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Abstract—With increasing complexity in electronic systems 
there is a need for system level anomaly detection and fault isolation. 
Anomaly detection based on vector similarity to a training set is used 
in this paper through two approaches, one the preserves the original 
information, Mahalanobis Distance (MD), and the other that 
compresses the data into its principal components, Projection Pursuit 
Analysis. These methods have been used to detect deviations in 
system performance from normal operation and for critical parameter 
isolation in multivariate environments. The study evaluates the 
detection capability of each approach on a set of test data with known 
faults against a baseline set of data representative of such “healthy” 
systems.. 

Keywords—Mahalanobis distance, Principle components, 
Projection pursuit, Health assessment, Anomaly. 

I. INTRODUCTION
ROGNOSTICS and health management (PHM) is a process 
of predicting the future reliability of the system by 

assessing the extent of deviation or degradation of a product 
from its expected normal operating conditions in a preemptive 
and opportunistic manner to the anticipation of failures. This 
can enable continuous, autonomous, real time monitoring of 
the health conditions of a system by means of embedded or 
attached sensors with minimum manual intervention to 
evaluate its actual life-cycle conditions, to determine the 
advent of failure, and to mitigate system risks. The term 
“diagnostics” refers to the detection and isolation of faults or 
failures and “prognostics” refers to the process of predicting a 
future state (of reliability) of the system based on its current 
and historic conditions. The aim of failure prognosis is 
intended to identify and estimate the advancement of fault 
conditions to system failure. 

Quantification of degradation and the progression from 
faults to failure in electronic products is a challenging task. 
Gu et. al. [2] identifies six levels of prognostics 
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implementation for electronics, from on–chip packaging to 
complete products of products. They provided an approach for 
prognostics implementation at the various levels of 
electronics, based on failure modes, mechanisms and effects 
analysis.

Zhang et. al. [3] proposed a model to assess intermittent as 
well as hard failures. The model is a fusion of two prediction 
algorithms based on life consumption monitoring and 
uncertainty adjusted prognostics.  

Vichare et. al. [1][4][5] proposed methods for monitoring 
and recording in-situ temperature loads. This includes 
methods for embedding data reduction and load parameter 
extraction algorithms into the sensor modules to enable 
reduction in on-board storage space, low power consumption, 
and uninterrupted data collection. 

Two approaches for detection and fault isolation based on 
classification theory are presented in this paper. Both are 
capable of system level anomaly detection in multivariate, 
data-rich environments. One methodology uses the 
Mahalanobis Distance (MD) and the other uses a projection 
pursuit analysis (PPA) to analyze on-line system data. Both 
approaches are used to monitor the health of the system and 
identify onsets and periods of abnormalities. Parameter 
contribution is performed by both approaches as a means of 
identifying dominant and potentially faulty parameters [8] [9] 
[12]. Experiments were performed on notebook computers to 
generate data and validate the analysis approaches. The 
experimental details, the algorithmic approach to anomaly 
detection, and a case study are discussed.  

II. METHODOLOGY TO IDENTIFY ABNORMALITIES IN
ELECTRONIC PRODUCTS

The Mahalanobis Distance (MD) methodology is a process 
of distinguishing data groups [6][10]. The MD measures 
distances in multi-dimensional spaces by considering 
correlations among parameters. The distance is sensitive to the 
correlation matrix of the healthy group. The MD values are 
used to construct a normal operating domain also known as 
Mahalanobis space to monitor the condition of a multi-
dimensional system. Health of a system is defined by several 
performance parameters. These parameters are standardized 
and the MDs are calculated for the normal group. These MD 
values define the Mahalanobis space, which is used as a 
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reference set for the MD measurement scale.   
The parameters collected from a system are denoted as Xi,

where i = 1,2,…,m.  The observation of the ith parameter on 
the jth instance is denoted by Xij, where i =1, 2,…, m, and j = 
1, 2,…,n.  Thus the (m x 1) data vectors for the normal group 
are denoted by Xj, where j = 1, 2,…, n.  Here m is the number 
of parameters and n is the number of observations. Each 
individual parameter in each data vector is standardized by 
subtracting the mean of the parameter and dividing it by the 
standard deviation. These mean and standard deviation are 
calculated from the data collected for normal or healthy 
system. Thus, the standardized values are: 

i

iij
ij S
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Z ,   i = 1, 2… m, j=1, 2… n,  (1)
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Next, the values of the MDs are calculated for the normal 
items using: 
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where, zj

