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Group of Square Roots of Unity Modulo n
Rochdi Omami, Mohamed Omami and Raouf Ouni

Abstract—Let n ≥ 3 be an integer and G2(n) be the subgroup
of square roots of 1 in (Z/nZ)∗. In this paper, we give an algorithm
that computes a generating set of this subgroup.
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I. INTRODUCTION

LET n ≥ 3 be an integer, recall that (Z/nZ)∗ de-
notes the group of units of the ring (Z/nZ). Let n =

pα1
1 pα2

2 . . . pαm
m the primary decomposition of n, then

(Z/nZ)∗ =
m∏

i=1

(Z/pαi
i Z)∗

for more details on the structure of (Z/nZ)∗ see [1] and [2].
The group (Z/nZ)∗ has several applications, the most
important is cryptography, that is RSA cryptosystem (see
[5]). The security of the RSA cryptosystem is based on the
problem of factoring large numbers and the task of finding
eth roots modulo a composite number n whose factors are
not known.
In [8], D.Shanks gives a probabilistic algorithm that computes
a square root of an integer modulo an odd prime p. There
are other algorithms that compute a square root of an integer
modulo an integer n (see [7]) and more generally in a finite
fields (see [6]).
We denote by G2(n) the subgroup of (Z/nZ)∗ which is
formed by the integers x that satisfies x2 = 1, such integers
are called square roots of unity modulo n. More precisely
G2(n) contains the unity and elements of order 2.
Recall that elements of order 2 exists always in (Z/nZ)∗

(-1 has for order 2), therefore G2(n) is not a trivial group.
Finally remark that all elements of G2(n) except the unity
has for order 2, so G2(n) has an order a power of 2, so we
obtain the following result :

Proposition
Let n ≥ 3 be an integer, then there exists an integer t ≥ 1
such that :

Ord(G2(n)) = 2t.

In this article, we will give an algorithm that computes a
generating set of G2(n) and gives its decomposition into
product of cyclic subgroups. Finally this algorithm will be
written in MAPLE language.

II. SQUARE ROOTS OF UNITY MODULO N

Let n ≥ 3 be an integer and n = 2αpα1
1 pα2

2 . . . pαm
m its

primary decomposition. In this study, we shall distinguish the
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cases α = 0, α = 1, α = 2 and α ≥ 3.

Case 1 : α = 0

Let n ≥ 3 be an integer and n = pα1
1 pα2

2 . . . pαm
m its primary

decomposition. Let x be an element of (Z/nZ)∗ such that
x2 = 1, that is n divides x2 − 1 = (x − 1)(x + 1). We have
(x+1)− (x− 1) = 2, therefore GCD(x− 1, x+1) ∈ {1, 2},
so if pi divides x − 1 then pαi

i divides x − 1.
If we note, for example, p1, p2, . . . , ps the primes among the
pi which divide x − 1, then x is a solution of this system :⎧⎨

⎩
x − 1 = pα1

1 pα2
2 . . . pαs

s K

x + 1 = p
αs+1
s+1 p

αs+2
s+2 . . . pαm

m K ′
.

It’s clear that x is the unique solution of this system modulo
n. Conversely, any system of the previous form gives a square
root of unity modulo n.
Note that a two different systems of this form give two
different solutions, indeed let the systems :⎧⎪⎨

⎪⎩
x − 1 = p

ασ(1)

σ(1) p
ασ(2)

σ(2) . . . p
ασ(s)

σ(s) K1

x + 1 = p
ασ(s+1)

σ(s+1) p
σ(s+2)
σ(s+2) . . . p

ασ(m)

σ(m) K2⎧⎪⎨
⎪⎩

y − 1 = p
ατ(1)

ρ(1) p
αρ(2)

ρ(2) . . . p
αρ(r)

ρ(r) K ′
1

y + 1 = p
αρ(r+1)

ρ(r+1) p
ρ(r+2)
ρ(r+2) . . . p

αρ(m)

ρ(m) K ′
2

where σ and ρ are two permutations of the set {1, 2, ..,m},
if x = y, then the set of prime divisors of x − 1 among the
pi is the same of y − 1. Therefore the set of prime divisors
of x − 1 among the pi is {pσ(1), pσ(2), ..., pσ(s)} because
pσ(s+1), pσ(s+2), ...and pσ(m) does not divide K1, indeed :

p
ασ(s+1)

σ(s+1) p
σ(s+2)
σ(s+2) . . . p

ασ(m)

σ(m) K2 − p
ασ(1)

σ(1) p
ασ(2)

σ(2) . . . p
ασ(s)

σ(s) K1 = 2.

Thus GCD(K1, p
ασ(s+1)

σ(s+1) p
σ(s+2)
σ(s+2) . . . p

ασ(m)

σ(m) ) ∈ {1, 2}, so
{pσ(1), pσ(2), ..., pσ(s)} = {pρ(1), pρ(2), ..., pρ(r)}, it follows
that the two systems are identical.
We conclude that the number of square roots of unity modulo
n is equal to the number of partitions of the set {1, 2, ..,m},
that is 2m. Note that the empty subset corresponds to −1 and
if all pi divide x − 1, then x = 1. So we have proved :

Proposition 2.1: Let n ≥ 3 be an integer, then

Ord(G2(n)) = 2ω(n)

where ω(n) denote the number of distinct prime factors of n.

