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Abstract—In this work, are discussed two formulations of the 

boundary element method - BEM to perform linear bending analysis 
of plates reinforced by beams. Both formulations are based on the 
Kirchhoff's hypothesis and they are obtained from the reciprocity 
theorem applied to zoned plates, where each sub-region defines a 
beam or a slab. In the first model the problem values are defined 
along the interfaces and the external boundary. Then, in order to 
reduce the number of degrees of freedom kinematics hypothesis are 
assumed along the beam cross section, leading to a second 
formulation where the collocation points are defined along the beam 
skeleton, instead of being placed on interfaces. On these formulations 
no approximation of the generalized forces along the interface is 
required. Moreover, compatibility and equilibrium conditions along 
the interface are automatically imposed by the integral equation. 
Thus, these formulations require less approximation and the total 
number of the degree s of freedom is reduced. In the numerical 
examples are discussed the differences between these two BEM 
formulations, comparing as well the results to a well-known finite 
element code. 

 
Keywords—Boundary elements, Building floor structures, Plate 

bending. 

I. INTRODUCTION 
HE boundary element method (BEM) has already proved 
to be a suitable numerical tool to deal with plate bending 

problems. The method is particularly recommended to 
evaluate internal force concentrations due to loads distributed 
over small regions that very often appear in practical 
problems. Moreover, the same order of errors is expected 
when computing deflections, slopes, moments and shear 
forces. Shear forces, for instance, are much better evaluated 
when compared with other numerical methods. They are not 
obtained by differentiating approximation function as for 
other numerical techniques.  

Using BEM coupled with the finite element method (FEM) 
is the natural numerical procedure to analyze plate reinforced 
by beams, where the BEM is used to represent the plate 
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elements and the FEM to approximate the beam elements. 
Regarding this numerical technique several formulations have 
already been proposed ([1]-[4]), where the BEM formulation 
is based either on Kirchhoff’s or Reissner’s hypothesis. 
However, for complex floor structures the number of degrees 
of freedom may increase rapidly diminishing the solution 
accuracy.  

Recently Fernandes and Venturini [5] proposed two 
formulations based only on the BEM to perform bending 
analysis of plates reinforced by beams. In the present work are 
shown new applications of these two BEM formulations, 
comparing the results to a well-known finite element code. 
The formulations are based on Kirchhoff’s hypothesis, being 
the building floor modelled by a zoned plate where each sub-
region represents a beam or a slab. This composed structure is 
treated as a single body, being the equilibrium and 
compatibility conditions automatically taken into account. The 
tractions were eliminated along the interfaces, reducing 
therefore the number of degrees of freedom. In the first model 
the values are defined along the interfaces and on the external 
boundary. Then in order to reduce further the number of 
degrees of freedom some approximations for the 
displacements were made along the beam width, leading to the 
second model where the values are defined along the beams 
skeleton lines and on the external boundaries without beams. 

 

II. BASIC EQUATIONS 
Without loss of generality, let us consider the three sub-

region plate depicted in Fig. 1, where t1, t2 and t3 are the sub-
regions thicknesses. The sub-regions are referred to a 
Cartesian system of co-ordinates with axes x1, x2 and x3 
defined in their middle plane. The plate sub-domains assumed 
as isolated plates are denoted by 1Ω , 2Ω  and 3Ω , with 
boundaries 1Γ , 2Γ  and 3Γ , respectively. Alternatively, when 
the whole solid is considered, Γ  gives the total external 
boundary, while jkΓ  represents interfaces, for which the 
subscripts denote the adjacent sub-regions (see Fig. 1). 
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Fig. 1 a) Middle surface view a) General zoned plate domain 

 
For this plate, considering the Kirchhoff’s hypothesis (see 

[6]-[9]), the following basic relationships are defined: 
- Equilibrium equations in terms of internal forces: 

 
0qijij =−,m                           (1) 
0gq ii =+,                                       (2) 

 
where g is the distributed load acting on the plate middle 
surface, mij are bending and twisting moments, while qi 
represents shear forces, with subscripts taken in the range 
i,j={1, 2}. 

