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Abstract—Traditionally, VLSI implementations of spiking 

neural nets have featured large neuron counts for fixed computations 
or small exploratory, configurable nets. This paper presents the 
system architecture of a large configurable neural net system 
employing a dedicated mapping algorithm for projecting the targeted 
biology-analog nets and dynamics onto the hardware with its 
attendant constraints. 
 

Keywords—Large scale VLSI neural net, topology mapping, 
complex pulse communication. 

I. INTRODUCTION 
LSI implementations of pulse coupled neural nets aimed 
at exploring various computational aspects of biological 

neural nets have so far mainly explored two avenues: 
On the one hand, networks have been created with simple 

dynamics and fixed, repetitive network structures with very 
little flexibility, but relatively high neural element count [1], 
[2]. The processing function(s) of these nets have been 
determined a priori, emulating cut-outs from biological 
structures and operations, either to analyze/understand these 
functions or use them in technical application. The limited 
flexibility of these designs relegates them to large-scale proof-
of-concept of a certain functionality, while further exploration 
of said functionality necessitates an IC redesign. 

The other avenue of exploration consists of IC's employing 
complex topologies and neuron/synapse dynamics with 
attendant large configuration memories. These have been 
relegated to small nets (100-1000 neurons, <10k Synapses), 
even if the hardware has been designed such as to permit the 
linking of several chips [3],[4]. These nets are primarily used 
for exploring network and element behavior, and as a 
supplement/complement to software-based neuro-simulators. 
The scientific target of confirming or analyzing data or 
behavioral models delivered by the neuro-theoretic or 
neurobiology community is the main objective in this case. 
Because of the full individual reconfigurability of 
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neuroelements on the IC (i.e. synapses, neurons) and the low 
element count (permitting full connectivity among all 
elements via flexible electronic axons and dendrites), the 
transfer of net topologies and element configuration is trivial 
from an organizational/structural point of view. The only 
challenge for these ICs would be to project biology-centric 
neuro-variables such as membrane potential, conduction 
delays, leakage terms, adaptation constants, etc to their 
electronic representations on the IC. 

The work presented in [5] is a step towards a kind of system 
achieving a synthesis of both approaches, with large element 
count and flexible, yet hardware-constrained configuration. 
However, the element count could still be improved, and more 
complex synapse and neuron dynamics realized. 

In this paper, we present a system architecture currently 
under development that will allow very large (>1e6 neurons, 
>1e9 synapses) reconfigurable networks to be built, in the 
form of interlinked Dies on a single wafer. Hardware 
constraints are identified and a description of the mapping 
software is given which is needed to faithfully reproduce 
biological network structures with their attendant plasticity in 
VLSI. The efficacy of the mapping algorithm is documented 
via a few samples of the topology mapping. 

The complete system will be used as a research tool for 
exploring various computational paradigms as postulated from 
neurobiological evidence.  

II. SYSTEM DESCRIPTION 
If we want to keep the flexibility and configurable network 

dynamics of complex nets needed to explore new 
computational properties on VLSI chips, but also extend the 
processing to very large nets, some compromise has to be 
achieved between reconfigurability and VLSI hardware 
constraints.  

Hardware design is generally constrained by the available 
resources, especially chip area. Considering a small hardware 
implementing 103 neurons with 103 synapses each requires a 
crossbar with 103x106 switches and configuration memory of 
10MBit to allow full flexibility. For implementation, already 
this small example is not feasible and the proposed hardware 
is implementing orders of magnitude more neural elements.  

Hardware constraints in general encompass the following: 
  

1)  not enough configuration memory for neuro-elements, so 
this memory has to be shared, with synapses/neurons 
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having similar parameters grouped around this shared 
memory. 

2) not enough configuration memory and IC space for 
electronic axons and dendrites, so a full network 
connectivity cannot be achieved.  

3) the dynamics of neurons and synapses have to be 
achieved using less IC space, which inherently speeds up 
operation of these elements (e.g. smaller integration 
capacitors), so any analysis circuits and the 
supply/biasing backbone of such an IC would have to be 
that much faster 

4) the increased speed of these elements also leads to 
increased communication bandwidth (both intra-chip and 
off chip for analysis and linking of IC's) 

 
The FACETS hardware platform is proposed for a 1M 

neurons implemented on several interconnected wavers. The 
wavers are not diced but used completely by connecting the 
individual reticles on the wafer by wafer scale interconnect. 
The reticles consist of configurable analogue network core 
ASIC´s, which finally encompass the neurons, synapses and 
connection structures. Each neuron in this system connects in 
average to 1k other neurons via plastic synaptic links. The 
research undertaken at TU Dresden is to design the systems 
communication backplane, the hardware systems simulation 
and the configuration of the system together with the 
necessary benchmarks.  