Now we study the structure of the group G2(n). For simplicity
throughout this section, we take n ≥ 3 to be an odd integer
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and n = pα1
1 pα2

2 . . . pαm
m its primary decomposition. we start

with this definition :

Definition 2.1: Let x be a square root of unity modulo n.
x is said to be initial if all prime factors of n divide x − 1
except only one pi, we said that x is associated with pi. And
we note :

x − 1 = pα1
1 pα2

2 . . .
∨
pαi

i . . . pαm
m K

where K is an integer not divisible by pi and the symbol
∨
pαi

i

means that we remove the factor pαi
i .

Note that for any i ∈ {1, 2, ..,m} there exist only one square
root of unity associated with pi which is the solution of this
system: ⎧⎪⎨

⎪⎩
x − 1 = pα1

1 pα2
2 . . .

∨
pαi

i . . . pαm
m K

x + 1 = pαi
i K ′

.

We denote by Gpi

2 (n) the set that contains this solution and
the unity, so Gpi

2 (n) is a cyclic subgroup of G2(n) of order
2. We have the following theorem :

Theorem 2.1: The map

ϕ : Gp1
2 (n) × Gp2

2 (n) . . . × Gpm

2 (n) −→ G2(n)
(x1, x2, . . . , xm) �−→ x1.x2, . . . xm

is an isomorphism of groups.

Proof :
It’s clear that ϕ is a morphism of groups, we will show first
that ϕ is injective.
We have ϕ(x1, x2, . . . , xm) = 1 ⇐⇒ x1.x2, . . . xm = 1.
Suppose that there exists an integer i such that xi �= 1,
therefore pi does not divides xi−1. Also, for j �= i, pi divides
xj − 1. Then we have:

xi = 1 + Ki and xj = 1 + pi.Kj

where pi does not divides Ki, so

x1.x2, . . . xm = (1 + pi.K1)..(1 + Ki)..(1 + pi.Km)
= (1 + piK

′)(1 + Ki)
= 1 + (piK

′ + piK
′Ki + Ki).

Since pi does not divides Ki, then pi does not divides
x1.x2, . . . xm − 1, that is absurd. Thus xi = 1 for all
i ∈ {1, 2, ..,m}. Hence ϕ is injective.
Finally, we remark that:

Ord(Gp1
2 (n) ×Gp2

2 (n) . . . ×Gpm

2 (n)) = Ord(G2(n)) = 2m

so ϕ is bijective, therefore it’s an isomorphism.�

Remark :
The fact that ϕ is injective is due to the choice of xi, i.e.
the initial square roots of the unity. The previous theorem
shows that G2(n) is exactly formed by the unity and finished

products without the repetition of the initial square roots of
the unity. In other words, if xi denote the initial square root
of the unity associated with pi, then :

G2(n) = {
∏
i∈I

xi , avec I ⊂ {1, 2, .., m}}.

With the convention that the unity is the product over empty
set.
Remark also that -1 is the product of all xi, Indeed :

m∏
i=1

xi =
m∏

i=1

(1 + pα1
1 pα2

2 . . .
∨
pαi

i . . . pαm
m Ki)

= 1 +
m∑

i=1

pα1
1 pα2

2 . . .
∨
pαi

i . . . pαm
m Ki + Kn

since
m∑

i=1

pα1
1 pα2

2 . . .
∨
pαi

i . . . pαm
m Ki is not divisible by all pi

because Ki is not divisible by pi, we conclude that
m∏

i=1

xi − 1

is not divisible by all pi. It follows
m∏

i=1

xi = −1. Finally, we

have the following result :

Corollary 2.1: Let xi be the initial square root of the unity
associated with pi, then :

G2(n) =< x1, x2, . . . , xm > .

Now, we give an algorithm written in MAPLE that computes
the xi, i.e. a generating set of G2(n).
Let us give some explanations. Resuming the system :⎧⎪⎨

⎪⎩
x − 1 = pα1

1 pα2
2 . . .

∨
pαi

i . . . pαm
m K

x + 1 = pαi
i K ′

This system gives the following equation :

pαi
i K ′ − pα1

1 pα2
2 . . .

∨
pαi

i . . . pαm
m K = 2

and Bezout algorithm allows us to compute K and K ′ and
all xi.

Gene 2 := proc(n) local LB, i, LFact,GEN ;
GEN := [ ]; LB := [ ];
LFact := ifactors(n)[2];
for i from 1 to nops(LFact) do
LB := Bezout(LFact[i][1]̂LFact[i][2],
n/(LFact[i][1]̂LFact[i][2]), 2);
GEN := [op(GEN), LB[1] ∗
LFact[i][1]̂LFact[i][2] − 1 mod n];
end :
eval(GEN);
end :

Algorithm 1.1
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An application example :

To find the generators of the group of square root of
the unity modulo 11× 13× 17× 19, we can use the previous
algorithm with the command

Gene 2(11 ∗ 13 ∗ 17 ∗ 19);

We have the following result [33593, 21319, 32605, 4863],
that is the list of generators.

Remark :
The Bezout function which is used in the previous algorithm
is not a MAPLE function, but it’s a classical algorithm
called Extended Euclidean algorithm.

