
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

218

Abstract—WebGL is typically used with web browsers. In this

paper, we represent a standalone WebGL execution environment,
where the original WebGL source codes show the same result to those
of WebGL-capable web browsers. This standalone environment
enables us to run WebGL programs without web browsers and/or
internet connections. Our implementation shows the same rendering
results with typical web browser outputs. This standalone environment
is suitable for low-tier devices and/or debugging purposes.

Keywords—WebGL, OpenGL ES, stand-alone, architecture

I. INTRODUCTION
EBGL is the standardized way of providing 3D graphics
output on web browsers, and first released in March

2011 [1]. More precisely, it is based on the canvas elements
from HTML5 document architecture, and provides full 3D
graphics features of OpenGL ES 2.0 and OpenGL ES SL
(shader language) specifications. As shown in Fig. 1, WebGL
programs are written in JavaScript language and embedded into
HTML5 documents. The JavaScirpt codes call the WebGL API
functions, to finally get 3D output on the web browser, using
the underlying OpenGL ES 2.0 or DirectX 9.0 hardware.

Fig. 1 Overall flow of WebGL-based 3D graphics output

WebGL achieved full compatibility and independence with

underlying operating systems and/or windowing systems,
adopting web browsers as the contents providing platform.

Prof. Nakhoon Baek is with the School of Computer Science and
Technology, Kyungpook National University, Daegu 702-701, Korea (e-mail:
oceancru@gmail.com).

This investigation was financially supported by Semiconductor Industry
Collaborative Project between Kyungpook National University and Samsung
Electronics Co. Ltd.

Notice that all the previous OpenGL family specifications are
not free from the underlying platforms. Now, web browsers can
provide overall programming interfaces, which are independent
of underlying hardware, middleware, graphics library, and so
on. Ideally, a WebGL program can be executed on every
platform, where a web browser is available.

A web browser-based graphics environment, such as
WebGL, would be platform-independent and
hardware-independent. Additionally, it requires zero-footprint,
since the web browsers are based on the internet connections,
and can provide 3D graphics contents as streaming services. In
contrast, we cannot use the WebGL-based contents, without
web browsers or internet connections. Though the web
browser-based environment was used to solve many
compatibility-related problems, it is now impossible to use
WebGL alone, without web browsers or internet connections.

In this paper, we present a standalone WebGL-executable
environment. Where JavaScript programs with WebGL API
calls can produce 3D graphics rendering results. This kind of
standalone environment allows execution of WebGL programs
without any web browsers and/or internet connects, to finally
achieves more consistency of user experiences. It can be also
used for local development and debugging purposes, as a
light-weight programming environment.

Some related works are presented in Section II. Design and
implementation details of our system are followed in section III.
in section IV, Rendering results are compared with those of
existing WebGL-capable web browsers. Section V presents our
conclusions and future work.

II. PREVIOUS WORKS
WebGL was originally introduced to add full 3D graphics

rendering features to the HTML5canvas element. Thus,
previous WebGL-capable systems are all implemented on the
HTML5-capable web browsers. Currently, most major web
browsers, including Google Chrome, Mozilla Firefox, Opera
Opera, and Apple Safari, provide WebGL features on their
desktop versions, and are ready for providing them on their
mobile versions. In the case of Microsoft Internet Explorer,
they have not announced any official plane for WebGL support,
but some third-party companies already provide special plug-in
programs for full WebGL support [2].

Most of old pre-HTML5 web browsers do not provide
WebGL features. Some of lightweight web browsers for mobile
devices are also impossible to support full WebGL features. For
these cases, a full software WebGL emulation library [3] has
been implemented in JavaScript language. Since this library is
executed in the JavaScript interpreter, it is hard to be used for
full-scale animations or interactive applications.

Angle project is one of interesting WebGL related

HTML document (internet)

JavaScript code

WebGL API calls

OpenGL ES 2.0,
DirectX 9.0

3D output

web browser

HMTL 5

system

Nakhoon Baek

A Standalone WebGL Supporting Architecture

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

219

implementations [4]. In Microsoft Windows environment, they
use DirectX as the official 3D graphics library, while WebGL
implicitly requires OpenGL 2.0 or its compatible library. Angle
project aims to process WebGL function calls directly on the
DirectX 9.0 library, to let the WebGL functions be executable
without OpenGL related drivers. It is now under development,
and expected to be used for future applications.

