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Abstract—A model of user behaviour based automated planning 

is introduced in this work. The behaviour of users of web interactive 
systems can be described in term of a planning domain encapsulating 
the timed actions patterns representing the intended user profile. The 
user behaviour recognition is then posed as a planning problem 
where the goal is to parse a given sequence of user logs of the 
observed activities while reaching a final state. 

A general technique for transforming a timed finite state automata 
description of the behaviour into a numerical parameter planning 
model is introduced. 

Experimental results show that the performance of a planning 
based behaviour model is effective and scalable for real world 
applications. A major advantage of the planning based approach is to 
represent in a single automated reasoning framework problems of 
plan recognitions, plan synthesis and plan optimisation. 
 

Keywords—User behaviour, Timed Transition Automata, 
Automated Planning. 

I. INTRODUCTION 
N most current research works about user behaviour 
modelling, several approaches focus on formalizing user 

session ([1][6][8]) and user behaviour  based on developing 
measures[8], analysing user-action histories[7] or navigation 
histories [1]. 

A main drawback of all these models is that they allow to 
focus and reason on a single aspect of user activity, usually 
patterns of actions where automata based models [4]. 

A planning [11,12] based approach to user behaviour 
modeling would allow to introduce and model more general 
issues such as goal directed behaviour (behaviours which are 
characterised by the attainment of specific goals), 
optimisization directed behaviour (behaviour which 
minimise/maximise some given cost function), and it also 
allow to better analyse and support the user activity, i.e. 
anticipatory and collaborative planning. 

One of the major barriers to real world application of 
planning systems has been the closed world assumption 
(CWA), i.e. all the state changes affecting the world state can 
only be due to domain actions. On the other hand virtual 
environments, such as e-learning platforms and e-commerce 
environments, seem to be less sensitive to the limits of CWA 
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because the interaction occurring in an artificial environment 
can be easily and completely modelled. 

In the following paragraph we will analise automata based 
models for user behaviour and we will show how hey can be 
modeled in the framework of numerical parameters planning 
model, where more general planning and optimisation 
problems can be posed. Experimental results both for 
behaviour recognition and general planning problems are also 
discussed. 

II. TIMED AUTOMATA FOR USER BEHAVIOUR 
The domain of the actions available to a user operating in a 

structured interface environment (e.g. e-learning platforms, 
webmail clients, content management platforms) can be easily 
described by a state transaction diagram extended with time 
constraints. Each action which can be performed by the user is 
represented by a state transition label. 

A Timed Transition Automata (TTA) [1] is a finite state 
machine which is able to recognise timed words, i.e. a 
sequence of pairs made by symbols over a given alphabet ∑ 
and time values. The pairs in the sequence can be seen as a 
sequence of logs records, describing user events or actions 
annotated with the time in which they occurred.  

In a TTA it is possible to constrain a certain action to be 
executed, i.e. a certain transition to occur, only when some 
time conditions are met (e.g. submitting an online assignment 
within a given interval of time). A domain automata can then 
be defined for representing the legal transitions or, 
equivalently, the legal sequences of actions which can occurs 
in the system. 

A user behaviour can be described by a timed automata 
whose accepted language is a sublanguage of the domain 
automata. In other words if the sequence of user actions is 
parsed by the automata the corresponding user behaviour is 
recognized. The use of TTA for describing user behaviour has 
been proposed in [4].Please submit your manuscript 
electronically for review as e-mail attachments.  

A. A Sample E-learning Platform 
In the following example we describe a sample e-learning 

platform that can be used for the recognition of user 
behaviours. The e-learning platform that we consider allows 
the user to perform 7 main operations or activities: login, 
lesson, quiz, assignment, chat, view, logout, and some 
additional operations: main menu which allows to abandon an 
activity and go back to the main menu; submit/abandon which 
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respectively allow to submit the answers of a quiz, or 
abandoning it without answering. The activities are not all 
available at the same time, but they are subject to time and 
precedence constraints. For example, the lesson activity 
allows to attend an on-line lesson which begins at a given 
starting time (absolute time  tabs>20) and it last 30 minutes 
(tabs<50); the quiz activity is enabled only if the user has 
attended the lesson and it is allowed to submit the answer 
within 15 minutes. The login/logout actions allow to 
access/exit the platform and they have no temporal 
constraints. The assignment, chat and view activities also have 
no temporal constraints, but they can only be accessed from 
the main menu. 