Case 2 : α = 1

Let n ≥ 3 be an integer such that its primary decomposition is
n = 2pα1

1 pα2
2 . . . pαm

m . Let x be an element of (Z/nZ)∗ such
that x2 = 1, that is n divides x2−1 = (x−1)(x+1). We have
(x+1)− (x− 1) = 2, therefore GCD(x− 1, x+1) ∈ {1, 2}.
So, if pi divides x − 1, then pαi

i divides x − 1.
Also 2 divides (x − 1)(x + 1), thus 2 divides (x − 1) or
(x + 1). Since (x + 1) − (x − 1) = 2, then 2 divides (x − 1)
and (x + 1), so x is a solution of a system of this form :⎧⎪⎨

⎪⎩
x − 1 = 2p

ασ(1)

σ(1) p
ασ(2)

σ(2) . . . p
ασ(s)

σ(s) K1

x + 1 = p
ασ(s+1)

σ(s+1) p
σ(s+2)
σ(s+2) . . . p

ασ(m)

σ(m) K2

where σ is a permutation of the set {1, 2, .., m}. It’s clear
that x is the only solution modulo n of this system and every
system of this form gives a square root of the unity modulo
n. We show in the same way as the previous case, that two
different systems gives two distinct solutions. Therefore, the
number of square roots of the unity modulo n is the number
of partitions of the set {1, 2, .., m}, that is 2m. Hence, we
have the following result:

Proposition 2.2: Let n ≥ 3 be an odd integer, then

Ord(G2(2n)) = 2ω(n)

where ω(n) denote the number of distinct prime factors of n.

For simplicity throughout this section we take n ≥ 3 to be an
integer and n = 2pα1

1 pα2
2 . . . pαm

m its primary decomposition.
We start the study of G2(n) with this definition :

Definition 2.2: Let x be a square root of unity modulo n.
x is said to be initial if all the prime factors of n divide x− 1
except only one pi, we said that x is associated with pi. And
we note :

x − 1 = 2pα1
1 pα2

2 . . .
∨
pαi

i . . . pαm
m K

where K is an integer that does not divisible by pi and the

symbol
∨
pαi

i means that we remove the factor pαi
i .

We remark that for each i ∈ {1, 2, .., m}, there exists only one
square root of unity associated with pi which is the solution
of the following system :⎧⎪⎨

⎪⎩
x − 1 = 2pα1

1 pα2
2 . . .

∨
pαi

i . . . pαm
m K

x + 1 = pαi
i K ′

.

We denote by Gpi

2 (n) the set that contains this solution and
the unity, so Gpi

2 (n) is a cyclic subgroup of G2(n) of order
2. We have the following theorem :

Theorem 2.2: The map

ϕ : Gp1
2 (n) × Gp2

2 (n) . . . × Gpm

2 (n) −→ G2(n)
(x1, x2, . . . , xm) �−→ x1.x2, . . . xm

is an isomorphism of groups.

Remark :
the previous theorem shows that

G2(n) = {
∏
i∈I

xi , avec I ⊂ {1, 2, .., m}}

and we have also
m∏

i=1

xi = −1.

Corollary 2.2: Let xi be the initial square root of the unity
associated with pi, then

G2(n) =< x1, x2, . . . , xm > .

We finish this section with the fact that the algorithm 1.1
remains valid with integers of the form n = 2pα1

1 pα2
2 . . . pαm

m ,
just replacing LFact := ifactors(n)[2]; by
LFact := ifactors(n/2)[2];, it follows the algorithm
1.2.

Case 3 : α = 2

Let n ≥ 3 be an integer such that its primary decomposition
is n = 4pα1

1 pα2
2 . . . pαm

m . If all αi are nuls, then n = 4. We
know that (Z/4Z)∗ = {1,−1} =< −1 >, therefore, we
suppose that at least one of the αi is not null.
Let x be an element of (Z/nZ)∗ such that x2 = 1, that is n
divides x2−1 = (x−1)(x+1). We have (x+1)−(x−1) = 2,
therefore 2 divides (x − 1) and (x + 1). But 2 is not an
ordinary prime, indeed we have the following equivalence :

x ≡ 1[2] ⇐⇒ x2 ≡ 1[8].

It follows that 8 divide x2−1 = (x−1)(x+1). Since GCD(x−
1, x + 1) = 2, therefore 4 divides (x − 1) or (x + 1), so x is
a solution of one of the following systems :⎧⎪⎨

⎪⎩
x − 1 = 4p

ασ(1)

σ(1) p
ασ(2)

σ(2) . . . p
ασ(s)

σ(s) K1

x + 1 = p
ασ(s+1)

σ(s+1) p
σ(s+2)
σ(s+2) . . . p

ασ(m)

σ(m) K2⎧⎪⎨
⎪⎩

x − 1 = p
ασ(1)

σ(1) p
ασ(2)

σ(2) . . . p
ασ(s)

σ(s) K ′
1

x + 1 = 4p
ασ(s+1)

σ(s+1) p
σ(s+2)
σ(s+2) . . . p

ασ(m)

σ(m) K ′
2
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where σ is a permutation of the set {1, 2, ..,m}. It’s clear that
each one of these systems has a unique solution modulo n
and each system of this form gives a square root of the unity
modulo n. We shows also that a two different systems gives
two distinct solutions. Therefore, the number of square roots
of the unity modulo n is twice the number of partitions of
the set {1, 2, .., m}, that is 2m. Hence, we have the following
result:

Proposition 2.3: Let n ≥ 3 be an odd integer, then

Ord(G2(4n)) = 2ω(n)+1

where ω(n) denote the number of distinct prime factors of n.