A. Communication Architecture  
The Analogue Network Core - ANC of which a schematic 

can be seen in Fig. 1 forms the basic element of the FACETS 
Architecture.  

 
Fig. 1 ANC Schematic 

 

The logical architecture of the FACETS system 
communication is a resource constrained three layered 
structure.  

The smallest configuration units of the system are Synapse-
Neuron Groups directly linked together with a so called layer 
0 connections. Around the analog core elements, the 
communication layer 1 of multiplexed continuous-time 
connections is implemented as ring bus structure.  

 

 
Fig. 2 Structural view of the L0/L1 communication 

 
Layer 1 connections can be directed over die boundaries to 

adjacent ANCs and to the interface of communication layer 2. 
Layer 2 communication, configuration and general backplane 
is provided by a PCB backplane situated above the wafer. 
This backplane contains dedicated ASICs designed for 
interfacing with the ANCs, so called Digital Network Chips 
(DNCs). Fig. 3 will provide an overview of the concept. 
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Fig. 3 Waferscale system overview 

 
Layer 2 connections are used for long range connection to 

distant ANCs using a time discretized events-within-a-packet 
based protocol. The implementation of Layer 2 is utilizing 
high speed serial LVDS links also designed by the TU 
Dresden research group.  

The three different layers can be distinguished by their 
communication paradigms and different constraints. The 
number of routings via a specific layer will be constraint by a 
limited number of connections per layer and the load 
dependency of those connections. 

 
TABLE I 

COMMUNICATION LAYER DESCRIPTION 

Layer Type Description  

0 continuous-time, 
analog direct 
connection 

Dendritic compartments and their 
respective synapse groups are linked via 
configurable analog current connections 
to form compartmental neurons. 

1 continuous-time, 
multiplexed 

Main backbone of pulse communication, 
multiplexed asynchronous digital pulse 
communication. Load independent due to 
static routed connections, with a slight 
chance of pulse loss for colliding events. 
Connections to adjacent ANC’s within a 
certain range of die ‘hops’ can be routed 
over this layer. 

2 discrete, packed 
based 

The number of connections is limited by 
the load capacity of the channels. In this 
case the activity of the routed connections 
determines the number of routable 
channels. Used also for external 
communication with/analysis of network. 

 

B. Neural Elements 
The synapses will be similar to [5] i.e. they will realize an 

STDP learning rule which can be modified via digital look-

up-tables (LUT) to realize additive, multiplicative and power-
law weight updates [6]. The parametrizable form of the weight 
update also makes it possible to let the synapses behave in a 
BCM-like fashion. Fast synaptic adaptations also form part of 
the plasticity available on the synapses [7]. Supervisor input 
or steered learning can be achieved via externally governed 
weight changes or forcing the neuron to fire at selected points 
in time [8].   

The Hodgkin-Huxley-derived conductance-based IF-
neurons [5] are implemented as sections of a dendrite, which 
can be connected in series from 4 to 64 dendritic 
compartments, with the spike traveling along the 
compartments via an analog bus. 

 

 
Fig. 4 One single ANC cell 

 
As seen in Fig. 4, a sub-block of the ANC is composed of 

an array of 256 synapse groups, each consisting of 256 
individual synapses. In turn, four synapse group are connected 
to a dendrite section, so the minimum number of synapses per 
neuron is 1024. The maximum number of synapses per neuron 
is 16384 if 16 dendritic compartments are connected in series. 
This range of neuronal fan-in is comparable to average 
cortical neurons [9]. The synapse groups share the LUT and 
the parameter storage, so only synapses with similar targeted 
behavior should be mapped on a single group. The pre- and 
postsynaptic time measurement and the synapse weight, 
however, are independent, so their dynamic time course is 
distinct for each synapse. Every synapse is configured for a 
single presynaptic neuron, whose output pulses are transmitted 
via the communication architecture as described above. 

C. Mapping 
The major problem that arises from the hardware-

constraint-driven flexibility reduction is the mapping of 
experimental neural networks on the hardware resources. The 
task is to place and route given neurons and synapses to a 
configurable neuronal STDP array and to optimize the 
synaptic connections. Different connection routings influence 
the faithfulness of biology-reproduction, as well as the overall 
number of routable connections. In other words the routing 
should be done with a minimum of channels, as close to target 
parameters of a neural net (i.e. synapse and neuron adaptation 
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behaviour, delays, etc) as possible and with a minimum of 
routing costs. 