This e-learning domain is represented by the following 
TTA where the activities/operations are represented as arc 
labels. In each state the dashed loops indicate the idle action, 
i.e. the action of remaining in the current state. 

Two possible user behavior models on the e-learning 
domain can be represented by others TTAs as follows: 
User Model ub1. In model ub1 the user, after entering the e-
learning platform (login action), can repeat the assignment 
activity many times, but, in order to reach the final state S5, he 
has to attend the lesson until the end for at least 25 minutes 
(clock2 > 25) and after that he has to submit the answer to the 
quiz.  
User Model ub2. Behaviour model ub2, instead, describes a 
user which chooses view for at least 15 minutes as first 
activity, and then he/she can alternate view/chat without 
temporal constraints before logout. 
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Fig.2 User behaviour TTA model Ub1  
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A time automata recognises a user behaviour, if it parses 
the timed word associated with a use history, i.e. the timed 
sequence of user logs. 

Let consider, for example, the following user action log 
sequences, where each log record consists of a pair time 
stamps and action. 

 
Seq1:[(0,login),(10,assignment),(12,main),(2
2,lesson),(23,main),(24,lesson),(51,quiz),(6
5,submit),(70,logout)] 
Seq2 : [(0,login), (3,view), (19,main), 
(20,chat) (25,main), (29,chat), (35,main), 
(37,view), (40,main), (41,logout)] 
Seq3: [(0,logon, (5,view), (30,main), 
(32,logout)] 
Seq4: [(0,login), (40,lesson), (51,quiz), 
(55,submit), (57,logout)] 
Seq5 : [(0,login), (5,view), (30,main), 
(31,assignment), (41,main) (42,logout)] 

 
It is easy to see that sequence Seq1 is an example of user 

behaviour which is recognised by TTA ub1, sequence Seq2 
and Seq3  are recognized by ub2, while Seq3 and Seq5, 
although a legal sequence in  the sample platform domain 
Ed,1 are not accepted  behaviours. Seq4 violates the constraint 
about lesson attendance of  ub1 and it has actions 
incompatible with ub2, while Seq5 contains activities of type 
view and assignment which are either incompatible with ub1 
or with ub2. 

B. Timed Transition Automata (TTA) 
Let us recall more formally some basic concepts related to 

Timed Transition Automata. 
 
Definition (Timed word). Given a finite alphabet Σ,  a timed 
word on  ∑, is a finite sequence of pairs [(a0,τ0) …(ak,τk)] 
where ai∈Σ*,  τi∈ℜ for i∈[0,k] with  τi ≤ τi+1 i ∈[0,k-1] 
 
Definition (Timed Language).  A timed language  over an 
alphabet ∑ is a subset of timed words on ∑. 
 
Definition (Time Transition Automata). A Timed Transition 
Automata (TTA) is a tuple  
(∑, S, S0, C, E, F) where  
 

• ∑ is finite alphabet, 
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• S is a set finite of state, 
• s0∈S is an initial state, 
• C is a finite set of clocks, 
• F ⊆S is a set of final acceptance states, 
• E ⊆S×S×∑×2C×Φ(C) defines the transition table for 

the automata, each transition e∈E is a 5-ple 
e=<s,s’,a,Λ,δ> representing a transition from state s 
to state s’ on input symbol a which can occur at a 
certain time τ when clock constraint δ is verified by 
the current values of clocks, the transition also resets 
to 0 the subset  Λ⊆C of clocks. 

 
Clocks are used to express more easily time constraints 

such as durations relative to sub patterns in the transition 
diagram. Clocks are usually initialised to 0 and they are 
updated as time advances. 

Given a set X of clocks, the set of clock constraints Φ(X) 
includes all the simple constraints conjunctions and negations 
defined by  δ:= x ≤ c | c ≤ x |  ¬δ | δ ∧ δ where x ∈X is a clock 
and c is a rational constant. 
 