For simplicity throughout this section we take n ≥ 3 to be an
integer and n = 4pα1

1 pα2
2 . . . pαm

m its primary decomposition
with at least one of the αi as being not null. Now we start
studying of G2(n). Consider the following systems :⎧⎨

⎩
x − 1 = 4pα1

1 pα2
2 . . . pαm

m K1

x + 1 = K2⎧⎨
⎩

x − 1 = pα1
1 pα2

2 . . . pαm
m K ′

1

x + 1 = 4K ′
2

It’s clear that 1 is the only solution of the first system. The
second system has only solution which is x0 = n/2 + 1. This
solution is called second trivial square root of the unity, we
denote by G0

2(n) the cyclic subgroup which is formed by 1
and x0.

Proposition 2.4: Let the systems :⎧⎪⎨
⎪⎩

x − 1 = 4p
ασ(1)

σ(1) p
ασ(2)

σ(2) . . . p
ασ(s)

σ(s) K1

x + 1 = p
ασ(s+1)

σ(s+1) p
σ(s+2)
σ(s+2) . . . p

ασ(m)

σ(m) K2⎧⎪⎨
⎪⎩

x − 1 = p
ασ(1)

σ(1) p
ασ(2)

σ(2) . . . p
ασ(s)

σ(s) K ′
1

x + 1 = 4p
ασ(s+1)

σ(s+1) p
σ(s+2)
σ(s+2) . . . p

ασ(m)

σ(m) K ′
2

if we note by x the solution of the first system and y that of
the second. then y = x0x (and also x = x0y).

Proof :
It’s clear thatx0x is a square root of the unity. We have :

x0x = (1 + pα1
1 pα2

2 . . . pαm
m K ′

1)
(1 + 4pασ(1)

σ(1) p
ασ(2)

σ(2) . . . p
ασ(s)

σ(s) K1)

= 1 + p
ασ(1)

σ(1) p
ασ(2)

σ(2) . . . p
ασ(s)

σ(s) (4K1 +

p
ασ(s+1)

σ(s+1) p
σ(s+2)
σ(s+2) . . . p

ασ(m)

σ(m) K ′
1) + Kn

Since K ′
1 is not divisible by 4 and K1 is not divisible by

p
ασ(s+1)

σ(s+1) , p
σ(s+2)
σ(s+2) . . . and p

ασ(m)

σ(m) , therefore x0x − 1 is not

divisible by 4, p
ασ(s+1)

σ(s+1) , p
σ(s+2)
σ(s+2) . . . and p

ασ(m)

σ(m) . So x0x is
solution of the second system,i.e. x0x = y.�

Definition 2.3: Let x be a square root of the unity modulo
n. We said that x is of the first category if 4 divides x − 1,
else we said that x is of the second category.

Remark :
From the definition, we see that a square root of the unity of
the first category is a solution of a system of the form :⎧⎪⎨

⎪⎩
x − 1 = 4p

ασ(1)

σ(1) p
ασ(2)

σ(2) . . . p
ασ(s)

σ(s) K1

x + 1 = p
ασ(s+1)

σ(s+1) p
σ(s+2)
σ(s+2) . . . p

ασ(m)

σ(m) K2

also a square root of the unity of the second category is the
product of a square root of the unity of the first category by x0.

Definition 2.4: Let x be a square root of unity modulo n.
x is said to be initial if all prime factors of n divide x − 1
except only one pi, we said that x is associated with pi. And
we note :

x − 1 = pα1
1 pα2

2 . . .
∨
pαi

i . . . pαm
m K

where K is an integer not divisible by pi.

Note that there exist two initial square roots of the unity
associated with pi, which are the solutions of the following
systems : ⎧⎪⎨

⎪⎩
x − 1 = 4pα1

1 pα2
2 . . .

∨
pαi

i . . . pαm
m K

x + 1 = pαi
i K ′⎧⎪⎨

⎪⎩
x − 1 = pα1

1 pα2
2 . . .

∨
pαi

i . . . pαm
m K

x + 1 = 4pαi
i K ′

.

We remark that the solution of the first system is of the first
category and that of second is of the second category. If we
note by xi the solution of the first system and yi that of second,
then yi = xix0. So the set {1, x0, xi, yi} is a subgroup of
G2(n), which we denote by Gpi

2 (n).
The set formed by 1 and xi ( the initial square root of the unity
of the first category associated with pi) is a cyclic subgroup

of order 2, which we denote by
+

Gpi

2 (n) and we have the
following isomorphism :

Gpi

2 (n) �
+

Gpi

2 (n) × G0
2(n).

More generally, we have the following result :

Theorem 2.3: The map

ϕ :
+

Gp1
2 (n) × . . .×

+

Gpm

2 (n) × G0
2(n) −→ G2(n)

(x1, . . . , xm, y) �−→ x1.x2, . . . xm.y

is an isomorphism of groups.

Proof :
It’s clear that ϕ is an morphism of groups. For showing that
ϕ is an isomorphism, we should prove that ϕ is injective and
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we conclude by cardinality.
We have ϕ(x1, x2, . . . , xm, y) = 1 ⇐⇒ x1.x2, . . . xm.y = 1,
if we suppose that there exists an integer i such that xi �= 1,
then pi does not divides xi − 1. Since if j �= i then pi divides
xj − 1 and pi divides y. Therefore x1.x2, . . . xm.y − 1 is not
divisible by pi, that is absurd. Thus xi = 1 for all i. Finally
we have y = 1, therefore ϕ is injective.�

Remark :
From the previous theorem, we can see that :

G2(n) = {
∏
i∈I

xi , avec I ⊂ {1, 2, .., m}} × {1, x0}

and we can also show that x0

m∏
i=1

xi = −1.