There have been continuous attempts to execute the same
web contents on both of the web browsers and other standalone
application programs. For example, to execute JavaScript
programs in separate application programs, the SpiderMonkey
JavaScript Engine [5] was extracted from Mozilla Firefox
browser, and V8 JavaScript engine [6] from Google Chrome.
With these JavaScript Engines, JavaScript codes executed on
web browsers can be embedded into traditional procedural
languages, such as C and C++, to finally show the same
execution results. One of the SpiderMonkey-based application
programs [7] even provide standalone JavaScript programming
environment. Notice that these applications are devoted to the
execution of pure JavaScript language, and do not provide other
extra features such as WebGL.

In the case of WebGL, the official standard specification was
released in March 2011, and thus, most previous efforts are
concentrated on the conversion process of previous desktop
OpenGL or OpenGL ES applications to WebGL-based ones. At
least to our best knowledge, there was no attempt to execute
WebGL programs directly on separate application programs
without web browser support.

III. OVERALL ARCHITECTURE
In this paper, we present a stand-alone hardware-accelerated

application program executing WebGL programs written in the
JavaScript language. Our light-weight standalone application
program will accept HTML5 documents or their embedded
JavaScript programs with WebGL API calls, and directly
display their final 3D graphics results on the screen, rather than

with web-browsers. Using hardware OpenGL features provided
on desktop PC’s and smart-phones, our system will be fully
hardware accelerated.

The overall architecture of our system is shown in Figure 2.
Starting from parsing the JavaScript source codes, our system
converts their WebGL API calls to suitable OpenGL or
OpenGL ES 2.0 functions. Finally, the underlying native
OpenGL hardware shows the rendering result on the screen.

To be executed on the standalone program rather than web
browsers, we applied some restrictions on the HTML5 and
JavaScript-based WebGL programs as follows:

 Multi-canvases are not supported. – Our standalone
system processes a single WebGL program, while
web-browsers can handle multiple canvases in a HTML5
document.

 Text outputs from the JavaScript programs or HTML5
documents are completely ignored. – Pure OpenGL
systems are hard to process the various text features of the
HTML5 standard. We will mainly focus on the 3D
graphics output from the WebGL.

 Only selected features are accepted from the HTML5
DOM architecture. – The DOM (document object model)
interface [8] is the standard way of fetching information
from the HTML documents, and provides variety of
features. In contrast, WebGL programs only use several
typical way of information access. Thus, we only provide
some selected features of the DOM interface. For example,
a typical WebGL program requires vertex shader and
fragment shader source codes, which are typically
provided in separate nodes in the DOM architecture. We
implemented the way of gathering shader source codes
from the different nodes in the DOM architecture.
However, we do not provide all the general ways of
gathering any type of information from the nodes.

 Selected options from the canvas tag are accepted. –
WebGL programs are typically displayed with the HTML5
canvas tags. This canvas tag is originally designed to show

Fig. 2 The overall architecture of our standalone WebGL system

HTML 5 Document

DOM interface

JavaScript Parsing

WebGL interpretation

native OpenGL hardware

native
window

JavaScript
code

shader
source codes

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

220

various 2D and 3D graphics output, with plenty of output
options. Among them, our system only accepts several
options directly related to the WebGL output.

From the early stage of our system architecture design, we
focused on the lightweight standalone environment, to provide
WebGL features. In the development stage, we aimed to
provide prototype features as soon as possible, with minimum
amount of effort, through fully utilizing existing
implementations. Thus, our overall standalone environment is
composed of the following elements:

 Small DOM emulator – Only selected DOM features are
implemented.

 Customized SpiderMonkey JavaScritp Engine – We
naturally need a JavaScript engine to parse JavaScript
programs. We selected the SpiderMonky JavaScript
Engine, originally used for the Mozilla Firefox web
browser. In this SpiderMonkey Engine, programmers can
provide extra C/C++ functions, for the features required by
the JavaScript program, for example, such as WebGL API
calls. We actually provide C functions performing required
steps for each WebGL API calls.

 Customized codes to use OpenGL and GL SL features –
WebGL API calls are processed with underlying hardware
OpenGL and GL Shader Language features. Notice that
there are a lot of differences in the details of WebGL and
OpenGL specifications. For example, OpenGL drivers
cannot understand all WebGL-specific parametric values,
and we need extra processing for each of these exceptional
cases. We carefully checked all of these non-compatible
cases, and provided suitable modifications to finally
execute WebGL programs on the OpenGL and GL SL
environment. Actually, most of our work was focused on
these customization process.

 User interaction based on the GLUT library – In HTML5,
DOM objects and canvas tag provide user interaction
features, including keyboard input, mouse control, and
animation loops with pre-specified time intervals. We
realized these user interaction features with keyboard,
mouse, and idle callback functions in the GLUT library.