Definition (Run of Timed Transition Automata). A run of a 
timed transition automata, record a sequence of legal state 
transitions  and the value of all the clocks when state 
transitions take place, starting from an initial state s∈S0. It is 
easy to see that a timed word can correspond to a consistent 
run when a transition occurs at time alphabet symbol a0 
described transition occurring which verified clock constraint. 
 
Definition (Timed Language). The language L(A) accepted 
by an automata A=(∑, S, S0, C, E, F) is the set of all timed 
words which correspond to consistent runs of the automata 
starting with the state s0 and ending with a final state sf∈F, i.e. 
a timed word w=[(ai,τi)] with i∈[0,k] is also w∈L(A) if exists 
a run from an s0 with each transition <s,s’,ai,λ,δ>  taking place 
at time instant τi  and the final transition being <sf-1,sf,ak,λ,δ> 
for a state sf∈F. 

III. NUMERICAL PARAMETERS PLANNING MODEL 
In the following we recall some basic notions about the 

numerical parameters planning model which is used to 
implement the TTA recognition process. 

The plan synthesis problem consists in finding a sequence 
of domain actions which, if executed, transform a given initial 
state in a goals state.  Planning systems have been widely used 
to model domain where one or more deliberative actors can 
modify the state of the world executing a set of predefined 
available actions. 

The planning model used extends the classical Boolean 
planning models with the management of numerical resources 
and goals, moreover effects can depend on numerical 
continuous parameters of the action instance. 

The semantics of the model is based on three finite sets: B, 
N, and P, which respectively represent logical fluents, 
numerical fluents and numerical parameters. Numerical 
fluents and numerical parameters are defined in bounded real 
interval domains. 

Definition (State). A state is a pair of assignments s=(sB, sN) 
where sB: B → {true, false} assigns truth values to logical 
fluents, and sN: N → ℜ  assigns real values to numerical 
fluents. SB denotes the set of all possible logical assignments 
and SN the set of all possible numerical assignments; finally S 
denotes  the set of all possible states. 
 
Definition (Operators).  An operator is defined by a triple 
o=(X,π ,ε) where: 

- X⊂ P are the numerical parameters of o;  
- π  are the preconditions of o; 
- ε are the effects of o. 

Preconditions π are conjunctions of  literals (i.e. b or ¬b, 
where b ∈ B is a logical fluent) and numerical constraints of 
the form fN∪X ⊗ 0, where  f is a linear function of numerical 
fluents/parameters and ⊗ ∈{ <, ≤, =, ≠, ≥, > }. Effects ε are 
conjunctions of literals and  numerical effects (i.e. 
assignments of numerical fluents of the form u := gN∪X where 
u ∈ N,  g is a linear function of numerical fluents/parameters). 
Let O denote the set of all operators. 
 
Definition.(Action Instance). An action instance is defined 
by a pair (o, σ) where o=(X,π ,ε)  is an operator and σ a 
parameter assignment σ: X →ℜ. Action instance (o,σ)  is said 
to be executable in a state s=(sB,sN) if  logical and numerical 
conditions hold in s and numerical effects are consistent with 
the domain bounds. 
 
Definition.(Action Execution). If an action instance (o,σ) is 
executable in a state s=(sB,sN), the result of its execution is a 
state  
s’=(s’B,s’N), where  
for each logical fluent b ∈ B  

      s’B(b)  =   true    if  b ∈ ε 
      s’B(b)  =   false   if  ¬b ∈ ε 
      s’B(b)  =   sB(b)  otherwise 

for each numerical fluent u ∈ N  
s’N(u) = gN∪X      if u:=gN∪X ∈ε 
s’N(u)= sN(u)      otherwise 

s’ can be also denoted by γ(s, (o,σ)). 
 
Definition (Numerical Parameterized Planning Problem). 
A numerical parameterized planning problem is a tuple Σ= (B, 
N, P, S, O, s0, G) where B, N, P, S, O  represent boolean 
fluents, numerical fluents, numerical parameters, states and 
operators, and 
- s0 = (s0

B, s0
N) is the initial state; 

- G is a conjunction of literals and numerical constraints 
defined over B∪N representing the goal. 
 
Note that goals are defined over (B,N), i.e. goals cannot 
contain any parameter symbols. 
 
