
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

475

Abstract—A model of user behaviour based automated planning

is introduced in this work. The behaviour of users of web interactive
systems can be described in term of a planning domain encapsulating
the timed actions patterns representing the intended user profile. The
user behaviour recognition is then posed as a planning problem
where the goal is to parse a given sequence of user logs of the
observed activities while reaching a final state.

A general technique for transforming a timed finite state automata
description of the behaviour into a numerical parameter planning
model is introduced.

Experimental results show that the performance of a planning
based behaviour model is effective and scalable for real world
applications. A major advantage of the planning based approach is to
represent in a single automated reasoning framework problems of
plan recognitions, plan synthesis and plan optimisation.

Keywords—User behaviour, Timed Transition Automata,
Automated Planning.

I. INTRODUCTION
N most current research works about user behaviour
modelling, several approaches focus on formalizing user

session ([1][6][8]) and user behaviour based on developing
measures[8], analysing user-action histories[7] or navigation
histories [1].

A main drawback of all these models is that they allow to
focus and reason on a single aspect of user activity, usually
patterns of actions where automata based models [4].

A planning [11,12] based approach to user behaviour
modeling would allow to introduce and model more general
issues such as goal directed behaviour (behaviours which are
characterised by the attainment of specific goals),
optimisization directed behaviour (behaviour which
minimise/maximise some given cost function), and it also
allow to better analyse and support the user activity, i.e.
anticipatory and collaborative planning.

One of the major barriers to real world application of
planning systems has been the closed world assumption
(CWA), i.e. all the state changes affecting the world state can
only be due to domain actions. On the other hand virtual
environments, such as e-learning platforms and e-commerce
environments, seem to be less sensitive to the limits of CWA

Manuscript received November 9, 2007. This work was partially supported
by the under Fondazione Cassa di Risparmio di Perugia E-studium Project
Grant.

A. Milani is with the Department of Mathematics and Computer Science,
University of Perugia, Perugia, 06100, Italy (phone: +39-075-585.5049; fax:
+39-075-585.5023; e-mail: milani@unipg.it).

S. Suriani is with the Department of Mathematics and Computer Science,
University of Perugia, Perugia, 06100, Italy (e-mail:
suriani@dipmatg.unipg.it).

because the interaction occurring in an artificial environment
can be easily and completely modelled.

In the following paragraph we will analise automata based
models for user behaviour and we will show how hey can be
modeled in the framework of numerical parameters planning
model, where more general planning and optimisation
problems can be posed. Experimental results both for
behaviour recognition and general planning problems are also
discussed.

II. TIMED AUTOMATA FOR USER BEHAVIOUR
The domain of the actions available to a user operating in a

structured interface environment (e.g. e-learning platforms,
webmail clients, content management platforms) can be easily
described by a state transaction diagram extended with time
constraints. Each action which can be performed by the user is
represented by a state transition label.

A Timed Transition Automata (TTA) [1] is a finite state
machine which is able to recognise timed words, i.e. a
sequence of pairs made by symbols over a given alphabet ∑
and time values. The pairs in the sequence can be seen as a
sequence of logs records, describing user events or actions
annotated with the time in which they occurred.

In a TTA it is possible to constrain a certain action to be
executed, i.e. a certain transition to occur, only when some
time conditions are met (e.g. submitting an online assignment
within a given interval of time). A domain automata can then
be defined for representing the legal transitions or,
equivalently, the legal sequences of actions which can occurs
in the system.

A user behaviour can be described by a timed automata
whose accepted language is a sublanguage of the domain
automata. In other words if the sequence of user actions is
parsed by the automata the corresponding user behaviour is
recognized. The use of TTA for describing user behaviour has
been proposed in [4].Please submit your manuscript
electronically for review as e-mail attachments.