T=[z1j,z2j,…,zmj] is a vector comprises of zij , zj is 
transpose of zj

T and C is correlation matrix calculated as: 
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Next, the test system is considered to determine its health. 
The MDs for the test system are calculated after the 
parameters are standardized using the mean and standard 
deviation for normal-group. The resulting MD values from 
test system are compared with the MD values of the normal or 
healthy system to determine test system’s health. 

A. Significant Parameter Identification Using Mahalanobis 
Distance Analysis 

Critical parameters using MD output can be achieved by 
identifying parameters that contribute more to the MD value. 
In other words, the parameters that have significant impact on 
the MD value should be identified. The effect of individual 
parameters or combination of parameters on MD output 
values can be observed through a leave-one-out approach 
where a reduced set of parameters is used to compute the MD 
values, in effort to understand the effect of the excluded 
parameter. The leave-one-out approach can be expressed by 
an orthogonal array (OA) and a signal-to-noise (S/N) ratio that 
can be used for quantify the impact of selected combinations. 
An OA is a design matrix that reflects the presence or absence 
of parameters involved in the leave-one-out approach for all 
experiments. Each parameter is assigned to a column and each 
row represents an experimental run for the leave-one-out 
approach. Initially all parameters are considered and later with 
each run one parameter is removed from consideration to 
observe the effect of that parameter. The MD values 
corresponding to each leave-one-out run are then used to 
calculate the S/N ratio values, which are the corresponding 

responses for each run. 
Many different S/N ratios are used in Taguchi’s design of 

experiment. One option mentioned is to use Taguchi’s [9] 
larger-is better S/N ratio, defined as (4) 

q

1j

2

jMD
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where, q is the number of observation for an leave-one-out 
run.

For a given parameter Xi, the average value of the S/N ratio 
is determined over all runs with that parameter present (S/Np)
and absent (S/Na). If the difference between (S/N) ratios S/Np

(Xi) - S/Na (Xi) is positive then this parameter has higher 
responses when it is part of the system and therefore the 
parameter Xi, is retained and considered critical.

B. Projection Pursuit Analysis 
The Projection Pursuit Analysis uses a Principal 

Components Analysis (PCA), least squares optimization (LS) 
and a Singular Value Decomposition (SVD) treatment of the 
data. PCA is used in a wide array of applications to reduce a 
large data set to a smaller one while maintaining the majority 
of the variability present in the original data. It’s also very 
useful in providing compact representation of temporal and 
spatial correlations in the fields of data being analyzed. PCA 
facilitates a multivariate statistical control to detect when 
abnormal processes exist and can isolate the source of the 
process abnormalities down to the component level.  

Two statistical indices, the Hotelling Squared (T2) and 
squared prediction error (SPE) are used in the PCA. The SPE 
statistic is related to the residuals of process variables that are 
not illustrated by the PCA statistical model, and is a reliable 
indicator to a change in the correlation structure of the process 
variables. The SPE physically tests the fit of new data to the 
established PCA models and is efficient at identifying outliers 
from the PCA model [7]. The Hotelling T2 score measures the 
Mahalanobis distance from the projected sample data point to 
the origin in the signal space defined by the PCA model. 