Definition (Solution Plan). A plan, i.e. a sequence of action 
instances ((o0,σ0) …, (ok,σk) ), is a solution plan for a planning 
problem Σ= (B, N, P, S, O, s0, G) if  the sequence is 
executable and the goal G holds in the final state. 
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The sequence of actions  is executable when  (o0,σ0) is 
executable in s0 and each action instance (oi,σi) is executable 
in si = γ(si-1, (oi-1,σi-1)) for each i = 1,…,k. 

The goal G holds in the final state sk+1 = γ(sk, (ok,σk)), if 
∀g∈G when g is a literal g=b (g=¬b) then sk

B(b)=true (sk
B 

(b)=false), or when  g is a numerical constraint fN∪X  then fN∪X 

⊗ 0 holds in sk+1. 
The Numerical Parameter Planning model has been 

implemented using a technique of mixed integer linear 
programming (MIP) encodings [13]. The algorithm follows 
the approach firstly proposed in Blackbox [12] and then 
developed by many others system [14,15,16]. A planning 
graph is built with logical fluents and operators ignoring the 
numerical aspects of the problem, then, the planning graph is 
encoded as a MIP extended to handle numerical fluents and 
parameterized actions. A standard MIP solver is then used to 
solve the planning problem [ILOG CPLEX]. 

IV. USER BEHAVIOUR RECOGNITION AS A PLANNING 
PROBLEM 

Since automated planning models encode state transitions, 
the basic idea of our approach has been to use action to 
encode TTA state transition. The TTA representing a 
behaviour can be embedded by an appropriate planning 
domain, where each planning action corresponds to parse a 
user action in the TTA model, (i.e. corresponds to a legal TTA 
transition) and user histories are represented as the initial state 
of a given planning problem. 

The current state of TTA is simulated by asserting/negating 
appropriate fluents. Each planning action representing a TTA 
transition <s,s’,ai,λ,δ>  is executable only if the current 
simulated state is “s”, and if a log record for “ai” exists whose 
time stamp verifies the time constraints δ. 

The planner can then be used to verify if the history 
corresponds to a path from the initial TTA state to a final TTA 
state. 

A. The Planning Domain Problem 
Given the TTA (∑, S, S0, C, E, F) representing a user 

model, and given a sequence of logs Log, it is possible to 
define a planning domain problem  ( B, N, P, O, s0, G) for 
user model recognition problem, where:  

- B={ curr_state(si), final(si), success, curr_log(li), 
next(li, lj), log(11,a,t,d)} is the set of logical fluents 
where si and li refer to TTA states and Log; 

- N={ tabs , tλi} is the set of numerical fluents, 
- P={ te } is the set of numerical parameters, 
- O={A<s,s’,a,λ,δ>, A<s,s,a,λ,δ>, Idles , Af } ∀s∈S, ∀f∈F, 

∀<s,s’,a,λ,δ> ∈E  is the set of the operators 
- G= GB∪Gδ with GB={success} is the set of literals 

defined over B and Gδ ={} is the set of numerical 
constraints defined over N. 

Each log consists of a 4-pla  log(1,a,t,d)  where l is  a log 
sequential identifier, a is the performed action, t is  the time 
stamp of the starting time, and d is the time interval between 
the action and the next one. 
 

B. Fluents and TTA States 
Given a TTA (∑, S, S0, C, E, F) some logical and 

numerical fluents are introduced to represent states, logs, 
current state, current log and logs sequence. 

1) Logical Fluents 
∀ s∈S, curr_state(s) logical fluent is defined in order to 

represent the current state, note that these fluents are used to 
represent the situation in which the TTA is currently in the 
state si , the domain actions must guarantee that at most one 
curr_state(s) can be true at the same time. 

∀ log(1,a,t,d)∈Log a fluent log(1,a,t,d)  is introduced.  
∀ log(1,a,t,d)∈Log,  a fluent curr_log(l), is a logical fluent 

defined in order to represent the current log, similarly to 
curr_state(s) only one curr_log(l) can be true at the same time 
. The sequential order of the logs is represented by the fluents 
next(li,lj), where li is the successor of lj in the sequence, a 
special fluent curr_log(init) represents  the initial situation 
when no log are have been parsed yet, conversely a special 
fluent curr_log(end) is used to mark the end of the log 
sequence; moreover two fluents next(init,l1) and next(lk, end) 
are also added accordingly. 