III. MAPPING SOFTWARE 

A. Mapping & Optimization Procedure  
The mapping and optimization procedure is done in three 

steps with rising granularity. Note, steps do not correspond to 
the different layers. The configuration of the system itself can 
be defined as mapping task, whereas the optimization is a 
multi objective search for least cost mapping. The different 
optimization objectives are as follows: 

 
5) To minimize the routing costs 
6) To come as close as possible to the given network 

parameters. For this, maximum deviations from these 
target parameters have to be established 

7) To use as little ANC´s as possible, that is to concentrate 
as much neurons as possible together. 

8) To route connections with higher load over load 
independent Layers. 

9) To route connections with a higher probability first (for 
probabilistic network descriptions 

 
Basically, the algorithm maps the logical neurons of any given 
net to the physical neurons on the system, connects them 
according to the network topology and creates a matrix which 
reflects the connections over the complete system as show in 
the simplified example in Fig. 5. Different target functions 
apply for the granularity steps, as outlined below. 
 

1) Step 1 – Hyper Global 
For the uppermost mapping step, centering on the wafer-

level system, the target is to concentrate as much synapses as 
possible on single wafers (i.e. squares on the main diagonal in 
the connection matrix), inter-wafer communication has to be 
reduced. All synapses realized between neurons on different 
wafers have the same penalty, reflecting the packet-based, all-
to-all communication architecture between the wafers.  
 

 

Fig. 5 Simple example of mapping a network to a connection matrix 
representation and optimization by reordering 

As seen in the above example, a reordering in the 
assignment of neurons to a wafer can result in reduced 
connection density between the wafers. 

The number of s-permutations, or variations #VAR which 
is the number of possible configurations without recurrences 
for a given number of neurons #MAX_NRN in a neural 
network to the number of physically available neurons 
#PHY_NRN can be calculated with: 

 

PHY_NRN)!MAX_NRN-## (
MAX_NRN)!(## =VAR  (1) 
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Fig. 6 Variations in [dB] for a 64 NRN array 

 
So the Complexity of the problem makes it obviously 

impossible to probe all the possible ordering variations of the 
connection matrix as can be seen in Fig. 5 as number of 
variations without recurrences on a 64 NRN array with 
increasing net size, showing a linearized exponential growth. 

Different heuristic algorithm and Sparse Matrix reordering 
algorithms like Reverse Cuthill McKee [1] where tested which 
yield up to 10% improvement in relative connection density 
for global routing on a network generated with uniform 
distribution of synaptic connections with 5 to 15 % connection 
density. On structured nets with a more regular structure, 
however, the same effort results in significantly higher 
optimization (Fig. 8). 

 
2) Step 2– Global 
The matrix can then be split up into sub blocks representing 

the single wavers to proceed to the next mapping step. In this 
step, the neurons are assigned to individual ANC’s on the 
wafer, which are interconnected via post-processing 
waferconnects executed between single dies on the wafer. 
Here, the ordering of the ANCs also becomes an issue, i.e. the 
communication paths between dies cannot be treated as equal, 
as was the case for inter-wafer paths. The next figure gives an 
example of this: 
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Fig. 7 37 ANCs on a single die, with nearest-neighbour, and 

longitudinal and diagonal single-hop Layer1 communication marked 

 
If we take the system of Layer1 busses connecting the 

ANCs on the wafer, it is evident that a direct connect between 
two adjacent ANCs uses less bus resources than a extended 
connect which crosses one ANC. So this has to be taken into 
account for the mapping target in the global step. As a 
example for the global mapping step, Fig. 8 presents a 
simplified, layered, feed forward V1 according to [9] of 2500 
neurons with 300k synapses.  

 
Fig. 8 Mapping example on part of a single wafer for a V1-analog 

network, initial V1 net (a), sorted with Reverse Cuthill McKee 
algorithm (b), GA reordering applied (c), and superimposed 

connection structure (d) 

 
The above figure starts out with the initial V1 net as derived 

from [6], where a Reverse Cuthill McKee [10] reordering is 
shown to be insufficient for the task (b) due to the large 
number of outliers, caused by the feedforward-nature of the 
network (lower triangular structure) and the feedback 
pyramidal cells. A Travelling-Salesman GA is applied to the 
problem in (c), managing to center a substantial part of the 
feedforward connections on the center diagonal. Finally, in (d) 
the connection structure of the wafer is superimposed, with 

the different gray levels corresponding to the Layer1 
connections between the ANCs as denoted in Fig. 7. 
Projecting the synapse connections on the different Layer1 
connections gives feedback for the hardware development (i.e. 
where do bottlenecks develop?) and results in an approximate, 
high-level configuration of the hardware system for a given 
net. This approximate configuration is then passed on to the 
next step to reach a fine-granular, detailed configuration for 
each single ANC. 

