
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:5, No:12, 2011

1756

Abstract—In this paper, we address the problem of reducing the

switching activity (SA) in on-chip buses through the use of a bus

binding technique in high-level synthesis. While many binding

techniques to reduce the SA exist, we present yet another technique for

further reducing the switching activity. Our proposed method

combines bus binding and data sequence reordering to explore a wider

solution space. The problem is formulated as a multiple traveling

salesman problem and solved using simulated annealing technique.

The experimental results revealed that a binding solution obtained

with the proposed method reduces 5.6-27.2% (18.0% on average) and

2.6-12.7% (6.8% on average) of the switching activity when compared

with conventional binding-only and hybrid binding-encoding

methods, respectively.

Keywords—low power, bus binding, switching activity, multiple

traveling salesman problem, data sequence reordering

I. INTRODUCTION

YNAMIC power is proportional to Ptrans · CL · Vdd
2

· fclock,

where Ptrans is the probability of an output transition (also

referred to as the switching activity), CL is the load capacitance,

Vdd is the supply voltage, and fclock is the frequency of the

system clock. In low-power high-level synthesis, it is usually

effective to reduce the switching activity (referred to as SA) in

functional units, buses, and registers without degrading the

circuit performance. Some conventional low power methods to

reduce the SA include scheduling, binding, data sequence

reordering, and data encoding techniques [1]-[9].

An existing data sequence reordering technique is outlined in

Refs. [6, 7], where the problem is formulated using the

well-known Travelling Salesman Problem (TSP) and solved

through the application of a greedy method. One data encoding

technique is bus invert coding [9], where data is sent inverted or

non-inverted depending on which mode leads to the least

number of transitions. Conventional bus binding and data

encoding techniques can be effectively combined.

The first hybrid technique to combine bus binding and data

encoding with bus invert coding was proposed by Sankaran et

al. [10], who proposed a technique for combining bus binding,

bus-invert encoding, and bit-line re-ordering primarily for

minimizing the crosstalk-induced switching activity between

Jihyung Kim is with the System LSI Division, Samsung Electronics Co. Ltd.,

Yongin, Korea, and with Sungkyunkwan University, Suwon. Korea (e-mail:

kim_ji_hyung@samsung.com, johnny71@skku.edu).

Taejin Kim is with the System LSI Division, Samsung Electronics Co. Ltd.,

Yongin, Korea (e-mail: taejinkim@samsung.com).

Sungho Park is with the System LSI Division, Samsung Electronics Co. Ltd.,

Yongin, Korea (e-mail: sh603.park@samsung.com).

Jun-Dong Cho is a corresponding author, and with Sungkyunkwan

University, Suwon, Korea (e-mail: jdcho@skku.edu).

bit-lines in a bus during high-level synthesis. Bit-line

re-ordering switches bit-lines in order to reduce crosstalk [3].

However, they did not consider the switching of the data

sequence between control steps, but instead considered only

bus line reordering within a control step to reduce the crosstalk

between bit lines. If the exchange of data between control steps

is considered, the quality of the binding solution can be

improved.

Motivated by this fact, we compared previous methods with

the technique proposed in this paper under the same

experimental conditions (the results are given in Section IV).

To the best of our knowledge, this is the first attempt to

combine bus binding with data sequence reordering in order to

reduce the switching activity in on-chip buses.

The contributions of this work can be summarized as

follows:

1) The spectrum of the solution space was increased by

combining data reordering with bus binding. We also

formulated the problem using the multiple TSP (mTSP) [11]

and solved the mTSP using simulated annealing .

2) When data reordering was applied to bus binding,

conventional bus binding did not resolve the problem of data

dependency in a data flow graph. However, we successfully

implemented a data reordering technique by taking advantage

of line buffer logic without sacrificing throughput.

We demonstrated that the overhead on the line buffer logic is

small and thus, the proposed technique can be used in practical

applications.

II.PROBLEM DEFINITION

Fig. 1 shows a scheduled DFG of differential equation solver

where variables x’ and y’ are cyclic variables, and are denoted

as x and y in the next iteration instance of the loop, respectively.

We assume that a scheduled data flow graph (DFG) is given

as an input, and the technique of minimizing switching activity

is applied to bus binding. Bit width of each variable is 16.