The primary objectives of principal component analysis are 
data summarization, classification of variables, outlier 
detection, early warning of potential malfunctions and 
isolation of fault. PCA seeks to find a few linear combinations 
which can be used to summarize the data with a minimal loss 
of information. Let X = x1, x2, x3,..,xm be an m – dimensional 
data set describing the system variables. The first principal 
component is the linear combination of the columns of X, i.e. 
the variables, which describes the greatest variability in X,
t1=Xp1 subject to |p1|=1. In the m-dimensional space p1 defines 
the direction of greatest variability, and t1 represents the 
projection of each sample data point onto p1.  The second 
principal component is the linear combination defined by 
t2=Xp2 which has the next greatest variance subject to |p2|=1
and subject to the condition that it is orthogonal to the first 
principal component, t1 [11]. Essentially PCA decomposes the 
original signal X, as
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X=TPT = 
m

i

T
ii pt

1
(5)

where pi is chosen to be an eigenvector of the covariance 
matrix of X. P is defined as the principal component loading 
matrix and T is defined to be the matrix of principal 
component scores. The loadings provide information as to 
which variables contribute the most to individual principal 
components, and can help isolate the dominant faulty 
variables. In the approach used in this paper, each variable is 
separately scaled to zero mean and unit variance.  

One important feature of the PCA model is that it gives 
information about the noise structure of the original data 
which means that it can tell something about variables that do 
not dominate on the variance level but are indeed degrading or 
faulty. Consequently, it is desirable to exclude less influential 
principal components from the signal space defined by the 
PCA model, which leads to the decomposition of X into the 
signal and residual subspaces. The signal subspace is intended 
to capture the variables that are contributing to any abnormal 
process variability and the residual subspace will complement 
this by examining the variables that are effectively over-
shadowed by dominant variables in the signal subspace. It’s 
important to note that faulty variables aren’t always the ones 
that exhibit the greatest variability. An example of this 
phenomenon is presented in the data analysis and discussion 
section of this paper. 

C. Principal Component Subspace Decomposition 
Subspace decomposition into Principal Components can be 

accomplished using singular value decomposition of matrix X.
The SVD of data matrix X, is expressed as X=USV

T, where 
S=diag(s1,…,sm)  Rn x m, and s1>s2>…>sm. The two orthogonal 
matrices U and V are called the left and right eigen-matrices 
of X. Based on the singular value decomposition, the subspace 
decomposition of X is expressed as: 

X=Xs+Xr=UsSsV
T

s + UrSrV
T

r (6)

The signal space Ss is defined by the PCA model and the 
residual subspace Sr is taken as the residual space [12]. The 
diagonal Ss are the singular values {s1,…,sk}, and {sk+1,…,sm}
belong to the diagonals of Sr. The set of orthonormal vectors 
Us=[u1,u2,…,uk] form the bases of signal space Ss. The 
projection matrix Ps onto the signal subspace is given by: 

Ps=UsUs
T (7) 

The residual subspace is the orthogonal complement of the 
signal subspace and the projection of the original data onto it 
can be expressed as: 

Pr=I-Ps  (8) 

Any vector X can be represented by a summation of two 
projection vectors from subspaces Ss and Sr.

X=Xs+Xr=Psx + (I-Ps)x  (9) 

The subspace decomposition can also be accomplished by 

the eigen analysis of the correlation matrix of X, C, which is 
expressed as follows, where the columns of U are actually the 
eigenvectors of C, and the eigen values of C are the squared 
singular values of the diagonal matrix S. The eigen values 
provide a measure of the variance of each of the eigenvectors 
and determine the selection of the principal components and 
the number of principal components to choose.  

C=(1/n)XXT=(1/n)US2UT  (10) 

D. Fault Detection Using Projection Pursuit Analysis 
From the normal historical data one can derive the nominal 

normal system behavior statistics, mean, variance and from 
the above analysis the signal and residual subspaces. From the 
subspaces, we extract some statistics to describe the data 
distributions in two subspaces[13]. One is the Hotelling T

2

which measures the variation of each sample is the signal 
subspace. For a new sample vector x, it is expressed as: 

T2=xTUsS-1Us
Tx  (11) 

where S is the covariance of X, and is equal to U
T
U.