A. A Sample E-learning Platform
In the following example we describe a sample e-learning

platform that can be used for the recognition of user
behaviours. The e-learning platform that we consider allows
the user to perform 7 main operations or activities: login,
lesson, quiz, assignment, chat, view, logout, and some
additional operations: main menu which allows to abandon an
activity and go back to the main menu; submit/abandon which

Modeling User Behaviour by Planning
Alfredo Milani, and Silvia Suriani

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

476

S3

S4

login
S1

S5 S6

logout
assignment

view

chat

main

 quiz, 50< tabs,
 clock1:=0 lesson,

20< tabs < 50

main

S0

abandon

submit, clock1<15

S2

E-learning Domain TTA Ed1

Fig.1 E-learning platform TTA model Ed1

respectively allow to submit the answers of a quiz, or
abandoning it without answering. The activities are not all
available at the same time, but they are subject to time and
precedence constraints. For example, the lesson activity
allows to attend an on-line lesson which begins at a given
starting time (absolute time tabs>20) and it last 30 minutes
(tabs<50); the quiz activity is enabled only if the user has
attended the lesson and it is allowed to submit the answer
within 15 minutes. The login/logout actions allow to
access/exit the platform and they have no temporal
constraints. The assignment, chat and view activities also have
no temporal constraints, but they can only be accessed from
the main menu.

This e-learning domain is represented by the following
TTA where the activities/operations are represented as arc
labels. In each state the dashed loops indicate the idle action,
i.e. the action of remaining in the current state.

Two possible user behavior models on the e-learning
domain can be represented by others TTAs as follows:
User Model ub1. In model ub1 the user, after entering the e-
learning platform (login action), can repeat the assignment
activity many times, but, in order to reach the final state S5, he
has to attend the lesson until the end for at least 25 minutes
(clock2 > 25) and after that he has to submit the answer to the
quiz.
User Model ub2. Behaviour model ub2, instead, describes a
user which chooses view for at least 15 minutes as first
activity, and then he/she can alternate view/chat without
temporal constraints before logout.

S3

login

assignment

 quiz, 50< tabs,
 clock1:=0
 clock2>25

 lesson,
20< tabs < 50
clock2:=0

main_menu

S0

S1

S5

submit, clock1<15

S4

S2

logout

User Model ub1

Fig.2 User behaviour TTA model Ub1

login

S6

view, clock1:=0

main
clock1>15

S0 S4

S0

logout

S5

chat S5

main

view

User Model ub2

Fig.3 User behaviour TTA model Ub2

A time automata recognises a user behaviour, if it parses
the timed word associated with a use history, i.e. the timed
sequence of user logs.

Let consider, for example, the following user action log
sequences, where each log record consists of a pair time
stamps and action.

Seq1:[(0,login),(10,assignment),(12,main),(2
2,lesson),(23,main),(24,lesson),(51,quiz),(6
5,submit),(70,logout)]
Seq2 : [(0,login), (3,view), (19,main),
(20,chat) (25,main), (29,chat), (35,main),
(37,view), (40,main), (41,logout)]
Seq3: [(0,logon, (5,view), (30,main),
(32,logout)]
Seq4: [(0,login), (40,lesson), (51,quiz),
(55,submit), (57,logout)]
Seq5 : [(0,login), (5,view), (30,main),
(31,assignment), (41,main) (42,logout)]

It is easy to see that sequence Seq1 is an example of user

behaviour which is recognised by TTA ub1, sequence Seq2
and Seq3 are recognized by ub2, while Seq3 and Seq5,
although a legal sequence in the sample platform domain
Ed,1 are not accepted behaviours. Seq4 violates the constraint
about lesson attendance of ub1 and it has actions
incompatible with ub2, while Seq5 contains activities of type
view and assignment which are either incompatible with ub1
or with ub2.

B. Timed Transition Automata (TTA)
Let us recall more formally some basic concepts related to

Timed Transition Automata.

Definition (Timed word). Given a finite alphabet Σ, a timed
word on ∑, is a finite sequence of pairs [(a0,τ0) …(ak,τk)]
where ai∈Σ*, τi∈ℜ for i∈[0,k] with τi ≤ τi+1 i ∈[0,k-1]

Definition (Timed Language). A timed language over an
alphabet ∑ is a subset of timed words on ∑.