Conventionally, many researches pay attention to the

problem of minimizing total switching activity (TSA) that is the

summation of SA in each bus group, that is,

TSA = (k of buses) SA
k

(1)

where, SA
k
(x, y) denote the expected number of bit lines on bus

k that toggle when data transfers x and y are successively

implemented on the bus, and SA
k

is the sum of all SA
k
(·) for

every pair of consecutive data transfers on bus k [2].

Extended Low Power Bus Binding

Combined with Data Sequence Reordering
Jihyung Kim, Taejin Kim, Sungho Park, and Jun-Dong Cho

D

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:5, No:12, 2011

1757

Fig. 1 Data flow graph of differential equation solver

Table I shows the Switching Activity Matrix, which is

obtained from simulating 100,000 random inputs to the DFG

shown in Fig. 1. For example, SA(u, t2) = 7.37 indicates that

there is an average of 7.37 bit lines out of 16 possible toggles

between data transfers u and t2.

TABLE I

SWITCHING ACTIVITIES MATRIX OF DFG IN FIG. 1
u dx 3 x y t1 t2 t3 t4 t5 t6 u1 y1 x’ y’

u 0.00 7.50 7.51 7.51 7.49 7.50 7.37 7.83 7.76 8.01 6.99 0.00 8.00 8.00 7.88

dx 7.50 0.00 7.50 7.51 7.51 7.50 7.84 7.84 7.74 7.51 8.13 7.50 7.49 8.00 8.13

3 7.51 7.50 0.00 7.49 7.50 8.26 7.83 7.83 8.26 8.24 8.12 7.51 8.26 8.00 8.12

x 7.51 7.51 7.49 0.00 7.49 8.00 5.11 7.84 7.75 8.00 8.12 7.51 8.01 8.00 8.13

y 7.49 7.51 7.50 7.49 0.00 8.00 7.84 5.11 8.00 7.50 8.00 7.49 7.82 8.00 7.50

t1 7.50 7.50 8.26 8.00 8.00 0.00 8.01 8.00 7.01 7.59 7.75 7.50 7.01 8.00 7.87

t2 7.83 7.84 7.83 5.11 7.84 8.01 0.00 7.94 7.74 8.00 8.13 7.83 8.00 8.00 8.13

t3 7.83 7.84 7.83 7.84 5.11 8.00 7.94 0.00 8.00 7.51 7.00 7.83 7.90 7.99 7.99

t4 7.76 7.74 8.26 7.75 8.00 7.01 7.74 8.00 0.00 7.50 8.01 7.76 7.34 8.12 8.00

t5 8.01 7.51 8.24 8.00 7.50 7.49 8.00 7.51 7.50 0.00 8.01 8.01 7.34 8.12 8.00

t6 6.99 8.13 8.12 8.12 8.00 7.75 8.13 8.00 8.01 8.01 0.00 6.99 7.99 7.84 7.75

u1 0.00 7.50 7.51 7.51 7.49 7.50 7.83 7.83 7.76 8.01 6.99 0.00 8.00 8.00 7.89

y1 8.00 7.49 8.26 8.01 7.82 7.01 8.00 7.90 7.34 7.34 7.99 8.00 0.00 7.99 8.01

x’ 8.00 8.00 8.00 8.00 8.00 8.00 8.00 7.99 8.12 8.00 7.84 8.00 7.99 0.00 7.88

y’ 7.88 8.13 8.12 8.13 7.50 7.87 8.13 7.70 8.00 8.01 7.75 7.88 8.01 7.88 0.00

The problem of bus binding can be formulated as in Ref.

[12].

A scheduled DFG = (O, V, C, Sf) consists of:

1) A finite set of operators, denoted as O = {o1, o2, … ,

op}.

2) A finite set of variables of operators, denoted as V = {v1, v2,

… , vq}.

3) A finite set of control steps, denoted as C = {c1, c2, … , cr}

4) A scheduling function Sf : O → C, where S(oi) = cj denotes

that the operator corresponding to oi O is scheduled at control

step cj.

Let B represent a finite set of buses, denoted as B = {b1, b2,

… , bs}, and N(vi, cj) be the number of variables vi located at

control step ci. It is assumed that the number of buses is limited

to the maximum number of variables located in one control step,

i.e., s = max {N(vi, cj)}, where j = 1, 2, …, r.

The problem of “bus binding” can now be stated as follows.

Problem of Bus Binding

Bus binding is a mapping Mf : V × C → B × C, where Mf(vi,

ck) = (bj, ck) denotes that a variable corresponding to vi V and

scheduled at control step ck is bound to bus bj B at control

step ck, V is a set of variable of operators, and B is a set of buses.