Another statistic, the squared prediction error (SPE), indicates 
how well each sample conforms to the PCA model, measured 
by the projection of the sample vector onto the residual space 

SPE=||Prx||2=r=||(I – Ps)x||2 (12) 

The process is considered normal if 

SPE 2 and T2 2 (13)

where 2 and 2 are the control limits for the SPE and T
2

statistics, respectively, given a 1-  confidence level. These 
limits assume that x follows a normal distribution and T

2

follows a 2 distribution with k degrees of freedom, where k is 
defined to be the cut off for the number of principal 
components used in the PCA model. Because SPE is a 
measure of the deviation in the residual space, it can be used 
to identify when the current operation deviates from the 
expected in terms of parameters that are not dominant but still 
abnormal. On the other hand, the T2 will be more sensitive to 
the regular fluctuations that move the process away from 
normal based on the projections in the model subspace. The 
two statistics function independently in this analysis, although 
a combined index has been developed for process monitoring. 
Yue and Qin [14] proposed a convenient alternative for 
merging the information from SPE and T2. For the purpose of 
this analysis though, each statistic will be examined 
separately.

E. Fault Isolation and Contribution Plots 
After a fault has been detected, there are several methods 

that can be used to determine the critical system parameters. 
Contribution plots continue to be a widely used for fault 
diagnosis. During monitoring of the system each new 
observation that is projected on the model and residual 
subspaces will have a unique impact onto each subspace 
respectively as discussed earlier. The impact is quantified by 
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calculating the contributions to the SPE and T2. The larger the 
contribution of an individual parameter, the more likely it is 
that the parameter is the reason for the changes or faults. The 
contribution of the mth parameter to the SPE is found by taking 
the squared residual associated with that parameter xm by: 

SPEm=rm
2 (14) 

The contribution of all parameter to T2 is given (in terms of 
the SVD) by: 

T2=||XUS-1/2UT||  (15) 

III.  EXPERIMENTAL SETUP

To demonstrate the feasibility of the proposed 
methodology, experiments were conducted to define a 
baseline for healthy products and to identify specific 
parameter behavior. Notebook computers were exposed to a 
set of environmental conditions representative of the extremes 
of their life cycle profiles. The performance parameters, the 
fan speed, CPU temperature, motherboard temperature, 
videocard temperature, %C2 state, %C3 state, %CPU usage, 
and %CPU throttle were monitored in-situ during the 
experiments. The baseline of healthy products was used to 
differentiate unhealthy products from healthy ones. The 
proposed anomaly detection methodology was verified by 
injecting an artificial fault into the system. Results from the 
study demonstrate the potential of the approach for system 
diagnostics and prognostics. Operational and environmental 
ranges and profiles that constitute a “healthy system” were 
used to replicate the real time usage of the notebook computer. 
Software was installed on the computer to be used. A set of 
user activities was defined and simulated using script file to 
run on notebook computers. An artificial fault was injected 
into the notebook computers to create and detect any change 
in system dynamics.  

TABLE I
ENVIRONMENTAL CONDITIONS

Temperature- Humidity 
5ºC with uncontrolled RH 

25ºC with 55% RH (room ) 
25ºC with 93% RH 
50ºC with 20% RH 
50ºC with 55% RH 
50ºC with 93% RH 

TABLE II
EXPERIMENTS PERFORMED

Power Setting Usage Level Environmental 
Condition

AC adapter 
(when battery is fully charged) 1 - 4 1 - 6 

AC adapter 
(when battery is initially fully 

discharged) 
1 - 4 1 - 6 

Battery only 1 - 4 1 - 6 

Experiments were performed on ten identical notebook 
computers, representative of the state-of-the-art in (2007) 
notebook computer performance and battery life (nearly three 
and half an hours on a single battery). For the experiment, six 
different environmental conditions were considered as shown 
in Table I. For each temperature/humidity combination, four 
usage conditions and three power supply conditions were 
considered. Factorial experiment was designed to study the 
effect of each factor on the response variable, as well as the 
effects of interactions between factors on the response 
variable.

Table II shows the list of all 72 experiments. Each 
computer was turned on for 30 minutes before starting the 
experiment. 