A set of fluents finalsi, for each final state si∈F and a single 
logical fluent success are also used to specify disjunctive 
goals. 

2) Numerical Fluents 
A numerical fluent tabs is defined to represent the absolute 

time as it evolves while actions are executed. 
A numerical fluent tc is also introduced for each clock c∈C. 
3) Initial State 
The initial state of the planning problem represents the 

initial state of the timed automata and the value of the clocks 
and of the absolute time are initially set to 0. 

curr_state(s0)=  T 
curr_state(si) = ⊥  ∀si∈S,  i≠0  si is false in I 
tabs  = 0, td =0 ∀d∈δ   

moreover it is also needed to represent the initial state of the 
parsing process: 

curr_log(init) = T 
curr_log(end) = ⊥ 
curr_log(li) = ⊥  ∀li∈Log 
finalsi = T  ∀si∈F 

 success = ⊥ 
the latter two are needed to indicate which are the final 
states and the fact that the parsing is not yet successful. 

 
C. TTA Transitions and User Logs 
Appropriate actions A<s,s’,a,λ,δ>, A<s,s,a,λ,δ>, Idlesi and Asi are 

introduced in the planning domain in order to represent 
respectively transitions, self-referencing transitions, idle states 
and the final disjunctive goal. 

1) Transitions and Self-referencing Transitions 
For each transition e∈E, e=<s,s’,a, Λ ,δ> of the automata 

corresponding to the system log 11  at time t, where s≠s’, a 
planning operator denoted by A<s,s’,a,λ,δ> or equivalently by Ae 
is introduced as follows 
Pre(Ae)={ curr_state(s) ∧ curr_log(11)  

 ∧ next(11, 12) 
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 ∧ log(11, a, t, d)  
∧ δ  ∧  tabs=t } 

NumPar(Ae)={} 
Eff(Ae)={ ¬ curr_state(s)  ∧ ¬  curr_log(11) 
        ∧  curr_state(s’) ∧  curr_log(12) 

∧ (tλ:=0, ∀λ ∈ Λ) 
∧ (tλ:= tλ+d, ∀s.t. λ∈C and λ∉ Λ) 
∧ (tabs := tabs+d )} 

where d is the duration of the action as defined in the history 
sequence of user activities. 
 

The time constraints δ are numerical constraints on the 
numerical fluents corresponding to the clocks and/or the 
absolute time, the constraint tabs=t enforces the requirement 
that the transition in TTA take place at the time t  specified by 
the log. 

Also note that the current state and the current log are 
updated accordingly to the state transition table and to the logs 
order, while absolute time is updated with action duration d 
and clocks are either updated or reset to 0. 

A special case is when a transition specifies the same 
starting and target state, i.e. the corresponding node in the 
automata graph contains a self reference loop. For each 
transition 

e∈E of type e=<s, s, a, Λ, δ> it is introduced an action 
A<s,s,,a,Λ,δ> whose definition differs from the previous one only 
in the effects, i.e. the negation of current state and the update 
to the new state, ¬ curr_state(s) ∧ curr_state(s) , are omitted 
from the action effects since they would lead to inconsistency. 

Note that the execution of  an action of type A<s,s’,a,Λ,δ> or 
A<s,s,a,Λ,δ> corresponds to parse a log record as required by the 
precondition  log(l,a,t,d).  

Parsing starts from the only one action executable in the 
initial state, where curr_state(init) is true , and it follows the 
order encoded by the next  predicates. 

 
2) Idling state 
If the TTA model admits idling in a state, i.e. remaining in a 

state while performing no action, then a special idle operator  
Idlesi is added for each state si∈S of the TTA in order to 
model the time flow. The possibility of being idle allows to 
have gaps in the logs temporal sequence. The idle operators 
have a quite simple structure since in order to be executed, 
they do not require either logs to exists, or time/clock 
constraints to be verified. On the other hand idle operators 
contain an additional numerical parameter te which represents 
the elapsed time  

 
Pre(Idlesi )={ cur_state(si) } 
NumPar(Idlesi)={ te } 
Eff(Idlesi )={     (tabs := tabs+ te )  

∧ ((tλ:= tλ+ te, ∀ λ∈C) } 
 

Note that the numerical parameter te represents the idling 
interval and it is used to update the absolute time as well as all 
the clocks. Numerical parameters are values which are chosen 
by the planner in order to instantiate the action instance. 
 