■

Fig. 2 (a) Scheduled operator table; (b) and (c) show examples of bus

bindings with different TSAs

A scheduled operator table extracted from the scheduled

DFG in Fig. 1 is shown in Fig. 2(a); two different examples of

bus bindings are shown in Fig. 2(b) and 2(c). In this DFG, four

buses are allocated to implement the input variables of ten

operators. Here, “group” denotes the specific group of bus

binding that starts at cstep 1 and ends at cstep 7.

The problem of low-power bus binding is now formally

defined as follows:

Problem of Low-power Bus Binding:

Input: A scheduled DFG = (O, V, C, Sf)

Output: Bus binding with minimum TSA

Bus Binding: Mf : V × C → B × C ■

III. THE PROPOSED HYBRID BUS BINDING METHOD

In this section, the proposed hybrid bus binding algorithm

and its logical implementation are described. The performance

of the algorithm is then evaluated.

A. Bus Binding Combined with Data Sequence Reordering

The combination of bus binding and data sequence

reordering serves to rearrange variables in a bus binding table

in two dimensional directions, as illustrated in Fig. 3. That is,

while the aim of bus binding is to locate variables to buses in

the same control step vertically, data sequence reordering

serves to arrange variables in a different control step

horizontally.

Fig. 3 Bus binding combined with data sequence reordering

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:5, No:12, 2011

1758

We formulate the problem of combining bus binding with

data sequence reordering (we refer to the problem as the

“extended low power bus binding problem”) based on a mTSP

with a fixed destination [11]. The mTSP is a generalization of

the well-known TSP, where more than one salesman is allowed

to be used in the solution. The fixed destination comes from the

fact that if multiple depots exist with a number of salesmen

located at each depot, the salesmen can return to their original

depot after completing their tour.

In our mTSP formulation, there exists a special node denoted

as the super node that corresponds to depot in the original

mTSP, as shown in Fig. 4. Each super node contains a node that

corresponds to a variable in the same control step. The node in

the super node must not be traversed more than once by the

same traveling salesman and every salesman should visit each

super node at least once. That is, each salesman at a start node is

required to visit k nodes (excluding the virtual nodes shown in

Fig. 4), k ≤ m, where m is the number of control steps, and

return to the starting node.

The cost (i.e., switching activity) assigned to each edge is

obtained from Table 1. The mTSP will determine the traveling

route so as to minimize the total switching activities acquired

by all salesmen.

The problem of extended low-power bus binding is now

formally stated as follows:

Problem of extended low-power bus binding

Instances:

1) A directed graph G = (V, E), where edge cost C(e) R

for e E.

2) Set of super nodes S = { s1, s2, … ,sr }, where r is the

number of control steps, each of which contain m

nodes, where m is the number of buses. All nodes in a

super node exist in the same control step.

3) Set of traveling salesmen, T = { t1, t2, … , tm }.

Configurations:

1) fi: E × N Z, i = 1, . . . , m, and Z = {0, 1}

That is, fi(e, n) = 1 if traveling salesman ‘i’ visits a node v

(in super node s) as an ‘n’-th destination (from the start

node) connected to edge ‘e’ among all possible edges. If

no salesmen goes along edge ‘e’, then fi(e, n) = 0.

2) gi: E × N V, i = 1, . . . , m, and N = { 0, 1, …, r }

That is, gi(e, n) = v, where traveling salesman i visits a

node v, connected to edge e, as an n-th destination. If no

salesmen goes along edge e, then gi(e, n) = NULL.

3) hi: E × N S, i = 1, . . . , m, and N = {0, 1, …, r}

That is, hi(e, n) = s, where traveling salesman i enters a

super node s, connected to edge e, as an n-th destination. If

no salesmen goes along edge e, then hi(e, n) = NULL.

Constraints:

1) Each node is to be visited by one salesman only.

For n N and i,

∑ e E fi(e, n) = 1.

For e1, e2 E, n1, n2 N and all i, j,

gi(e1, n1) ≠ gj(e2, n2) if (i ≠ j e1 ≠ e2 n1 ≠ n2)

2) Each salesman should visit a super node once.

For e1, e2 E, n1, n2 N and all i, j,

hi(e1, n1) ≠ hj(e2, n2) if n1 ≠ n2

3) All salesmen should visit the nodes in the same super

node as the next visiting nodes.