Definition (Time Transition Automata). A Timed Transition
Automata (TTA) is a tuple
(∑, S, S0, C, E, F) where

• ∑ is finite alphabet,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

477

• S is a set finite of state,
• s0∈S is an initial state,
• C is a finite set of clocks,
• F ⊆S is a set of final acceptance states,
• E ⊆S×S×∑×2C×Φ(C) defines the transition table for

the automata, each transition e∈E is a 5-ple
e=<s,s’,a,Λ,δ> representing a transition from state s
to state s’ on input symbol a which can occur at a
certain time τ when clock constraint δ is verified by
the current values of clocks, the transition also resets
to 0 the subset Λ⊆C of clocks.

Clocks are used to express more easily time constraints

such as durations relative to sub patterns in the transition
diagram. Clocks are usually initialised to 0 and they are
updated as time advances.

Given a set X of clocks, the set of clock constraints Φ(X)
includes all the simple constraints conjunctions and negations
defined by δ:= x ≤ c | c ≤ x | ¬δ | δ ∧ δ where x ∈X is a clock
and c is a rational constant.

Definition (Run of Timed Transition Automata). A run of a
timed transition automata, record a sequence of legal state
transitions and the value of all the clocks when state
transitions take place, starting from an initial state s∈S0. It is
easy to see that a timed word can correspond to a consistent
run when a transition occurs at time alphabet symbol a0
described transition occurring which verified clock constraint.

Definition (Timed Language). The language L(A) accepted
by an automata A=(∑, S, S0, C, E, F) is the set of all timed
words which correspond to consistent runs of the automata
starting with the state s0 and ending with a final state sf∈F, i.e.
a timed word w=[(ai,τi)] with i∈[0,k] is also w∈L(A) if exists
a run from an s0 with each transition <s,s’,ai,λ,δ> taking place
at time instant τi and the final transition being <sf-1,sf,ak,λ,δ>
for a state sf∈F.

III. NUMERICAL PARAMETERS PLANNING MODEL
In the following we recall some basic notions about the

numerical parameters planning model which is used to
implement the TTA recognition process.

The plan synthesis problem consists in finding a sequence
of domain actions which, if executed, transform a given initial
state in a goals state. Planning systems have been widely used
to model domain where one or more deliberative actors can
modify the state of the world executing a set of predefined
available actions.

The planning model used extends the classical Boolean
planning models with the management of numerical resources
and goals, moreover effects can depend on numerical
continuous parameters of the action instance.

The semantics of the model is based on three finite sets: B,
N, and P, which respectively represent logical fluents,
numerical fluents and numerical parameters. Numerical
fluents and numerical parameters are defined in bounded real
interval domains.

Definition (State). A state is a pair of assignments s=(sB, sN)
where sB: B → {true, false} assigns truth values to logical
fluents, and sN: N → ℜ assigns real values to numerical
fluents. SB denotes the set of all possible logical assignments
and SN the set of all possible numerical assignments; finally S
denotes the set of all possible states.

Definition (Operators). An operator is defined by a triple
o=(X,π ,ε) where:

- X⊂ P are the numerical parameters of o;
- π are the preconditions of o;
- ε are the effects of o.

Preconditions π are conjunctions of literals (i.e. b or ¬b,
where b ∈ B is a logical fluent) and numerical constraints of
the form fN∪X ⊗ 0, where f is a linear function of numerical
fluents/parameters and ⊗ ∈{ <, ≤, =, ≠, ≥, > }. Effects ε are
conjunctions of literals and numerical effects (i.e.
assignments of numerical fluents of the form u := gN∪X where
u ∈ N, g is a linear function of numerical fluents/parameters).
Let O denote the set of all operators.

Definition.(Action Instance). An action instance is defined
by a pair (o, σ) where o=(X,π ,ε) is an operator and σ a
parameter assignment σ: X →ℜ. Action instance (o,σ) is said
to be executable in a state s=(sB,sN) if logical and numerical
conditions hold in s and numerical effects are consistent with
the domain bounds.