Corollary 2.3: With the previous notations, we have :

G2(n) =< x0, x1, x2, . . . , xm > .

Now we give an algorithm in MAPLE that computes the
xi.i.e. a generating set of G2(n). x0 is computed from the
relation x0 = n/2 + 1. The other xi are computed in the
same way as the previous case.

Gene 2 := proc(n) local LB, i, LFact,GEN ;
GEN := [ ]; LB := [ ];
GEN := [op(GEN), n/2 + 1];
LFact := ifactors(n/4)[2];
for i from 1 to nops(LFact) do
LB := Bezout(LFact[i][1]̂LFact[i][2],
n/(LFact[i][1]̂LFact[i][2]), 2);
GEN := [op(GEN), LB[1] ∗
LFact[i][1]̂LFact[i][2] − 1 mod n];
end :
eval(GEN);
end :

Algorithm 1.3

An application example :

To find the generators of the group of square root of
the unity modulo 4 × 11 × 13 × 17, we can use the previous
algorithm with the command

Gene 2(4 ∗ 11 ∗ 13 ∗ 17);

We have the following result [4863, 4421, 6733, 3433], that is
the list of generators. We note that the first value of the given
list is the second trivial square root of the unity.

Case 4 : α ≥ 3

Let n ≥ 3 be an integer such that its primary decomposition
is n = 2αpα1

1 pα2
2 . . . pαm

m with α ≥ 3.
If all αi are null, then n = 2α with α ≥ 3. Recall that
(Z/nZ)∗ is not cyclic and its cardinal is n/2. Let x be an
element of (Z/nZ)∗ such that x2 = 1, that is 2α divides
x2 − 1 = (x − 1)(x + 1). We have GCD(x − 1, x + 1) = 2,

therefore 2α−1 divides (x−1) or (x+1). So x is the solution
of one of the following systems :⎧⎨

⎩
x − 1 = 2α−1K1

x + 1 = K2

;

⎧⎨
⎩

x − 1 = K ′
1

x + 1 = 2α−1K ′
2

The first system has two solutions which are 1 and 2α−1 + 1,
the second system has two solutions which are -1 and
2α−1 − 1. It’s clear that all of the previous solutions are
square roots of the unity. We have the following result :

Proposition 2.5: Let n = 2α with α ≥ 3, then

G2(n) = {1, n/2 − 1, n/2 + 1,−1}
Remark :
We remark that (n/2−1)(n/2+1) = (2α−1−1)(2α−1+1) =
−1, therefore

G2(n) =< n/2 − 1, n/2 + 1 > .

Now we suppose that n = 2αpα1
1 pα2

2 . . . pαm
m with α ≥ 3 and

at least one of the αi is not null. Let x be an element of
(Z/nZ)∗ such that x2 = 1. Since GCD(x − 1, x + 1) = 2,
then x is the solution of one of the following systems :⎧⎪⎨

⎪⎩
x − 1 = 2α−1p

ασ(1)

σ(1) p
ασ(2)

σ(2) . . . p
ασ(s)

σ(s) K1

x + 1 = p
ασ(s+1)

σ(s+1) p
σ(s+2)
σ(s+2) . . . p

ασ(m)

σ(m) K2⎧⎪⎨
⎪⎩

x − 1 = p
ασ(1)

σ(1) p
ασ(2)

σ(2) . . . p
ασ(s)

σ(s) K ′
1

x + 1 = 2α−1p
ασ(s+1)

σ(s+1) p
σ(s+2)
σ(s+2) . . . p

ασ(m)

σ(m) K ′
2

where σ is a permutation of the set {1, 2, ..,m}. It’s clear that
each of these systems has two solutions modulo n and each
system of this form gives a square root of the unity modulo
n, because x is odd. We shows also that a two different
systems give distinct solutions. Therefore, the number of
square roots of the unity modulo n is four times the number
of partitions of the set {1, 2, .., m}, that is 2m+2. Hence, we
have the following result:

Proposition 2.6: Let n ≥ 3 be an odd integer, then

Ord(G2(2αn)) = 2ω(n)+2 with α ≥ 3.

For simplicity throughout this section we take n ≥ 3 to be
an integer and n = 2αpα1

1 pα2
2 . . . pαm

m (α ≥ 3) its primary
decomposition with at least one of the αi is not null. Now
we begin to study G2(n). Consider the following systems :⎧⎨

⎩
x − 1 = 2α−1pα1

1 pα2
2 . . . pαm

m K1

x + 1 = K2

;

⎧⎨
⎩

x − 1 = pα1
1 pα2

2 . . . pαm
m K ′

1

x + 1 = 2α−1K ′
2

It’s clear that the first system has two solutions modulo n and
1 is one of these solutions, we note by y0 the other solution.
Also the second system has two solutions modulo n, denoted
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by y1 and y2.
We have :

y0 = 2α−1pα1
1 pα2

2 . . . pαm
m + 1 = n/2 + 1

and y2 = y1 + 2α−1pα1
1 pα2

2 . . . pαm
m , therefore y2y1 = 1 +

2α−1pα1
1 pα2

2 . . . pαm
m y1. Since y1 is odd, then y2y1 = y0 and

y2 = y1y0.
So, the set {1, y0, y1, y2} is a subgroup of G2(n), which is
noted by G0

2(n). Finally remark that :

G0
2(n) = {1, y0} × {1, y1}.