For e1, e2 E, n1, n2 N and all i, j,

hi(e1, n1) = hj(e2, n2) if (i ≠ j n1 = n2)

4) The starting node of each bus must match the ending

node of each bus.

For e E and all i,

gi(e, r-1) = sr = s1 , where r is the last control step.

Objective:

Minimize: For e E such that fi(e, n) = 1 for all i, n,

C(f) = ∑ e E C(e) ■

Fig. 4 A solution to extended low-power bus binding that solves an

mTSP for the DFG in Fig. 1 (TSA = 95.12)

A solution to the problem of extended low-power bus

binding with respect to the DFG in Fig. 1 is shown in Fig. 4.

We solved the formulated mTSP using simulated annealing.

In our extended low-power binding problem, the number of

nodes in each super node may vary due to empty nodes, which

are denoted as virtual nodes in Fig. 4.

B. Functional Implementation

The functional diagram of the DFG in Fig. 1 is shown in Fig.

5. The diagram is used to implement a binding solution by

solving the mTSP. A data reordering process is implemented by

line buffer logic. Line buffer logic receives input data and the

results generated by functional units, stores the data

temporarily in the line buffer, and finally reorders the data

sequence to resolve data dependency between data of the

previous and next control step. The stored data are loaded into

on-chip buses and multiplexed with other on-chip bus data. The

multiplexed data is then sent to functional units.

Fig. 5 Functional implementation of the DFG shown in Fig. 1

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:5, No:12, 2011

1759

The manner in which the issue of data dependency is

resolved in the proposed method is shown in Fig. 6; data flows

of the conventional method and the proposed method are

compared.

Fig. 6 Functional Data flows of conventional and proposed methods.

(a) DFG example, (b) bus binding by conventional method, (c) bus

binding by proposed method, (d) input and output data for DFG (e)

data flow by conventional method, and (f) data flow by proposed

method

The basic idea behind the proposed method is that the data

processed in the previous iteration are stored in line buffer and

used in the next iteration for the case where there is a reverse

order in the control steps.

A reduced form of the DFG in Fig. 1, redrawn for

convenience, is shown in Fig. 6(a). A binding table found by

the conventional binding method is displayed in Fig. 6(b),

while the binding table obtained with the proposed method is

shown in Fig. 6(c). In Fig. 6(c), the control steps are reordered

as 3 → 2 → 4 → 1 → 5.

Assume that the stream of input data is applied as shown in

Fig. 6(d) for five iterations. The results of the conventional

binding table for consecutive iterations are shown in Fig. 6(e);

the output (depicted with circles) is generated per iteration.

The results of the proposed binding method are shown in Fig.

6(f). In the first iteration, the variables in control steps 3, 2, and

4 cannot be processed due to data dependency. For example, to

process the operations in control step 3, we need outputs from

the previous control steps 1 and 2. Therefore, only variables in

control step 1 are processed in the first iteration and are stored

in line buffer.

In the second iteration, the variables in control step 2 can be

processed since the result of control step 1 in the first iteration

is now available in the line buffer. At the same time, new values

corresponding to the #2 input data set (shown in Fig. 6(d)) are

assigned to the input variables for control step 1. Consecutive

iterations are performed in the above manner and the first

output corresponding to the #1 input data set is obtained after

three iterations.

C.Analysis of Latency and Throughput

Due to the data reordering process, overheads such as buffer

and latency are required. In the example shown in Fig. 6, three

iterations are needed to generate the first output and thus, the

latency is three (iterations).

A comparison of the latency and throughput between the

conventional binding method and the proposed method is

shown in Fig. 7; the total number of control steps of a DFG is

assumed to be three.

The results obtained with the conventional binding method

are shown in Fig. 7(a); the latency is one (iteration) and the

throughput is one (output/iteration). The results of the proposed

method when there is no feedback variable in a DFG are given

in Fig. 7(b). For example, the DFG in Fig. 1 has feedback

variables x’ and y’. The latency and throughput for the DFG

with the given feedback variables are shown in Fig. 7(c).