The software for in-situ monitoring was installed on the 
notebook computers, along with Windows XP Professional 
operating system, Microsoft Office, Front page, WinRunner, 
Spybot, Winamp, Real Player, Visual Studio, Java 5, Minitab, 
iTunes, Adobe Photoshop, MATLAB, Winzip and McAfee 
Antivirus. Selection of this software was based on the authors’ 
discretion and experience. A script file was written using 
WinRunner software to simulate user activity. Antivirus 
application McAfee v8.0 was configured to run on the laptop 
all the time. A set of files (.doc, .mp3, .ppt, .pdf, .xls) was kept 
in a folder to be used during simulation. Notebook computers 
were kept at room temperature between each test condition. 
When the laptop was powered by the AC adapter (when the 
battery was fully charged), the test duration was 3.5 hours. 
When the laptop was powered by an AC adapter (when the 
battery was fully discharged), the test duration was determined 
by the time it took for the battery to fully charge. When the 
laptop was powered by its battery only, the test duration was 
determined by the time it took for the battery to fully 
discharge.

Same usage conditions were applied on all notebook 
computers to achieve time synchronization between computer 
and software application responses. The notebook computer’s 
power mode was always set to ON. The screen saver and 
hibernation option were disabled to prevent these functions 
from occurring during an experiment. The wireless capability 
of notebook computer was disabled due to the limited wireless 
connectivity inside the temperature-humidity chambers. Four 
level of notebook computer usage were chosen:  

1. Idle system - In this category the operating system is 
loaded, all windows are closed, user input from the keyboard 
or mouse, optical drive are disabled. USB or Firewire 
peripherals are not attached.

2. Office productivity - In this category, the usage condition 
is designed to simulate an office work environment. The 
simulator work is designed to read a word document as well 
as prepare a new word document. The simulator opens the file 
explorer and locates a file to be opened. The simulator opens a 
“technology benchmark report” word document of 88 pages 
and size of 2.6MB. The simulator reads through the document 
and uses arrow keys to move page up, page down and selects 
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a paragraph to copy. The simulator opens a new document 
from the word toolbar and pastes thee copied section to a new 
document. The simulator resizes both documents to make it 
easy to toggle between the two documents. The simulator 
switches to the original document and reads through pages 
and copies additional paragraphs and pastes again into the 
new document as new paragraphs. The simulator also types a 
new paragraph into the new document. With these activities, 
the simulator creates a five-page summary and saves it by 
pressing the save button in the word toolbar. Then it saves the 
file through invoking the save as file explorer and providing a 
file name for the new document. The simulator does a cleanup 
by resizing and closing all opened document. The simulator 
removes the new files from the desktop and pastes into 
another folder. Finally, the simulator closes all opened file 
explorer windows.

3. Media center – In this category, the usage condition is 
designed to simulate an entertainment need. Winamp (v5.24) 
media player started from the start menu. The file explorer 
window is opened by pressing the open button in Winamp. 
MP3 music files are stored on the hard drive and selected to 
play in Winamp. Music is stopped after 4 minutes followed by 
shutting down the Winamp player window. Real media player 
(v10.5) is started from the start menu. The file explorer 
window is opened to select video files by pressing the open 
button in Real player. Video files from a DVD are selected by 
maneuvering through the file explorer window and then 
played in Real player. Movie screens are resized to full screen. 
The movie is turned off after 90 minutes and Real player 
closed.

4. Game mode – In this category, the usage condition is 
designed to simulate gamming. Quake Arena II was started 
from the start menu and single player option is selected to start 
the game. After an hour of play, the game is stopped and 
exited.

The following section provides discussion on the data 
analysis and provides results on the data collected during 
these experiments. Data analysis is performed by the 
methodology discussed in the previous section.