Definition 2.5: Let x be a square root of the unity modulo
n, We said that x is of the first category if 2α divides x − 1,
else we said that x is of the second category.

Remark :
Let x ∈ G0

2(n), then x is of the first category if and only if
x = 1.

Definition 2.6: Let x be a square root of unity modulo n.
x is said to be initial if all prime factors of n divide x − 1
except only one pi, we said that x is associated with pi. And
we note :

x − 1 = pα1
1 pα2

2 . . .
∨
pαi

i . . . pαm
m K.

where K is an integer not divisible by pi.

Note that the initial square roots of the unity associated with
pi are the solutions of the following systems :⎧⎪⎨

⎪⎩
x − 1 = 2α−1pα1

1 pα2
2 . . .

∨
pαi

i . . . pαm
m K

x + 1 = pαi
i K ′

⎧⎪⎨
⎪⎩

x − 1 = pα1
1 pα2

2 . . .
∨
pαi

i . . . pαm
m K

x + 1 = 2α−1pαi
i K ′

Since each of these system has two solutions modulo n,
therefore there exist 4 initial square roots of the unity
associated with pi.

Proposition 2.7: Let the system :⎧⎪⎨
⎪⎩

x − 1 = 2α−1pα1
1 pα2

2 . . .
∨
pαi

i . . . pαm
m K

x + 1 = pαi
i K ′

If we denote by x1 and x2 the solutions of this system, then
x1 = y0.x2.

Proof :
We have x1 = x2 + 2α−1pα1

1 pα2
2 . . . pαm

m , therefore
x1.x2 = 1 + 2α−1pα1

1 pα2
2 . . . pαm

m x2. Since x2 is odd,
then x1.x2 = y0 it follows that x1 = x2.y0.�

Remark :

In the same way, we show that the product of the solutions
of the following system:⎧⎪⎨

⎪⎩
x − 1 = pα1

1 pα2
2 . . .

∨
pαi

i . . . pαm
m K

x + 1 = 2α−1pαi
i K ′

is equal to y0.

Proposition 2.8: there exists an only initial square root of
the unity associated with pi and of the first category.

Proof :
Indeed, this square root of the unity is the only solution of the
system ⎧⎪⎨

⎪⎩
x − 1 = 2αpα1

1 pα2
2 . . .

∨
pαi

i . . . pαm
m K

x + 1 = pαi
i K ′

�

We denote by
+

Gpi

2 (n), the cyclic subgroup of order 2
which is formed by 1 and the initial square root of the unity
associated with pi and of the first category.

Proposition 2.9: Let us consider these systems :⎧⎪⎨
⎪⎩

x − 1 = 2α−1p
ασ(1)

σ(1) p
ασ(2)

σ(2) . . . p
ασ(s)

σ(s) K1

x + 1 = p
ασ(s+1)

σ(s+1) p
σ(s+2)
σ(s+2) . . . p

ασ(m)

σ(m) K2

(1)

⎧⎪⎨
⎪⎩

x − 1 = p
ασ(1)

σ(1) p
ασ(2)

σ(2) . . . p
ασ(s)

σ(s) K ′
1

x + 1 = 2α−1p
ασ(s+1)

σ(s+1) p
σ(s+2)
σ(s+2) . . . p

ασ(m)

σ(m) K ′
2

(2)

where σ is a permutation of the set {1, 2, ..,m}, then the
product of each solution of (1) by y1 or y2 is a solution of (2).

Proof :
Let x be a solution of (1). suppose that x is of the first
category, that is

x = 1 + 2αp
ασ(1)

σ(1) p
ασ(2)

σ(2) . . . p
ασ(s)

σ(s) K1.

Therefore

y1.x = (1 + pα1
1 pα2

2 . . . pαi
i . . . pαm

m K).(1 +
2αp

ασ(1)

σ(1) p
ασ(2)

σ(2) . . . p
ασ(s)

σ(s) K1)

= 1 + p
ασ(1)

σ(1) p
ασ(2)

σ(2) . . . p
ασ(s)

σ(s) (2αK1 +

p
ασ(s+1)

σ(s+1) p
σ(s+2)
σ(s+2) . . . p

ασ(m)

σ(m) K) + nK ′′.

Since 2α−1 does not divides K and
p

ασ(s+1)

σ(s+1) , p
σ(s+2)
σ(s+2) . . . and p

ασ(m)

σ(m) does not divide K1,

then 2α−1, p
ασ(s+1)

σ(s+1) , p
σ(s+2)
σ(s+2) . . . et p

ασ(m)

σ(m) does not divide

2αK1 + p
ασ(s+1)

σ(s+1) p
σ(s+2)
σ(s+2) . . . p

ασ(m)

σ(m) K. Hence y1.x is a
solution of (2).
If z is the other solution of (1), then z = y0.x. Thus,

z.y1 = y0.(x.y1).
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Since (x.y1) is a solution of (2), therefore z.y1 is also a
solution of (2).
Finally, remark that reasoning is also valid to y2.�

If we denote by Gpi

2 (n) the set which is formed by
the initial square roots of the unity associated with pi and
with the elements of G0

2(n), then we have the following result:

Corollary 2.4: Gpi

2 (n) is a group and we have :

Gpi

2 (n) �
+

Gpi

2 (n) × G0
2(n).