- The plate bending differential equation, 
 

0gm ijij =+,                                    (3) 

or  

),,(, 21ji
D
gw iijj ==                      (4) 

 
where )/( 23 1EhD ν−=  is the flexural rigidity and ww 2

iijj ∇=, , is 
the Laplacian operator.  

- The generalised internal force × displacement relations, 
 

( )ijkkijij w1wDm ,)(, ννδ −+−=                 (5) 

jjii Dwq ,−=                              (6) 
 

- The effective shear force, 
 

smqV nsnn ∂∂ /+=                                   (7) 
 

where (n, s) are the local co-ordinate system, with n and s 
referred to the boundary normal and tangential directions, 
respectively; no summation is implied. 

The problem definition is then completed by assuming the 
following boundary conditions over Γ : ii uu =  on 1Γ  
(generalised displacements, deflections and rotations) and 

ii pp =  on 2Γ  (generalised tractions, normal bending 
moment and effective shear forces), where ΓΓΓ =∪ 21 .  
 

III. INTEGRAL REPRESENTATIONS 
Both formulations are obtained from Betti’s reciprocal 

theorem which for a particular sub-region 
mΩ  can be written 

in terms of efforts as follow: 
 

Ω
Ω

dmw m
jk

m
jk

m

∫ *, = Ω
Ω

dwm m
jk

m
jk

m

,*∫                      (8) 

 
where no summation is implied on m. 

For convenience the fundamental value of curvature will be 
written in terms of the one related to the sub-region where is 
placed the source point q.  

 
[ ] ** ,/, jkm

m
jk wDDw =                      (9) 

 
where Dm is related to sub-region Ωm; the value D refers to the 
sub-region where q is placed. 

Considering (9) and applying (8) for all sub-regions, one 
obtains the bending reciprocity relations for the whole plate 
(see [5]), which can be integrated by parts to give the 
following integral representations of deflection: 
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where the subscripts b and a refers, respectively, to the beam 
sub-region and its adjacent sub-region, Nint is the number of 
interfaces; n and s are the local normal and shear direction co-
ordinates; c1, c2 and c3 are different kinds of corners (for their 
definitions and their corresponding free term values see 
Fernandes and Venturini [5]); Ωg is the plate loaded area; 
K(q)=1, K(Q)=0.5 and K(Q)=0.5(1+Da/D), respectively, for 
internal, boundary and interface points. 

Equation (10) corresponds to the first model, being defined 
four values on the boundary: w, w,n; Mn and Vn and two 
displacements: w and w,n along interfaces. So that, to obtain 
the problem solution the nodes must be defined along the 
interfaces and all external boundaries. Note that the tractions 
were eliminated on the interfaces. 

In order to obtain the second model, let us now consider the 
beam B3 represented in Fig. 2a by the sub-region Ω3. In order 
to reduce the number of degrees of freedom, some Kinematic 
hypothesis will be assumed along the beams cross sections, 
where we have adopted constant approximation for the 
rotation and linear for the deflection (see Fig. 2b). Thus the 
interface displacement vector related to the beam interfaces 
are translated to the skeleton line, as follows: 

 
2bwww 3n

32 /,+=Γ                             (11a) 
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where b3 is the beam width , ij
ku Γ  and ijwΓ  are displacement 

components along the interface 
31Γ  and 

32Γ ; ku , w  nku ,  and 
w,n are components along the skeleton line. 
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Fig. 2 a) Reinforced plate view; b) Deflection approximations along 

interfaces 
. 

Replacing (11) into (10), the problem values are defined 
along the beam axis, instead of its boundary. So the required 
number of nodes necessary to solve the problem is strongly 
reduced. Note that the integrals are still performed on the 
interfaces. As the collocation points are defined on the 
skeleton line, there is no problem of singularities. Observe 
that the integral representation of w,n is easily obtained by 
differentiating (10). 

 

IV. ALGEBRAIC EQUATIONS 
As usual, for any BEM formulation, the integral 

representation (10) and the ones written to compute internal 
forces can be transformed into algebraic expressions after 
discretizing the boundary and interfaces into elements. For the 
present case, one has adopted linear elements over which the 
boundary values have been approximated by quadratic shape 
functions.  

