimal residual direction

search where the residual is the instantaneous residual vector

associated with the instantaneous squared error norm. Extend-

ing the search into multiple directions leads to multidimen-

sional minimal residual method. The APA is a result of setting

the search directions to P previous input vectors while the

RLS algorithm is a result of setting the search directions along

the N Euclidean unit vectors, where N is the order of the

adaptive filter and 1 ≤ P ≤ N . The minimal residual approach

has also highlighted the equivalence of the refined RLS method

with lower/upper triangular system which can be solved using

forward/backward substitution respectively. The conventional

RLS method updates the inverse autocorrelation matrix in (16)

using the matrix inversion lemma. By representing the RLS

normal equation using the triangular systems (23) or (24),

direct solution of the normal equation may be obtained without

directly computing the inverse of the autocorrelation nor will

it require the use of the matrix inversion lemma.
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