Definition.(Action Execution). If an action instance (o,σ) is
executable in a state s=(sB,sN), the result of its execution is a
state
s’=(s’B,s’N), where
for each logical fluent b ∈ B

 s’B(b) = true if b ∈ ε
 s’B(b) = false if ¬b ∈ ε
 s’B(b) = sB(b) otherwise

for each numerical fluent u ∈ N
s’N(u) = gN∪X if u:=gN∪X ∈ε
s’N(u)= sN(u) otherwise

s’ can be also denoted by γ(s, (o,σ)).

Definition (Numerical Parameterized Planning Problem).
A numerical parameterized planning problem is a tuple Σ= (B,
N, P, S, O, s0, G) where B, N, P, S, O represent boolean
fluents, numerical fluents, numerical parameters, states and
operators, and
- s0 = (s0

B, s0
N) is the initial state;

- G is a conjunction of literals and numerical constraints
defined over B∪N representing the goal.

Note that goals are defined over (B,N), i.e. goals cannot
contain any parameter symbols.

Definition (Solution Plan). A plan, i.e. a sequence of action
instances ((o0,σ0) …, (ok,σk)), is a solution plan for a planning
problem Σ= (B, N, P, S, O, s0, G) if the sequence is
executable and the goal G holds in the final state.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

478

The sequence of actions is executable when (o0,σ0) is
executable in s0 and each action instance (oi,σi) is executable
in si = γ(si-1, (oi-1,σi-1)) for each i = 1,…,k.

The goal G holds in the final state sk+1 = γ(sk, (ok,σk)), if
∀g∈G when g is a literal g=b (g=¬b) then sk

B(b)=true (sk
B

(b)=false), or when g is a numerical constraint fN∪X then fN∪X

⊗ 0 holds in sk+1.
The Numerical Parameter Planning model has been

implemented using a technique of mixed integer linear
programming (MIP) encodings [13]. The algorithm follows
the approach firstly proposed in Blackbox [12] and then
developed by many others system [14,15,16]. A planning
graph is built with logical fluents and operators ignoring the
numerical aspects of the problem, then, the planning graph is
encoded as a MIP extended to handle numerical fluents and
parameterized actions. A standard MIP solver is then used to
solve the planning problem [ILOG CPLEX].

IV. USER BEHAVIOUR RECOGNITION AS A PLANNING
PROBLEM

Since automated planning models encode state transitions,
the basic idea of our approach has been to use action to
encode TTA state transition. The TTA representing a
behaviour can be embedded by an appropriate planning
domain, where each planning action corresponds to parse a
user action in the TTA model, (i.e. corresponds to a legal TTA
transition) and user histories are represented as the initial state
of a given planning problem.

The current state of TTA is simulated by asserting/negating
appropriate fluents. Each planning action representing a TTA
transition <s,s’,ai,λ,δ> is executable only if the current
simulated state is “s”, and if a log record for “ai” exists whose
time stamp verifies the time constraints δ.

The planner can then be used to verify if the history
corresponds to a path from the initial TTA state to a final TTA
state.

A. The Planning Domain Problem
Given the TTA (∑, S, S0, C, E, F) representing a user

model, and given a sequence of logs Log, it is possible to
define a planning domain problem (B, N, P, O, s0, G) for
user model recognition problem, where:

- B={ curr_state(si), final(si), success, curr_log(li),
next(li, lj), log(11,a,t,d)} is the set of logical fluents
where si and li refer to TTA states and Log;

- N={ tabs , tλi} is the set of numerical fluents,
- P={ te } is the set of numerical parameters,
- O={A<s,s’,a,λ,δ>, A<s,s,a,λ,δ>, Idles , Af } ∀s∈S, ∀f∈F,

∀<s,s’,a,λ,δ> ∈E is the set of the operators
- G= GB∪Gδ with GB={success} is the set of literals

defined over B and Gδ ={} is the set of numerical
constraints defined over N.

Each log consists of a 4-pla log(1,a,t,d) where l is a log
sequential identifier, a is the performed action, t is the time
stamp of the starting time, and d is the time interval between
the action and the next one.

B. Fluents and TTA States
Given a TTA (∑, S, S0, C, E, F) some logical and

numerical fluents are introduced to represent states, logs,
current state, current log and logs sequence.