IV. DATA ANALYSIS AND DISCUSSION

The experiments were performed on ten new notebook 
computers with an assumption that these products are 
representative of normal/healthy products. The MD value 
obtained from these datasets called Mahalanobis space is used 
to identify anomalies present in the product. Five thousand 
data points are selected from the experiments performed at 
CALCE. An effort was made to demonstrate the capability of 
the MD method to detect anomalies present in a test notebook 
computer and characterization of this computer model based 
on the baseline experiments. In Fig. 1, MD values are plotted 
to graphically present the performance of the test computer in 
comparison to the CALCE baseline. From Fig. 1, the test 
computer shows problems from the beginning, a fact verified 
by observing the actual data file for the test computer in which 

the fan was not operating and the three monitored 
temperatures were unusually high. The drop in MD value for 
the test computer at the 2700th and 3600th observations are an 
indication that the computer were shutdown and then 
restarted, which caused a temporary drop in these 
temperatures. This can be verified by looking at the actual 
data file. 

Based on our results, we have seen that a test computer can 
be characterized using experimental data representative of 
“healthy” computers. It is observed that the MD values for the 
test computer are different from the MD values corresponding 
to the baseline. Metrics corresponding to the analysis are 
given in Table III. The table gives the statistics of MD values 
for the test computer and the baseline. The test computer 
shows higher MD values as compared to the baseline.  

Fig. 1 Comparison of MD values of abnormal test computer with 
baseline

TABLE III
STATISTICS OF MD VALUE BASED ON EXPERIMENTAL DATA

System/Stats Mean Std Dev 1st Quartile 3rd Quartile 

Baseline 0.91 0.65 0.53 1.03 

Test Abnormal 17.65 5.14 16.01 19.87 

Orthogonal array analysis is used to identify the significant 
parameters out of the eight original parameters. The leave-
one-out experimental runs are shown in Table IV. The 
parameters are listed in the columns and the leave-one-out 
runs in the rows. An entry of ‘1’ in the cell indicates that the 
parameter is included and ‘2’ indicates that it’s excluded. In 
total, nine leave-one-out runs were conducted, one with all 
parameters present and then the remaining eight excluding one 
parameter respectively each time to investigate the effect of 
that parameter on the MD output values. The S/N ratio is used 
as a measure of performance for each leave-one-out run and 
calculated using equation 4. 
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Fig. 2: Graphs of factorial effects 
In Fig. 2, the difference in the (S/N) ratio is represented in 

Fig. 2 as a vector, and highlights parameters that have a 
vectors with a negative slope. These parameters are 

considered significant ones. The level of importance for each 
parameter is then further defined by the magnitude of their 
vector slopes. Parameters that show positive slopes are not 
considered significant because elimination of these parameters 
does not result into information loss. Since removal of these 
parameters result into higher S/N ratio these parameters are 
not identified as significant once, since larger the better S/N 
ratio is the criteria for parameter selection. This analysis 
identifies four important parameters: the fan is the most 
critical parameter out of these four, and the three temperature 
parameters are also shown to be important. They are affected 
by the failure of the fan and temperature increase of ~10 
degrees centigrade as experienced by the temperature 
components. The following paragraphs discuss the Projection 
Pursuit analysis approach. 

TABLE IV
ORTHOGONAL ARRAY

Performance Parameters 
No.

Fan Speed CPU
Temp 

Mother 
board Temp 

Video card 
Temp 

%C2
State

%C3
State

%CPU
Usage

%CPU
Throttle

S/N
ratio

1 1 1 1 1 1 1 1 1 6.99 
2 2 1 1 1 1 1 1 1 5.60 
3 1 2 1 1 1 1 1 1 6.76 
4 1 1 2 1 1 1 1 1 6.52 
5 1 1 1 2 1 1 1 1 6.37 
6 1 1 1 1 2 1 1 1 7.49 
7 1 1 1 1 1 2 1 1 7.47 
8 1 1 1 1 1 1 2 1 7.48 
9 1 1 1 1 1 1 1 2 7.39 