For the first model, the set of equations is obtained by 
writing two deflection equations (10) for each boundary node 
(one at an external collocation point very near to the boundary 
and another one at a point placed on the boundary) plus one 
deflection equation and one slope equation written at 
interfaces nodes. For the second model we write two 
deflection equations on the external boundary without beams 
plus one deflection and one slope equation at nodes on the 
skeleton line. Note that an extra relation of deflection at each 
corner is also required for both models. After performing the 
element integrals, the algebraic set of equations reads: 

 
TGPHU +=                       (12) 

 
where U contains deflection and rotation nodal values, while 
P contains boundary node tractions; T is the independent 
vector due to the applied loads. 
 

V. NUMERICAL APPLICATIONS 
For both examples presented in this section the results have 

been compared with a well-known finite element code 
(ANSYS, version 9). It is important to stress that the structural 
system modelled by BEM and FEM are not exactly the same 

and therefore the results can be only similar. For the FEM 
analysis finite shell elements have been used to discretize all 
floor slabs as well as the beams. Using BEM we have treated 
the whole body as a solid, therefore without splitting the plate 
and the beams; beams are inclusions in the whole body.  

In what follows (BEM - IN) refers to the first model where 
the nodes are defined on the interfaces; (BEM - BAN) refers 
to the second model where the nodes are defined on the beam 
axis and (FEM) is related to the ANSYS analysis for simple 
bending case. For both BEM models were considered two 
discretizations to confirm the results convergence. 

Note that because of the approximations assumed for the 
displacements along the beams cross sections, the model 
(BEM – BA) is more rigid than (BEM – I), that is why we 
expect smaller displacements for (BEM – BA). Observe also 
that for the model (BEM – BA) the elements defined at beam 
extremities and coincident to the beam width are automatically 
generated by the code, so that there is no need of defining 
them. 

A. Simple Stiffened Plate 
In this first example it will be considered the stiffened plate 

depicted in Fig. 3, where three sides are free (Vn=Mn=0.0) 
while the other one is fixed (w=w,n=0.0) (see Fig. 3b). 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 a) Stiffened Plate view, b) plate middle surface 

 
A distributed load of 0.4kN/cm2 is applied on the whole 

surface of the structure. Young’s modulus E=27000kN/cm2 
and Poisson’s ratio ν=0.2 were adopted. The results for 
displacements and moments will be computed along the local 
axis x’1, x’2 and xs defined in Fig. 3b. 

The poorest discretization adopted for the model (BEM – I) 
had 114 nodes and 52 elements (8 elements on each interface, 
1 element along the boundary that defines the beam width and 
8 elements along the remaining boundary sides), as shown in 
Fig. 4; the finer mesh had 100 elements giving the total 
amount of 210 nodes. Considering the model (BEM – BA), 
for the poorest mesh one has defined 48 elements (12 
elements on each beam axis plus 12 elements on the boundary 
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not coincident to the beam width) requiring 100 nodes (see 
Fig. 4b); 196 nodes and 96 elements have been considered for 
the finer discretization. Note that despite the discretizations 
adopted for the model (BEM – I) have almost the same 
number of elements of the corresponding one adopted for the 
model (BEM – BA), the last ones are much finer.  

 
 

 
 
 
 
 
 
 

 
 
Fig. 4 Boundary Discretizations a) Model (BEM – I) b) Model (BEM 

– BA) 
 

Note that as the lines with displacements prescribed are 
coincident for both BEM models, we expect bigger 
differences in the numerical results only in the x1 direction 
because of the approximations assumed for the displacements 
along the beam width, in the model (BEM – BA).  