1) Logical Fluents
∀ s∈S, curr_state(s) logical fluent is defined in order to

represent the current state, note that these fluents are used to
represent the situation in which the TTA is currently in the
state si , the domain actions must guarantee that at most one
curr_state(s) can be true at the same time.

∀ log(1,a,t,d)∈Log a fluent log(1,a,t,d) is introduced.
∀ log(1,a,t,d)∈Log, a fluent curr_log(l), is a logical fluent

defined in order to represent the current log, similarly to
curr_state(s) only one curr_log(l) can be true at the same time
. The sequential order of the logs is represented by the fluents
next(li,lj), where li is the successor of lj in the sequence, a
special fluent curr_log(init) represents the initial situation
when no log are have been parsed yet, conversely a special
fluent curr_log(end) is used to mark the end of the log
sequence; moreover two fluents next(init,l1) and next(lk, end)
are also added accordingly.

A set of fluents finalsi, for each final state si∈F and a single
logical fluent success are also used to specify disjunctive
goals.

2) Numerical Fluents
A numerical fluent tabs is defined to represent the absolute

time as it evolves while actions are executed.
A numerical fluent tc is also introduced for each clock c∈C.
3) Initial State
The initial state of the planning problem represents the

initial state of the timed automata and the value of the clocks
and of the absolute time are initially set to 0.

curr_state(s0)= T
curr_state(si) = ⊥ ∀si∈S, i≠0 si is false in I
tabs = 0, td =0 ∀d∈δ

moreover it is also needed to represent the initial state of the
parsing process:

curr_log(init) = T
curr_log(end) = ⊥
curr_log(li) = ⊥ ∀li∈Log
finalsi = T ∀si∈F

 success = ⊥
the latter two are needed to indicate which are the final
states and the fact that the parsing is not yet successful.

C. TTA Transitions and User Logs
Appropriate actions A<s,s’,a,λ,δ>, A<s,s,a,λ,δ>, Idlesi and Asi are

introduced in the planning domain in order to represent
respectively transitions, self-referencing transitions, idle states
and the final disjunctive goal.

1) Transitions and Self-referencing Transitions
For each transition e∈E, e=<s,s’,a, Λ ,δ> of the automata

corresponding to the system log 11 at time t, where s≠s’, a
planning operator denoted by A<s,s’,a,λ,δ> or equivalently by Ae
is introduced as follows
Pre(Ae)={ curr_state(s) ∧ curr_log(11)

 ∧ next(11, 12)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

479

 ∧ log(11, a, t, d)
∧ δ ∧ tabs=t }

NumPar(Ae)={}
Eff(Ae)={ ¬ curr_state(s) ∧ ¬ curr_log(11)
 ∧ curr_state(s’) ∧ curr_log(12)

∧ (tλ:=0, ∀λ ∈ Λ)
∧ (tλ:= tλ+d, ∀s.t. λ∈C and λ∉ Λ)
∧ (tabs := tabs+d)}

where d is the duration of the action as defined in the history
sequence of user activities.

The time constraints δ are numerical constraints on the
numerical fluents corresponding to the clocks and/or the
absolute time, the constraint tabs=t enforces the requirement
that the transition in TTA take place at the time t specified by
the log.

Also note that the current state and the current log are
updated accordingly to the state transition table and to the logs
order, while absolute time is updated with action duration d
and clocks are either updated or reset to 0.

A special case is when a transition specifies the same
starting and target state, i.e. the corresponding node in the
automata graph contains a self reference loop. For each
transition

e∈E of type e=<s, s, a, Λ, δ> it is introduced an action
A<s,s,,a,Λ,δ> whose definition differs from the previous one only
in the effects, i.e. the negation of current state and the update
to the new state, ¬ curr_state(s) ∧ curr_state(s) , are omitted
from the action effects since they would lead to inconsistency.

Note that the execution of an action of type A<s,s’,a,Λ,δ> or
A<s,s,a,Λ,δ> corresponds to parse a log record as required by the
precondition log(l,a,t,d).

Parsing starts from the only one action executable in the
initial state, where curr_state(init) is true , and it follows the
order encoded by the next predicates.