D. TTA Final States & Planning Goals 
The TTA recognizes a timed word when it reaches one of 

the possible final states after parsing all the logs. In order to 
model these conditions it is necessary to specify in the 
planning disjunctive goals like  

curr_log(end) ∧ (∨ curr_state(si) ∀ si ∈F) , 
 

In other words we want to know, if it is possible that the 
goal state is either one of the final states curr_state(si) when 
the logs are ended, i.e. when curr_log(end). 

Since we assume a conjunctive planner we can specify 
disjunctive goals using a well known technique [9] which 
requires to introduce a set of dummy actions representing the 
disjunctive goal. 

For each final state, ∀si∈F, a dummy operator Asi  is added 
to the set of domain operator O  such that: 

Pre(Asi)≡{curr_state(si ), final(si), curr_log(end)},      
Eff(Asi)≡{ success }   

where success  is a logical fluent representing the end of the 
user behaviour recognition process. 

The fluent success is true in a state when at least one of the 
possible action Asi with si∈F has been executed, i.e. a final 
state has been reached (see preconditions cur_state(si ), 
final(si)  ) when parsing the last log (precondition 
curr_log(end)). 

V. EXPERIMENTS 
The TTA to planning rules described in the previous 

paragraph show that the transformation space complexity is 
linear in the size of the planning domain. On the other hand is 
not possible to provide a theoretical estimate for plan 
synthesis time, since it strongly depends on the planner 
implementation which can employ very efficient strategy 
expecially for the logical fluents. In order to obtain a general 
estimate of the effectiveness of the approach we have held 
systematic experimental tests using PNP (Parametric 
Numerical Planner), the tests are based on ub1, ub2 ans el1 
domains. 

PNP has been implemented in C language and performs the 
graph construction phase and the encoding phase, while the 
solution of the MILP system is performed by using ILOG 
CPLEX. The test has been executed on Intel Pentium IV 
3.00GHz with 1GB of RAM running the operating system 
Linux. 

The tests have been divided into three classes: positive and 
negative cases for user behaviour recognition, and planning 
problems in elearning domain. In particular negative cases has 
been tested for different causes of recognition failure: a) 
logical failure i.e. action sequences not allowed by the TTA 
describing the user behaviour and b)numerical failures, action 
time stamps which violates the numerical time constraint of 
the TTA. The scalability of the approach has been tested with 
different users histories, i.e. log sequences of increasing 
length.  

Finally a planning domain corresponding the TTA el1 has 
been modelled to show the flexibility and expressivity, since 
the problem does not require to parse any log, the fluents of 
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type log, curr_log,and  next have been removed from the 
action descriptions, dummy actions and goals. 

 
TABLE I 

 POSITIVE RECOGNITION TEST FOR UB1 AND UB2 DOMAINS 
Ub1 Ub2 Logs 

Time Nodes Var Time Nodes Var 
5 0,03 32 174 0,03 34 165 
9 0,04 47 345 0,04 49 364 

21 0,1 83 1083 0,09 85 1234 
33 0,28 119 2253 0,2 121 2536 
41 0,49 143 3273 0,34 145 3644 
53 1,09 179 5163 0,63 181 5666 
61 1,92 203 6663 1,01 205 7254 
73 3,56 239 9273 1,74 241 9996 
81 5,03 263 11253 2,26 265 12064 
93 6,98 299 14583 3,49 301 15526 

101 8,23 322 16711 4,55 325 18074 
 

In figure the execution time for positive cases of ub1 and 
ub2 are shown for increasing log sequence length from 5 to 
101 logs per session, the increment steps of size 4 is due to the 
particular form of legal log sequences for ub1 and ub2, the 
table also shows the size for plangraph nodes and variables of 
the linear programming system. 