Fig. 3 Comparison of SPE scores of abnormal test computer with 
baseline

The goal of the Projection Pursuit analysis was to use 
Hotelling T2 and SPE statistics from a healthy computer and 
successfully classify and detect faults in a new computer of 
the same model. Two “healthy” baseline sets of T2 and SPE 
statistics were derived from two sources: one from a CALCE 
baseline set, based on 10 healthy computers of a different 
model, and the other based on one computer of the same 
model. From the analysis, the known faulty computer was 
identified as abnormal based on both comparisons. Fig. 3 and 
Fig. 4 are used as example plots to show the analysis results 
by plotting the SPE and Hotelling T2 statistics for the above 
two scenarios versus the number of sample points. The lower 
pink line indicates baseline “healthy” values for each statistic 
and the upper blue line indicates the test values for each 

statistic for the abnormal test computer. It is clear from the 
plots that the abnormal test computer statistics are different 
from the baseline computer for both scenarios. The first five 
principal components were used to form the model space and 
the remaining three for the residual space. 

From these results we see that the variability of the process 
in both the PCA model and residual subspaces can be used to 
capture abnormal system behavior. The detection is based on 
the geometry of the problem whose dimensions are 
established by the PCA model and residual subspaces. The 
subspaces as discussed are constructed from the “healthy” 
data and represent a fixed frame of reference used to compare 
incoming new observations. New observations are taken as a 
point in the multi-dimensional space and are projected onto 
the PCA model and residual subspaces respectively. 

With the projection the new observation is reduced from its 
original dimension R1xm to the lower dimension of the PCA 
model, R1xk, where k is the number of principal components 
used to form the model subspace. If the projection of the 
observation falls within the statistical control limits 2 and 2,
of the model and residual subspaces respectively, then it is 
taken as normal or “healthy”, otherwise it’s treated as 
abnormal or “un-healthy”. The PCA model can mask faults. 
This can occur for example when the new computer starts to 
exhibit abnormal behavior yet the variability of test data in 
both the model and residual subspaces fall within the 
“healthy” control limits for the system. 
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Fig. 4: Comparison of Hotelling T2 scores of abnormal test computer 
with baseline 

For the baseline, the statistics are modeled with patterns 
that are similar for both comparisons. One of the explanations 
for this is that the baseline for the computers captures the 
necessary range and variability of normal operating conditions 
of such computer models. Without the use of the control limits 
this analysis is left to identify the presence of abnormalities 
between test and training data and also to identify the critical 

system parameters. 

A. Fault Isolation – Dominant Variables Using Projection 
Pursuit Analysis 

The model space is designed to capture the data that varies the 
most, whereas the residual space is designed to capture the 
data that does not vary but contributes to a faulty state. The 
residual space can therefore detect changes in the distribution 
from variables that are degrading or have faults and are not 
effecting the variance. Below are the principal components for 
the entire subspace S. Each principal component is composed 
of the eight parameters with a particular weighting as shown 
in  Table IV. The model/signal subspace is composed of the 
first four principal components. This was chosen based on 
iterative experimentation to best capture the faults. The 
decision of how many principal components are chosen to 
represent the model/signal space is based on experience and 
understanding of the data at hand. There are 
computational/statistical techniques that can provide estimates 
for the selection of the number of PCs to optimized results. 
The remaining columns span the residual subspace. 

TABLE V
PRINCIPAL COMPONENT OF SUBSPACE S AND PARAMETER CONTRIBUTION

[S] PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 
Fan Speed 0.999 0.019 0.001 0.001 0.001 0.002 0.004 0.001 
CPU Temp 0.005 0.076 0.042 0.048 0.000 0.484 0.856 0.153 

Motherboard Temp 0.002 0.035 0.077 0.079 0.004 0.523 0.158 0.830 
Videocard Temp 0.000 0.048 0.107 0.093 0.002 0.670 0.490 0.537 

%C2 State 0.001 0.060 0.018 0.091 0.994 0.001 0.002 0.001 
%C3 State 0.015 0.730 0.384 0.554 0.102 0.005 0.025 0.011 