2) Idling state
If the TTA model admits idling in a state, i.e. remaining in a

state while performing no action, then a special idle operator
Idlesi is added for each state si∈S of the TTA in order to
model the time flow. The possibility of being idle allows to
have gaps in the logs temporal sequence. The idle operators
have a quite simple structure since in order to be executed,
they do not require either logs to exists, or time/clock
constraints to be verified. On the other hand idle operators
contain an additional numerical parameter te which represents
the elapsed time

Pre(Idlesi)={ cur_state(si) }
NumPar(Idlesi)={ te }
Eff(Idlesi)={ (tabs := tabs+ te)

∧ ((tλ:= tλ+ te, ∀ λ∈C) }

Note that the numerical parameter te represents the idling
interval and it is used to update the absolute time as well as all
the clocks. Numerical parameters are values which are chosen
by the planner in order to instantiate the action instance.

D. TTA Final States & Planning Goals
The TTA recognizes a timed word when it reaches one of

the possible final states after parsing all the logs. In order to
model these conditions it is necessary to specify in the
planning disjunctive goals like

curr_log(end) ∧ (∨ curr_state(si) ∀ si ∈F) ,

In other words we want to know, if it is possible that the
goal state is either one of the final states curr_state(si) when
the logs are ended, i.e. when curr_log(end).

Since we assume a conjunctive planner we can specify
disjunctive goals using a well known technique [9] which
requires to introduce a set of dummy actions representing the
disjunctive goal.

For each final state, ∀si∈F, a dummy operator Asi is added
to the set of domain operator O such that:

Pre(Asi)≡{curr_state(si), final(si), curr_log(end)},
Eff(Asi)≡{ success }

where success is a logical fluent representing the end of the
user behaviour recognition process.

The fluent success is true in a state when at least one of the
possible action Asi with si∈F has been executed, i.e. a final
state has been reached (see preconditions cur_state(si),
final(si)) when parsing the last log (precondition
curr_log(end)).

V. EXPERIMENTS
The TTA to planning rules described in the previous

paragraph show that the transformation space complexity is
linear in the size of the planning domain. On the other hand is
not possible to provide a theoretical estimate for plan
synthesis time, since it strongly depends on the planner
implementation which can employ very efficient strategy
expecially for the logical fluents. In order to obtain a general
estimate of the effectiveness of the approach we have held
systematic experimental tests using PNP (Parametric
Numerical Planner), the tests are based on ub1, ub2 ans el1
domains.

PNP has been implemented in C language and performs the
graph construction phase and the encoding phase, while the
solution of the MILP system is performed by using ILOG
CPLEX. The test has been executed on Intel Pentium IV
3.00GHz with 1GB of RAM running the operating system
Linux.

The tests have been divided into three classes: positive and
negative cases for user behaviour recognition, and planning
problems in elearning domain. In particular negative cases has
been tested for different causes of recognition failure: a)
logical failure i.e. action sequences not allowed by the TTA
describing the user behaviour and b)numerical failures, action
time stamps which violates the numerical time constraint of
the TTA. The scalability of the approach has been tested with
different users histories, i.e. log sequences of increasing
length.

Finally a planning domain corresponding the TTA el1 has
been modelled to show the flexibility and expressivity, since
the problem does not require to parse any log, the fluents of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

480

type log, curr_log,and next have been removed from the
action descriptions, dummy actions and goals.

TABLE I

 POSITIVE RECOGNITION TEST FOR UB1 AND UB2 DOMAINS
Ub1 Ub2 Logs

Time Nodes Var Time Nodes Var
5 0,03 32 174 0,03 34 165
9 0,04 47 345 0,04 49 364

21 0,1 83 1083 0,09 85 1234
33 0,28 119 2253 0,2 121 2536
41 0,49 143 3273 0,34 145 3644
53 1,09 179 5163 0,63 181 5666
61 1,92 203 6663 1,01 205 7254
73 3,56 239 9273 1,74 241 9996
81 5,03 263 11253 2,26 265 12064
93 6,98 299 14583 3,49 301 15526

101 8,23 322 16711 4,55 325 18074

In figure the execution time for positive cases of ub1 and
ub2 are shown for increasing log sequence length from 5 to
101 logs per session, the increment steps of size 4 is due to the
particular form of legal log sequences for ub1 and ub2, the
table also shows the size for plangraph nodes and variables of
the linear programming system.