In Fig. 7(b), the latency is three (iterations) and the

throughput is one (output/iteration). As such, it acts like a

pipeline process. The throughput becomes one after three

control steps because output variables, such as x’ and y’ in the

DFG of Fig. 1, are obtained at every iteration of the DFG after

the initial latency of three iterations. In Fig. 7(c), it is assumed

that the A, B, and C data sets are independent from each other,

i.e., there are no interactive paths between them. For example,

in a multi-core CPU system, a group of threads processed in

one CPU is data set A, while another group of threads

processed in another CPU is data set B. In this case, the latency

is three (iterations) and the throughput is one (output/iteration),

as in the case without feedback variables in Fig. 7(b).

In Fig. 7(b) and 7(c), the worst latency of the proposed

method is the same as the number of control steps. However, if

the sequence of the reordered index of control steps is in a

specific order, the average latency can be reduced. For example,

in the second iteration in Fig. 6(f), the remaining steps 3, 4, and

5 constitute a monotonic increasing sequence and thus, the

variables in these steps can be processed together in the third

iteration.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:5, No:12, 2011

1760

Fig. 7 Comparison of latency and throughput

IV. EXPERIMENTAL RESULT

To demonstrate the effectiveness of our solution to the

extended low-power binding problem, eight high-level

datapath synthesis benchmark circuits were used in our

experiments, as shown in Tables 2~4. These circuits are as

follows: 1)DIFF_EQ is a Differential Equator, 2)EWF is an

Elliptical Wave Filter, 3)IIR is a standard IIR filter, 4)FIR is a

standard FIR filter, 5)TFIR is a transposed-FIR filter, 6) Lattice

is a normalized Lattice filter, 7) FFT is an implementation of

Fast Fourier Transformation, and finally 8) FDCT is an

implementation of Fast Discrete Cosine Transformation. Our

proposed algorithm was implemented in C++ and executed in a

Sun Sparc64-V workstation.

A. Comparison of Total Switching Activity

A comparison of the TSA results is shown in Table 2;

BIND_LP is a heuristic binding method proposed in Ref. [4],

BIND_BI is a hybrid binding-encoding method in Ref. [10],

and BIND_DSR is the proposed method (DSR denotes data

sequence reordering).

In Table II, the number in parentheses denotes a reduction

factor to a binding solution obtained by BIND_LP. Note that

the bit ordering algorithm that was incorporated into the

original BIND_BI method is not used in this experiment so that

the binding results could be compared under the same

conditions.

The proposed method yielded a binding solution with an SA

that was 5.6-27.2% (18.0% on average) and 2.6-12.7% (6.8%

on average) lower than those of the BIND_LP and BIND_BI

methods, respectively.

TABLE II

COMPARISON OF TOTAL SWITCHING ACTIVITY (TSA)

(Initial temperature = 1.0*103 , Final temperature = 1.0*10-2 , step: T = 0.95T)

DFG

(# of

functional

units, # of

variables)

BIND_LP BIND_BI BIND_DSR

DIFF_EQ (10, 15) 126.77 98.43 (22.4%) 95.12 (25.0%)

EWF (20, 38) 310.85 251.28 (19.2%) 227.29 (26.9%)

IIR (15, 29) 182.94 162.13 (11.4%) 144.57 (21.0%)

FIR (15, 22) 174.94 169.57 (3.1%) 165.20 (5.6%)

TFIR (13, 26) 118.03 112.58 (4.6%) 107.79 (8.7%)

Lattice (20, 20) 171.23 142.84 (16.6%) 124.69 (27.2%)

FFT (24, 32) 250.87 224.12 (10.7%) 211.73 (15.6%)

FDCT (24, 32) 222.88 201.29 (9.7%) 190.56 (14.5%)

B. Buffer Logic Overhead and Latency/Throughput

An RTL code was written with Verilog hardware description

language (HDL) after obtaining a binding solution by solving

the mTSP. The RTL code was simulated with a control step of

10 ns. A comparison of the buffer logic overhead and

latency/throughput between the binding-only method and the

proposed method is shown in Table III.

TABLE III

COMPARISON OF THE BUFFER LOGIC OVERHEAD AND LATENCY/THROUGHPUT

(control step = 10 ns)

*Assumption: Independent data sets are applied to a DFG.