%CPU Usage 0.013 0.661 0.271 0.690 0.028 0.114 0.019 0.000 
%CPU Throttle 0.001 0.130 0.872 0.439 0.033 0.166 0.038 0.005 

Each variable is represented by each respective row of 
matrix [S]. The first row shows the contributions of the fan 
speed, and the rest show the CPU temperature, motherboard 
temperature, video card temperature, %C2 state, %C3 state, 
%CPU usage and %CPU throttle from top to bottom in matrix 
[S]. From the decomposition of [S] we can see that the model 
space variations should be dominated by the fan speed 
followed by %C3 state, %CPU throttle and usage. In the 
residual subspace the temperature components are dominant. 
We expect that the temperature variables to be highly 
dominant. Changes in the temperature are expected in turn to 
be less obvious to changes in system variance and should 
contribute to the shape of the multivariate data distribution. 
Such a distribution can be modeled as Gaussian mixtures, but 
in general a hard task. Intuitively, if the fan speed is not 
functioning, we expect that the temperature of the system will 
rise and become abnormally high. This is at first hand 
validated by the dominance of the temperatures components 
as observed in the residual subspace in [S]. Mathematically, 
this is also validated through the parameter contribution plots 
to the T2 and SPE respectively as illustrated in the 
contribution plots shown in Fig. 5 and Fig. 6. The contribution 
plots tell us which parameter is contributing the most to the 

projection onto each subspace.
It is shown that on the model space the fan speed is highly 

dominant and varies the most in terms of standard deviation. 
This phenomenon masks the effect on parameters that are also 
exhibiting abnormalities but are overpowered by dominant 
parameters such as the fan speed. The residual space statistic, 
SPE, captures the inverse information and identifies the 
parameters that are indeed abnormal but are not dominating in 
terms of variance. Also interesting is the fact that the 
mathematics validates our intuition that because the fan is not 
functioning properly, the temperature sensors would be 
experiencing unusual readings. Note that these results are 
based on picking the model space using k = 4, that is the first 
four PCs in matrix [S]. The selection of more PCs for the 
model space and consequently fewer PCs for the residual 
space will change the results slightly. If all eight PCs are used 
to construct the model space then the SPE will be rendered 
ineffective although the results for the Hotelling T2 will 
improve. Even though the results from the Hotelling T2

improve with the selection of more PCs the information 
available through the SPE is lost. There are ways to select the 
optimum number of PCs necessary to optimize the 
information captured from both subspaces, often the selection 
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is purely based on experience or experimentation, although 
there are statistical methods such as the maximum likelihood 
estimator (MLE) which can estimate the optimum number of 
PCs to use. 
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Fig. 5 Contribution plot of each parameter towards T2
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Fig. 6 Contribution plot of each parameter towards SPE 

V. CONCLUSIONS

A set of experiments in different usages and environmental 
conditions were conducted to establish the baseline “healthy 
or normal” operation on a set of notebook computers. A test 
computer was then subjected to the field use condition and it 
was evaluated using Mahalanobis Distance (MD), and 
Projection Pursuit analysis (PPA) techniques. In this study, 
PPA and MD were independently used to identify the 
similarity of new observations to healthy data, detect system 
anomalies and identify critical components.  PPA performed 
this analysis in a reduced dimension based on an optimization 
criterion (maximum variance). The strength of PPA lies in the 
ability to decompose the signal and extract additional 
information not originally available, used to identify faults in 
the system. PPA overcomes masking effects when working 
with highly correlated data. The strength of the MD method is 
that it preserves all the information available because it does 
not reduce the original dimensionality of the data but it is 
susceptible to masking effects. Using an S/N ratio analysis 
based on Taguchi’s technique the MD analysis was also used 
to identify the critical components.  

Four critical parameters were identified through both 
methods: the fan speed and the three temperature components 
(CPU temperature, motherboard temperature, and videocard 
temperature). The fan speed is identified as the most 

dominant, whereas the three temperature parameters were 
identified less dominant but still contributing to a faulty state. 
This finding validated the actual problem with the test 
computer, namely that its fan was malfunctioning.  
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