Proof :
The initial square roots of the unity associated with pi are the
solutions of the following systems :⎧⎪⎨

⎪⎩
x − 1 = 2α−1pα1

1 pα2
2 . . .

∨
pαi

i . . . pαm
m K

x + 1 = pαi
i K ′

(1)

⎧⎪⎨
⎪⎩

x − 1 = pα1
1 pα2

2 . . .
∨
pαi

i . . . pαm
m K

x + 1 = 2α−1pαi
i K ′

(2)

We deduce that Ord(Gpi

2 (n)) = 8.
From the previous proposition, we know that the solutions of
(2) are the product of the solutions of (1) by y1. If we note
by x a solution of (1), then the solutions of (1) are x and
x.y0. So, the initial square roots of the unity associated with
pi are {x, x.y0, x.y1, x.y0.y1}, it follows :

Gpi

2 (n) = {1, y0, y1, y1.y0, x, x.y0, x.y1, x.y0.y1}.
And obviously, we have

Gpi

2 (n) �
+

Gpi

2 (n) × G0
2(n).�

More generally, we have the following result :

Theorem 2.4: The map

ϕ :
+

Gp1
2 (n) × . . .×

+

Gpm

2 (n) × G0
2(n) −→ G2(n)

(x1, . . . , xm, y) �−→ x1, . . . xm.y

is an isomorphism of groups.

Proof :
In the same way as the previous theorem, we show that
ϕ is an injective morphism of groups and we conclude by
cardinality.�

Remark :
The group G0

2(n) is not cyclic, but we have
G0

2(n) = {1, y0} × {1, y1}, thus :

G2(n) �
+

Gp1
2 (n)×

+

Gp2
2 (n) . . .×

+

Gpm

2 (n)×{1, y0}×{1, y1}.
Finally we have the following result :

Corollary 2.5: As it is noted above, we have

G2(n) =< y0, y1, x1, x2, . . . , xm > .

Now we give an algorithm in MAPLE that computes xi, y0

and y1,i.e. a generating set of G2(n).
The solution y0 is computed by the formula y0 = n/2+1 and
y1 is a solution of the system :

⎧⎨
⎩

x − 1 = pα1
1 pα2

2 . . . pαm
m K ′

1

x + 1 = 2α−1K ′
2

we will choose that satisfied this system

⎧⎨
⎩

x − 1 = pα1
1 pα2

2 . . . pαm
m K1

x + 1 = 2αK2

(�)

Since (�) implies that 2αK2 − (n/2α)K1 = 2, so we get K2

and K1 with the Bezout algorithm. Therefore y1 = 2αK2 −
1 + n/2.
The other xi are computed in the same way as the previous
case.

Gene 2 := proc(n) local a, LB, i, LFact, GEN ;
GEN := [ ]; LB := [ ];
a := ifactors(n)[2][1][2];
GEN := [op(GEN), n/2 + 1];
LB := Bezout(2̂a, n/(2̂a), 2);
GEN := [op(GEN), LB[1] ∗ 2̂a − 1 +
n/2 mod n];
LFact := ifactors(n/(2̂a))[2];
for i from 1 to nops(LFact) do
LB := Bezout(LFact[i][1]̂LFact[i][2],
n/(LFact[i][1]̂LFact[i][2]), 2);
GEN := [op(GEN), LB[1] ∗
LFact[i][1]̂LFact[i][2] − 1 mod n];
end :
eval(GEN);
end :

Algorithm 1.4

An application example :

To find the generators of the group of square root of
the unity modulo 8 × 112 × 13, we can use the previous
algorithm with this command :

Gene 2(8 ∗ 11̂2 ∗ 13);

We have the following result [4863, 4421, 6733, 3433], that is
the list of generators. We note that the first value of the given
list is y0, and the second is y1.

Remark :
The choice of y1 allows us to have :

y0.y1

m∏
i=1

xi = −1.
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Indeed, y0.y1 is the solution of (�). Therefore

y0.y1

m∏
i=1

xi = (1 + pα1
1 pα2

2 . . . pαm
m K1)

m∏
i=1

(1 +

2αpα1
1 pα2

2 . . .
∨
pαi

i . . . pαm
m Ki)

= (1 + pα1
1 pα2

2 . . . pαm
m K1)(1 +

m∑
i=1

2αpα1
1 pα2

2 . . .
∨
pαi

i . . . pαm
m Ki + Kn)

= 1 + [pα1
1 pα2

2 . . . pαm
m K1 +

m∑
i=1

2αpα1
1 pα2

2 . . .
∨
pαi

i . . . pαm
m Ki] + Kn

It’s clear that the term between the brackets is not divisible by

2α−1, pα1
1 , pα2

2 . . . , pαm
m . So, y0.y1

m∏
i=1

xi is a solution of this

system ⎧⎨
⎩

x − 1 = K1

x + 1 = 2α−1pα1
1 pα2

2 . . . pαm
m K2

Since the solutions of this system are -1 and (n/2 − 1). To

conclude, just shows that 2α divides y0.y1

m∏
i=1

xi + 1.