DFG

of

control

steps

Buffer logic

(# of F/Fs)

Latency

(us)

Throughput

(output /

iteration)

Binding-only/

Proposed

Method

Binding-only/

Proposed

Method

Binding-only/

Proposed

Method

DIFF_EQ 7 0 / 7 0.07 / 0.21 1 / 1

EWF 16 0 / 16 0.16 / 1.28 1 / 1

IIR 9 0 / 9 0.09 / 0.63 1 / 1

FIR 9 0 / 9 0.09 / 0.45 1 / 1

TFIR 10 0 / 10 0.10 / 0.80 1 / 1

Lattice 12 0 / 12 0.12 / 0.36 1 / 1

FFT 13 0 / 13 0.13 / 1.04 1 / 1

FDCT 13 0 / 13 0.13 / 0.78 1 / 1

It is assumed that there are independent data sets and the

number of the independent data sets is same as the number of

control steps. The number of flip-flops regarded as the buffer

logic overhead is also the same as the number of control steps.

All benchmark circuits are successfully implemented with the

latency and throughput, as described earlier. The latency is

equal to or smaller than (number of control steps)
2

× (control

step), while the throughput is equivalent to (number of control

steps) × (control step).

While the response time to obtain the first outcome is

delayed due to the increased latency and the area overhead

increases due to the added buffer logic, the benefit of the

reduced switching activity in low-power on-chip buses is more

critical to power consumption in an overall chip when

compared with the side effects.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:5, No:12, 2011

1761

The throughput is more important than the latency in many

applications, such as a video streaming (throughput determines

the quality of the video), microprocessors that execute millions

or billions of instructions per second, and non-recursive digital

filtering.

V.CONCLUSION

We propose an extended low-power bus binding solution

combined with the data reordering technique to reduce the total

switching activity in on-chip buses. It was shown that the bus

binding solution obtained by the proposed method has a lower

switching activity since the technique explores a wider

spectrum of solution space.

If a greater increase in the latency to obtain the first output is

permissible, a specific constraint for the mTSP formulation,

such as “the same super node as the next destination, i.e.

constraint 3,” can be released. In this case, a better binding

solution can be expected due to the exploration of a wider

solution space.

REFERENCES

[1] J. Chang and M. Pedram, “Module assignment for low power,” in Proc.

Eur. Design Automation Conf., pp. 376-381, 1996.

[2] C. Lyuh and T. Kim, “High-level synthesis for low power based on

network flow method,” IEEE Trans. VLSI, vol. 1, no. 3, pp. 309–320,

2003.

[3] C. Lyuh and T. Kim, “Coupling-Aware High-Level Interconnect

Synthesis,” IEEE Trans. Computer-aided design of integrated circuits and

systems, vol. 23, no. 1, pp. 157–164, 2004.

[4] Y. Choi and T. Kim, “An efficient low-power binding algorithm in

high-level synthesis,” IEEE Int. Symp. On Circuits and Systems, vol. 4, pp.

321-324, 2002.

[5] X. Xing and C. C. Jong, “A look-ahead synthesis technique with

backtracking for switching activity reduction in low power high-level

synthesis,” Microelectronics Journal, vol. 38, no. 4-5, pp. 595-605, 2007.

[6] M. Yoon, “Sequence-switch coding for low-power data transmission,”

IEEE Trans. on VLSI Syst., vol. 12, no. 12, pp. 1381-1385, 2004.

[7] V. Dabholkar, S. Chakravarty, I. Pomeranz, and S. Reddy, “Techniques

for minimizing power dissipation in scan and combinational circuits

during test application,” IEEE Trans. Computer-Aided Design of

Integrated Circuits and Systems, vol. 17, no. 12, pp. 1325-1333, 1998.

[8] S. K. Wong and C. Y. Tsui, “Re-configurable bus encoding scheme for

reducing power consumption of the cross coupling capacitance for deep

sub-micron instruction bus,” in Proc. DATE, vol. 1, pp. 130–135, 2004.

[9] M. R. Stan and W. P. Burleson, “Bus-invert coding for low-power I/O,”

IEEE Trans. VLSI Syst., vol. 3, pp. 49-58, 1995.

[10] H. Sankaran and S. Katkoori, “Bus Binding, Re-ordering, and Encoding

for Crosstalk-producing Switching Activity Minimization during High

Level Synthesis,” in Proc. 4th IEEE Intl. Symp. On Electronics Design,

Test & Applications, pp. 454-457, 2008.

[11] T. Bektas, “The multiple traveling salesman problem: an overview of

formulations and solution procedures,” Omega, vol. 34, no. 3, pp. 209-219,

2006.

[12] J. Kim and J. Cho, “Low power bus binding exploiting optimal

substructure,” IEICE Trans. on Fundamentals of Electronics,

Communications and Computer Sciences, vol. E94-A, no. 1, 2011.