 Image loading libraries for texture support – In the DOM
architecture, user specifies the texture image filename, and
the system automatically load the texture file through
internet connections. In contrast, our major components,
JavaScript engine, OpenGL, GL Shader Language, and
GLUT library do not provide any texture loading features.
Thus, we integrated image loading functions, for all image
file formats available in the DOM architecture.

After a set of integration and fine tuning steps, we get the
prototype standalone WebGL system.

IV. IMPLEMENTATION RESULTS
Our implementation works as an independent program on

Windows7 PC’s, with OpenGL and GLUT supports. Core
features and shader language-based features of the WebGL
specification work successfully, through combining our
customized codes, the JavaScript engine, underlying OpenGL
and native Window systems. As shown in Figure 3, our

execution results are same to those of WebGL-enabled
browsers, for variety of test programs. During these test
procedures, we found several technical issues, and solved them,
as shown as follows:

Flipping texture images: OpenGL specification traditionally
assumes that the positive y axis is upward, while web
browsers use downward y axes. In WebGL specification,
PixelStore(…) function may be used to set
UNPACK_FLIP_Y flag, which actually flips the y axis of
the given texture images. Since underlying OpenGL does
not yet support this feature, we flip the texture image, if
necessary, at its loading time.

Supporting animation loops: In its animation sequences,
HTML5 accomplished next frames through calling its
requestAnimFrame(…) function. Its time intervals are not
specified in real HTML5 documents. In our case, we
achieved smooth animations through generating animation
ticks for every 40 msec.

Supporting keyboard interactions: WebGL-enabled web
browsers pass the user’s key press and key release actions
directly to WebGL programs. Our stand-alone
implementation also does it. Our implementation passes all
the key press and key release events even for special keys
including alt, shift and function keys, based on the GLUT
features.

Supporting mouse interactions: Mouse motions and mouse
button events are also passed to the WebGL programs.
Using GLUT features, we also pass all the mouse motion
and button events to the program.

Our current implementation shows the same graphics output
to the WebGL-enabled web browsers, as shown in Figure 3.
Additionally, it shows the same response for keyboard and
mouse interactions. In its execution speed, our program works
slightly faster, mainly due to its lack of network delays. Since it
is hard to measure the execution speed of WebGL programs, we
cannot compare the execution speeds. However, we found that
there have been no remarkable speed differences.

V. CONCLUSION
In this paper, we presented a standalone 3D graphics

programming environment, which shows the rendering results
from WebGL-based JavaScript programs, without web browser
supports. Although the WebGL was originally designed for
web browser-based, platform-independent 3D graphics output,
we still need its standalone, local programming environment. In
this paper, we starts from the SpiderMonkey JavaScript engine,
OpenGL, GL shader Language, and GLUT libraries, and added
much customized codes, to finally get the standalone WebGL
execution environment.

We presented the details of our system design and
implementation. We plan to add some related features and
some official WebGL extensions.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:2, 2013

221

(a) (b)

Fig. 3 Rendering results (a) from Chrome web browser and (b) our
result

ACKNOWLEDGMENT
This investigation was financially supported by

Semiconductor Industry Collaborative Project between
Kyungpook National University and Samsung Electronics Co.
Ltd.

REFERENCES
[1] C. Marrin Ed., WebGL Specification, Draft 16, Khronos Group, 16

March 2012.
[2] "IEWebGL: WebGL for Internet Explorer", http://iewebgl.com, on 19

Mar 2012.
[3] C. Shanahan, "cWebGL: WebGL stack in JavaScript",

http:cimanron.net/, on 14 Feb 2012.
[4] "ANGLE: Almost Native Graphics Layer Engine",

http://code.google.com/angleproject/, on 24 March 2012.
[5] Mozilla Developer Network, SpiderMonkey,

http://developer.mozilla.org/en/SpiderMonkey, on 12 Dec 2011.
[6] Google, "V8 JavaScript Engine", http://code.google.com/p/V8/, on Dec

2011.
[7] "jslibs: standalone JavaScript development runtime environment",

http://jslibs. googlecode.com, on 29 Feb 2012.
[8] W3C, Document Object Model (DOM) Level 3 Core Specification,

Version 1.0, W3C Recommendation, 2004.

Nakhoon Baek is currently an associate professor in the School of Computer
Science and Engineering at Kyungpook National University, Korea. He
received his B.A., M.S., and Ph.D. degrees in Computer Science from Korea
Advanced Institute of Science and Technology (KAIST) in 1990, 1992, and
1997, respectively. His research interests include graphics standards, graphics
algorithms and real-time rendering. He is now also the Chief Engineer of
Mobile Graphics Inc., Korea.