We have

y0.y1

m∏
i=1

xi + 1 = (y0.y1 + 1)
m∏

i=1

xi − (
m∏

i=1

xi − 1)

so it’s clear that (y0.y1 + 1) is divisible
by 2α because y0.y1 is solution of (�), and
m∏

i=1

xi − 1 =
m∑

i=1

2αpα1
1 pα2

2 . . .
∨
pαi

i . . . pαm
m Ki + Kn, thus

m∏
i=1

xi − 1 is divisible by 2α it follow that 2α divides

y0.y1

m∏
i=1

xi + 1.�

Now we give an explicit formula for y1 in special cases.

Proposition 2.10: Let n be an integer of the form 8b, with
b is an odd positive integer, then :
• y1 = n/4 + 1 if b ≡ 1[4].
• y1 = 3n/4 + 1 if b ≡ 3[4].

Proof :
• On the first hand, we have (n/4 + 1)2 = (2p + 1)2 =
1 + 4p(p + 1), and since 2 divides p + 1, then n divides
4p(p + 1). Hence (n/4 + 1)2 = 1.
On the other hand, (n/4 + 1) − 1 = n/4 is divisible by all
the prime factors of n. Since (n/4 + 1) + 1 = 2(p + 1) and
b ≡ 1[4], then p + 1 is divisible by 2 and not by 4. Thus
(n/4+ 1)+ 1 is divisible by 4 and not by 8, hence the result.
• We will show this point in the same way.�

Proposition 2.11: Let n be an integer of the form 2αb with
b is an odd positive integer and α ≥ 3. if b ≡ 1[2α−1], the

solution of (�) is :

y2 =
(2α−1 − 1)n

2α−1
+ 1.

Therefore

y1 =
(2α−2 − 1)n

2α−1
+ 1.

Proof :
We have

y2
2 = (2b(2α−1 − 1) + 1)2

= 1 + 4b2(2α−1 − 1)2 + 4b(2α−1 − 1)
= 1 + 4b(2αb(2α−2 − 1) + 2α−1 + b − 1).

Since 2α−1 divides b− 1, then n divides 4b(2αb(2α−2 − 1) +
2α−1 + b − 1), therefore y2

2 = 1.
It’s clear that all the prime factors of n divide y2 − 1. On the
other hand, y2 +1 = 2b(2α−1 − 1)+2 = 2αb− 2(b− 1), then
2α divides y2 + 1. So, y2 is solution of (�).
We know that y1 = y2 − n/2, it follows the expression of
y1.�

III. CONCLUSION

For the cardinal of G2(n), we have the following theorem :

Theorem 3.1: Let n ≥ 3 be an odd integer, then :
• Ord(G2(n)) = 2ω(n)

• Ord(G2(2n)) = 2ω(n)

• Ord(G2(4n)) = 2ω(n)+1

• Ord(G2(2αn)) = 2ω(n)+2 with α ≥ 3
where ω(n) is the number of distinct prime factors of n.
Now we give an algorithm that computes a generating set for
G2(n), where n is an integer.

Gene 2 := proc(n) local a, LB, i, LFact, GEN ;
GEN := [ ]; LB := [ ];
if(n mod 2 = 1) then
LFact := ifactors(n)[2];
for i from 1 to nops(LFact) do
LB := Bezout(LFact[i][1]̂LFact[i][2],
n/(LFact[i][1]̂LFact[i][2]), 2);
GEN := [op(GEN), LB[1] ∗
LFact[i][1]̂LFact[i][2] − 1 mod n];
end :
eval(GEN);
else
a := ifactors(n)[2][1][2];
if a = 1 then
LFact := ifactors(n)[2];
for i from 1 to nops(LFact) do
LB := Bezout(LFact[i][1]̂LFact[i][2],
n/(LFact[i][1]̂LFact[i][2]), 2);
GEN := [op(GEN), LB[1] ∗
LFact[i][1]̂LFact[i][2] − 1 mod n];
end :
eval(GEN);
elifa = 2then
GEN := [op(GEN), n/2 + 1];
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LFact := ifactors(n/4)[2];
for i from 1 to nops(LFact) do
LB := Bezout(LFact[i][1]̂LFact[i][2],
n/(LFact[i][1]̂LFact[i][2]), 2);
GEN := [op(GEN), LB[1] ∗
LFact[i][1]̂LFact[i][2] − 1 mod n];
end :
eval(GEN);
else
GEN := [op(GEN), n/2 + 1];
LB := Bezout(2̂a, n/(2̂a), 2);
GEN := [op(GEN), LB[1] ∗ 2̂a − 1
+ n/2 mod n];
LFact := ifactors(n/(2̂a))[2];
for i from 1 to nops(LFact) do
LB := Bezout(LFact[i][1]̂LFact[i][2],
n/(LFact[i][1]̂LFact[i][2]), 2);
GEN := [op(GEN), LB[1] ∗
LFact[i][1]̂LFact[i][2] − 1 mod n];
end :
eval(GEN);
end :
end :
end :

Algorithm 1.5

Complexity of the algorithm :

It’s clear that the complexity of the Algorithm 1.5 is
the same as the Algorithm 1.1. Recall that the number
of distinct prime factors of a number n is denoted ω(n).
We know that ω(n) = O(ln(ln n)) (see [9] and [10]), and
the complexity of the Extended Euclidean algorithm is
O(ln2 n) (see [3] and [4]). Therefore the complexity of
Algorithm 1.1 without the factorization is O(ln(ln n) ln2 n).
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