It is interesting to point out that except for the moments 
computed along the x’1 axis considering the model (BEM – I) 
(see Fig. 5), there was no significant difference between the 
results obtained with the poorer and the finer meshes.  
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Fig. 5 Moment (M11) in the plate, along x’1 axis 

 
Figs. 6 and 7 show, respectively, the deflection and the 

moment with respect to direction x2 along x’2 axis defined in 
the plate (see Fig. 3b).  
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Fig. 6 Deflection in the plate, along x’2 axis 
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The displacements and moments with respect to direction x2 

along the Xs axis defined in the beam (see Fig 3b) are 
displayed in Figs. 8 and 9. 
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Fig. 8 Deflection along the beam axis 
 
Figs. 10 and 11 show, respectively, the deflection and the 

moment with respect to direction x1 along x’1 axis defined in 
the plate (see Fig. 3b). 
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Fig. 11 Moment (M11) in the plate, along x’1 axis 

B. Reinforced Building Floor 
This example deals with a more complex building floor 

structure, defined by five beams and two plate regions as 
shown in Fig. 12.  
 
 

 
 

 
 
 
 
 
 

 
 

Fig. 12 Building floor structure 
 

The plate thickness is equal to ph =8.0cm and for the beams 
B1 and B2 we have adopted height Bh =25.0cm while 

Bh =15.0cm has been assumed for B3, B4 and B5. It has been 
adopted Young's modulus E=25000kNc/m2, Poisson’s ratio 
ν=0.25 and a distributed load of 0.03kN/cm2 applied over the 
whole plate surface. 

All plate sides are simply supported, but it is important to 
point out that in the model (BEM – I) the values w=Mn=0 are 
prescribed along the plate external boundary while in the 
model (BEM – BA) they are prescribed along the beam axis. 
Therefore this example should present bigger differences 
between the numerical results, being smaller the 
displacements obtained for the model (BEM – BA). In the 
ANSYS analysis we have considered two simulations: (FEM–
BA) and (FEM-EB). In the first analysis the deflection has 
been prescribed null along the external beam axis, while in the 
second one w was adopted null on the external boundary.  

The deflection and moments are computed along the axis 
x’1 and xs, defined, respectively, in the middle of the bottom 
slab and on the B4 axis (see Fig. 12). 

For the (BEM – I) model we have considered one mesh 
with 122 nodes and 50 elements (see Fig. 13a) and another 
one containing 202 nodes and 90 elements. The poorest 
discretization adopted for the (BEM – BA) model contains 42 
quadratic elements, resulting into 93 nodes defined along the 
beams axes (see Fig. 13b); 173 nodes and 82 elements have 
been considered in the finer mesh.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
 
 

Fig. 13 Boundary discretizations a) Model (BEM – I)  b) Model 
(BEM – BA) 

 
For both models there was no significant difference 

between the two adopted meshes, excepted for the moment 
along B4 axis, mainly for the (BEM–I) model (see Fig. 14). 
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 Fig. 14 Moment Mss along  B4 axis 
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Fig. 15 Deflection in the plate, along x’1 axis 
 

-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5

0 50 100 150 200 250 300 350 400
X'1 (cm)

M
11

(k
N

.c
m

/c
m

)

BEM - BA

BEM - I

FEM - BA

FEM - EB

Fig. 16 Moment (M11) in the plate, along x’1 axis 
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The deflection and moment with respect to x1 direction, 
along the x’1 axis are displayed in Figs. 15 and 16. Figs. 17 
and 18 show, respectively, deflection and moment with 
respect to s direction along B4. axis. Note that the results 

obtained for (BEM – I) compare very well with those referred 
to (FEM –EB), as well as the ones related to (BEM – BA) are 
similar to the ones computed considering (FEM – BA). 
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VI. CONCLUSION 
Two formulations of the boundary element method - BEM 

to perform linear bending analysis of plates reinforced by 
beams have been discussed. The numerical results of both 
BEM models compare very well with those obtained 
considering a well-known finite element code. The advantage 
of the model (BEM BA) with respect to (BEM-I) is the 
reduction of the number of degrees of freedom and the 
simplification of the required mesh as well. For the (BEM-
BA) model we have obtained the convergence results with 
poorer meshes if compared with the (BEM – I) model. As 
expected, the displacement obtained for (BEM – BA) were 
smaller than the ones computed with the model (BEM – I). 
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