Fig.4 Positive Recognition Tests time for domain Ub1

0

2

4

6

8

10

5 13 21 29 37 45 53 61 69 77 85 93 10
1

logs

tim
e

The results obtained are completely satisfactory for the
three classes of tests. In particular positive user behaviour
recognition is quite efficient to be used in real time
applications, since the top sequence size of 101 log records
are fairly more than the typical user sessions, which consist of
less than ten logs, the time performance for twenty logs is
worst case not greater than 0.1 seconds. Negative tests on user
behaviour recognition were even more efficient than positive
tests, in particular it must be noted that negative test of type
a), i.e. where the sequence violates a logical constraint can be
detected very efficently in the early plangraph construction
phase, and the error detection time is proportional to the
length of the correct prefix. Negative tests of type b), i.e.
where the timed logs violate the numerical constraints, require
the execution of both phases of plangraph construction and LP
solving, these tests show an execution time which is slightly
minor than the correspondent positive test.

TABLE II
NEGATIVE RECOGNITION TEST

FOR UB1 AND UB2 DOMAINS
Ub1 Ub1 Logs

Log Num Log Num
5 0,03 0,06 0,03 0,09
9 0,03 0,06 0,03 0,09

21 0,03 0,07 0,04 0,11
33 0,06 0,12 0,06 0,18
41 0,09 0,19 0,10 0,29
53 0,18 0,38 0,20 0,58
61 0,26 0,54 0,28 0,82
73 0,47 1,00 0,53 1,53
81 0,68 1,43 0,75 2,18
93 1,11 2,30 1,19 3,49

101 1,50 3,09 1,59 4,68

The last class of tests, i.e. general planning problems based
on ed1, is not plotted since the time results are all extremely
fast, always below 0.04 seconds for all the posed problems. It
must be noted that the problems which can be defined in this
framework, belong to the class of reachability within a given
timeline, or optimal reachabilty, i.e. to built a time plan to
reach a given state with a possibly optimal cost metric. It
would be interesting to investigate in a future extension a task
planning approach similar to [10] where task goals and logical
goals can be mixed.

It should be noted that the PNP planner used in the
experiments is a general purpose one, on the other hand a
more efficient search strategy based on forward search can be
developed for log sequence regognition. Special purpose
planners could also exploit the fact that the recognition plan
length correspond to the log sequence length plus one extra
dummy action. Moreover incremental strategies can be
developed for real time application in order to support online
user behaviour recognition, i.e. anticipating the log parsing
process before the session ends and before all log records are
avaible.

VI. CONCLUSION
A planning approach to user behaviour recognition has

been introduced. The available actions occurring in a web
platform domain (such as e-learning, webmail and e-
commerce platforms), and user behaviours can be easily
described by Timed Transition Automata (TTA) i.e. state
transaction diagrams extended with time constraints. The main
idea of the proposed approach is to built a planning domain
model to encode the state transitions of TTA representing
behaviours, where each planning action corresponds to parse a
user action, i.e. corresponds to a legal TTA transition, and
user histories are represented as the initial state of a given
planning problem. The behaviour recognition problem is then
transformed into the planning problem of finding a parsing
plan for the sequence of user logs. The formal TTA to plan
transformation is proved to be correct, and it is built in the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

481

framework of a numerical parameters planning model, which
extends the classical boolean planning models with the
management of numerical resources and goals and effects can
depend on numerical continuous parameters of the action
instance.

One of the relevant advantage in using a planning approach
to user task modeling is that user behaviour recognition and
user plan optimisation problems can be modeled in a unique
framework.

Systematic experiments with PNP, a general purposes
parametric numerical planner implementation, show that the
approach if effective and scalable for user behaviour detection
as well as for goal based plan synthesis and optimisation
problems.