The next benchmark uses a less structured net generated 
from the low granularity, stochastic V1 model description 
given in [11]. On the hardware side, this benchmark is based 
on a generic waver-scale architecture, with 2 wavers, 4 
ANCs/waver and 125 neurons/ANC, realizing a biological 
network with 1000 neurons and 135651 synapses. The 
effectiveness of the mapping algorithm can be seen from the 
following table, which gives percentages of total synapses 
realized via the different communication layers before and 
after application of the mapping. 
 

TABLE II 
MAPPING PERFORMANCE AS PER CENTAGE OF TOTAL SYNAPSES 

 Layer 1 Waferscale Layer 2 
Initial Network 12.5 37.5 50.0
After Mapping 21.2 48.2 30.6

 
In general, the mapping algorithm achieves the most 

improvement for highly structured nets, such as cortical 
structures. It can still improve evenly connected networks 
somewhat, but is of course limited by the underlying entropy 
of the network structure. The above table gives results for an 
interim benchmark, which uses a layered V1 structure, but 
does not take into account any distance information between 
neurons, such as a decrease in connection probability with 
increase in the distance between neurons. Best mapping 
results can be obtained for a network with detailed structure 
such as the one in Fig. 8, which employs macro- as well 
micro-scale cortical geometry information. 

 
3) Step 3– Local 
The local optimization concentrates on single ANC´s. After 

finishing the basic partitioning in Step 2, the resulting 
connection matrix can again be split up into sub blocks 
representing single ANC’s with the central part of connections 
inside the ANC itself and the vertical and horizontal part of 
outgoing and incoming connection of the selected the ANC. 
The available routing resources consist of Layer 1 and Layer 0 
connections. Prior to optimisation, a first iteration is done by 
selecting connections with minimum costs until available 
resources are exhausted. The following iterations use the 
matrix swap algorithm as described above to reduce the local 
costs, and after convergence returns to global mapping with 
either successful mapping or with connections that could not 
be mapped. Global optimisation is then relocating those 
connections for a next local optimisation run.  

Successful local mapping also generates the hardware 
configuration data which can be loaded onto the final 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

149

 

 

hardware to create the hardware representation of the original 
network. 

IV. DATA HANDLING 
To give an overview of the amount of data and the 

complexity of the problem to be solved a short insight into 
implementation task shall be given. A rough estimation of the 
amounts of data to be handled shall lead to the problems to be 
solved in future work. 

Taken as example a simple matrix, containing only the 
information on existing synaptic connections and utilizing a 
single bit to represent a connection a complete matrix will 
have ~1.2GByte. Alternatively a List representation storing 
only the nonzero elements (given above with a 100k Neurons 
x  1k synapses/per neuron) and the Elements x-y-matrix-index 
accordingly (which will need 17 bits per element assuming a 
100k matrix) the list will need ~0.4GByte. 

Although the latter gives a memory effort reduction by 2/3, 
the data handling becomes more difficult. A comparison of the 
effort accessing one element of the matrix vs. its list 
representation, utilizing an a priori classification of the costs 
and types of commands and their costs according to clock 
cycles and so on lead to the result that the cost of a list access 
are ~20 times the costs of the matrix access. 

Due to memory limitations we decided at the moment for 
the List representation, accepting the longer processing time. 

V. CONCLUSION/ SUMMARY 
We have presented a design effort targeted at implementing 

configurable large-scale neural networks in VLSI. This 
hardware will be used for confirming and extending 
simulation efforts on V1 and other mammalian cortex areas. 
Because of the faster network execution time for similar 
network sizes compared to software simulations (where state-
of-the-art for 8*106 neurons and 5*109 synapses is execution 
in biological real time), developmental plasticity processes can 
be studied in detail. 

A mapping software has been described which closes the 
gap between the hardware-constrained waferscale-system and 
biology-derived neural networks, matching up constraints 
such as (biological) axonal delays and (hardware) pulse 
routing delays, ensuring faithful reproduction of network 
behaviour. 

During the next project steps we will gain precise 
information on the technology constraints and limits through 
research carried out in parallel on the hardware side. A first 
communication prototype was designed and is momentarily 
under fabrication. 

A further step is to parallelize the optimization algorithms 
using POSIX Threads. Research is to be carried out on a two 
Opteron Dual Core Multi Processor system running on Linux. 
combining a locally threads and globally MPI model. 

More effort will be expanded on the optimization 
algorithms, especially the application of multi-objective 
genetic algorithms for Hyper Global search which can be 

parallelized following the island model in [12]. 
The mapping will be extended to concentrate on further 

optimization parameters besides the communication, e.g. 
delays, pulse loss probability, etc. 
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