 

Fig.4 Positive Recognition Tests time for domain Ub1 
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The results obtained are completely satisfactory for the 
three classes of tests. In particular positive user behaviour 
recognition is quite efficient to be used in real time 
applications, since the top sequence size of 101 log records 
are fairly more than the typical user sessions, which consist of 
less than ten logs, the time performance for twenty logs is 
worst case not greater than 0.1 seconds. Negative tests on user 
behaviour recognition were even more efficient than positive 
tests, in particular it must be noted that negative test of type 
a), i.e. where the sequence violates a logical constraint can be 
detected very efficently in the early plangraph construction 
phase, and the error detection time is proportional to the 
length of the correct prefix. Negative tests of type b), i.e. 
where the timed logs violate the numerical constraints, require 
the execution of both phases of plangraph construction and LP 
solving, these tests show an execution time which is slightly 
minor than the correspondent positive test. 

TABLE II 
NEGATIVE RECOGNITION TEST  

FOR UB1 AND UB2 DOMAINS 
Ub1 Ub1 Logs

Log Num Log Num 
5 0,03 0,06 0,03 0,09 
9 0,03 0,06 0,03 0,09 

21 0,03 0,07 0,04 0,11 
33 0,06 0,12 0,06 0,18 
41 0,09 0,19 0,10 0,29 
53 0,18 0,38 0,20 0,58 
61 0,26 0,54 0,28 0,82 
73 0,47 1,00 0,53 1,53 
81 0,68 1,43 0,75 2,18 
93 1,11 2,30 1,19 3,49 

101 1,50 3,09 1,59 4,68 
 

The last class of tests, i.e. general planning problems based 
on ed1, is not plotted since the time results are all extremely 
fast, always below 0.04 seconds for all the posed problems. It 
must be noted that the problems which can be defined in this 
framework, belong to the class of reachability within a given 
timeline, or optimal reachabilty, i.e. to  built a time plan to 
reach a given state with a possibly optimal cost metric. It 
would be interesting to investigate in a future extension a task 
planning approach similar to [10] where task goals and logical 
goals can be mixed. 

It should be noted that the PNP planner used in the 
experiments is a general purpose one, on the other hand a 
more efficient search strategy based on forward search can be 
developed for log sequence regognition. Special purpose 
planners could also exploit the fact that the recognition plan 
length correspond to the log sequence length plus one extra 
dummy action. Moreover incremental strategies can be 
developed for real time application in order to support online 
user behaviour recognition, i.e. anticipating the log parsing 
process before the session ends and before all log records are 
avaible. 

VI. CONCLUSION 
A planning approach to user behaviour recognition has 

been introduced. The available actions occurring in a web 
platform domain (such as e-learning, webmail and e-
commerce platforms), and user behaviours can be easily 
described by Timed Transition Automata (TTA) i.e. state 
transaction diagrams extended with time constraints. The main 
idea of the proposed approach is to built a planning domain 
model to encode the state transitions of TTA representing 
behaviours, where each planning action corresponds to parse a 
user action, i.e. corresponds to a legal TTA transition, and  
user histories are represented as the initial state of a given 
planning problem. The behaviour recognition problem is then 
transformed into the planning problem of finding a parsing 
plan for the sequence of user logs. The formal TTA to plan 
transformation is proved to be correct, and it is built in the 
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framework of a numerical parameters planning model, which 
extends the classical boolean planning models with the 
management of numerical resources and goals and effects can 
depend on numerical continuous parameters of the action 
instance. 

One of the relevant advantage in using a planning approach 
to user task modeling is that user behaviour recognition and 
user plan optimisation problems can be modeled in a unique 
framework. 

Systematic experiments with PNP, a general purposes 
parametric numerical planner implementation, show that the 
approach if effective and scalable for user behaviour detection 
as well as for goal based plan synthesis and optimisation 
problems. 

Future work will regard the development of special purpose 
plan search techniques targeted on the logs parsing problem, 
where forward search techniques seems to be a promising 
extension. Incremental techniques i.e. plan construction 
techniques which do not require the whole log sequence 
available in advance, will be also explored. 

Another line of research, which is worth to investigate, 
consists in estending the proposed model with task constraints 
[8] in order to directly build a planning based model of the 
user behaviour without using an intermediate TTA model, and 
to integrate goals oriented with task oriented behaviour 
models. 
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