Future work will regard the development of special purpose
plan search techniques targeted on the logs parsing problem,
where forward search techniques seems to be a promising
extension. Incremental techniques i.e. plan construction
techniques which do not require the whole log sequence
available in advance, will be also explored.

Another line of research, which is worth to investigate,
consists in estending the proposed model with task constraints
[8] in order to directly build a planning based model of the
user behaviour without using an intermediate TTA model, and
to integrate goals oriented with task oriented behaviour
models.

REFERENCES
[1] Alur R., Dill D., “A theory of timed automata”, Theoretical Computer

Science, vol. 126, num. 2, p. 183–235, 1994.
[2] B. Berendt, M. Spiliopoulou, “Analysis of navigation behaviour in web

sites integrating multiple information systems”, The VLDB Journal, 9,
Springer-Verlag, 2000, pp. 56–75.

[3] B. Berendt, G. Stumme, A. Hotho, “Usage mining for and on the
Semantic Web”, In: H. Kargupta, A. Joshi, K. Sivakumar, & Y. Yesha
(Eds.), Data Mining: Next Generation Challenges and Future
Directions, AAAI/MIT Press, Menlo Park, CA, 2004, pp. 461-480.

[4] S. Ceri, F. Daniel, V. Demaldé, F. M. Facca, “An Approach to User-
Behavior-Aware Web Applications”, ICWE 5 Proceedings, Sydney,
Australia, Springer, 2005.

[5] R. Cooley, B. Mobasher, J. Srivastava, “Data preparation for mining
world wide web browsing patterns”, Journal of Knowledge and
Information Systems, 1(1), 1999.

[6] F. Masseglia, P. Poncelet, M. Teisseire, A. Marascu, “Web Usage
Mining: Extracting Unexpected Periods from Web Logs”, TDM 2 -
ICDM'05 Proceedings, Houston, USA, 2005.

[7] M. Mühlenbrock, “Automatic Action Analysis in an Interactive Learning
Environment”, AIED-2005 Proceedings, Amsterdam, NL, pp. 73-80.

[8] M. Teltzrow, B. Berendt, “Web-Usage-Based Success Metrics for Multi-
Channel Businesses”, WebKDD 2003 9th ACM SIGKDD Proceedings,
Washington DC, USA, 2003.

[9] Marco Baioletti, Stefano Marcugini, Alfredo Milani: Encoding Planning
Constraints into Partial Order Planners. KR98 Proceeding, 6t Int. Conf.
on Principles of Knowledge Representation and Reasoning, pp.608-616,
Morgan Kauffmann 1998, ISBN 1-55860-554-1.

[10] Marco Baioletti Stefano Marcugini, Alfredo Milani: Task Planning and
Partial Order Planning: A Domain Transformation Approach. in Lecture
Notes in Computer Science, Vol.1348, pp.52-63, Springer-Verlag,
Berlin, Germany, 1997, ISBN 3-540-64912-8.

[11] Blum, A., and Frust, M. Fast planning graph analysis. Artificial
Intelligence 90, 1-2 (1997), 279-298.

[12] Kautz, H., and Selman, B. Planning as satisfiability. In 10th European
Confernce on Artificial Intelligence (ECAI) (1992), B. Neumann, Ed.,
Wiley & Sons, pp. 360-363.

[13] Kautz, H., and Selman, B. BLACKBOX: A new approach to the
application of thorem proving to ploblem solving. In working notes of

the AIPS-98 Workshop on Planning as Combinatorial Search (1998),
pp. 58-60.

[14] Suriani, S. Numerical Parameters in Automated Planning. PhD Thesis -
Department of Mathematics and Computer Science – University of
Perugia.

[15] Wolfaman, S., and Weld, D. The LPSAT engine and its application to
resource planning. In Proc. of IJCAI-99 (!999).

[16] Vossen, T., Ball, M. Lotem, A. and Nau, D. Applying integer
programming to AI planning, Knowledge Engineering Review 16:85–
100, 2001.

[17] Van de Briel, M. and Kambhampati, S. Optiplan: Unifying ip-based and
graph-based planning. Journal of Artificial Intelligence Research 24
(2005), 919-931.

